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1. Introduction 

Most attempts to overcome endogeneity in applied economic research rely on identifying an 
instrument that is correlated with the endogenous variable (relevance) but is uncorrelated with 
the error term (validity). While the former is testable, oftentimes the latter is not and the 
empirical exercise falters if the researcher is unable to convince the skeptical reader of the 
instrument’s validity.  

Yet, this skepticism is wholly warranted. The coefficient estimate for the endogenous 
explanatory variable from OLS  may be closer to the true parameter value than the estimate 
obtained from using an invalid instrument even if the instrument is ‘less endogenous’ than the 
explanatory variable, i.e. less correlated with the error term (Bound, Jaeger and Baker, 1995). 
The ease of finding some marginally plausible argument to reject the validity of an instrument 
conspires to create an uncomfortable tension between exploring the myriad important 
relationships in economics that exhibit endogeneity and deploying an estimation method that 
may not be robust to untestable departures from validity. The problem is heightened by the lack 
of alternative methods—designing relevant and ethical laboratory experiments is often unfeasible 
and so-called ‘natural experiments’ are both rare and often lack generalizability.  

Recently, however, several papers have attempted to define what can be identified 
through the use of instruments that do not satisfy the standard IV validity assumption (Ashley, 
2009; Nevo and Rosen, 2012; Conley, Hansen and Rossi, 2006; Hahn and Hausman, 2003; 
Manski and Pepper, 2000). Each uses a combination of assumptions about the correlations 
between the outcome, the instrument, the explanatory variables and/or the error term to generate 
conditions under which identification of bounds on the true parameter value is achievable. For 
example, Nevo and Rosen (2012) demonstrate that if the correlation between the instrument and 
the error term has the same sign as the correlation between the endogenous regressor and the 
error term, then the coefficient estimates from OLS and IV provide at worst a one-sided bound 
on the true value.  

The current paper is similar in approach, but departs from previous work by considering a 
different environment in which the use of one instrument fails to achieve point identification—a 
constant coefficients linear regression framework with two potentially endogenous regressors 
and only one candidate instrument that is correlated with both. Formally, the relationship of 
interest is: 

yi =  ·Wi x1ix2i 0i   (1)

where yi is the outcome; Wi is a vector of exogenous variables; x1i and x2i are scalars that are 
potentially endogenous; and 0i, is a mean zero term that captures unobserved attributes.  

The researcher would obviously prefer to have consistent estimates of all parameters, but 
for policy purposes suppose that the parameter of interest is . Thus, x1 is termed the relevant 
endogenous variable. The instrument z is proposed for x1, but there is concern that it is also 
correlated with x2, termed the non-relevant endogenous variable (as will become evident, x1 and 
x2 are treated asymmetrically because the empirical specification, the set of maintained 
assumptions and the nature of the possible bounds depends upon which variable is designated as 
relevant). Thus, 
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x1i =  ·Wizzi i   
(2)
 

x2i =  ·Wizzi i  (3)

where 1i and 2i are mean zero errors.  
Thus, the identification problem is similar to that discussed by Leamer (1981) who 

considers the estimation of demand and supply equations. In this paper, I demonstrate that under 
reasonable assumptions, some of which are verifiable given the available data, estimating two 
standard IV specifications—one that includes x2 in the set of explanatory variables and one that 
omits x2—can provide economically meaningful fuzzy bounds on the true value of the parameter 
of interest, 1 (fuzzy in the sense that the full covariance structure the regressors is not utlized to 
further narrow the estimated bounds).  

In particular, the critical assumptions required for identification of two-sided fuzzy 
bounds on the coefficient of the relevant endogenous regressor are: 1) the instrument is 
uncorrelated with the error term; 2) the instrument is strong in the sense that it is highly 
correlated with the relevant regressor, but is not redundant to the other variables (this is 
formalized subsequently); and 3) the researcher can sign the relationship between the non-
relevant regressor and both the outcome and the unobservables in the outcome equation, i.e. 
there is prior knowledge of the signs of 2, and cov(x2,0). Notice, however, that no prior 
knowledge of the analogous relationships for the relevant regressor is required. Furthermore, 
even when the data do not allow for two-sided bounds, a one-sided bound may still be 
recoverable.  

Although the case of linear specifications with homogenous treatment effects initially 
appears limited in focus, the subsequent bounding results are nevertheless useful given their 
continued popularity of such models in economics and other fields. Moreover, the approach is 
attractive because the bounds are easy to compute using standard IV methods that can be found 
in modern statistical software packages. Finally, the exceedingly straight-forward estimation 
technique and minimal computational requirements belie the many empirical problems in 
economics where such a procedure can be applied, such as estimation of demand systems; output 
substitution; firm entry, exit and location choice; and household production.  

For example, a researcher may wish to undertake a demand analysis where quantity 
demanded (y) is regressed on own-price (x1) and the price of either a complement or substitute 
(x2) with a supply shock that affected the prices of both goods as the candidate instrument (z). 
Since both prices are likely endogenous, using the supply shock to identify the own-price 
elasticity would not be valid. The subsequent result provides conditions under which bounds 
could still be attained. 

 
2. The basic assumptions 

 
The first four assumptions required for the subsequent bounding result are identical to those that 
would be necessary for point identification under standard IV estimation with one endogenous 
variable: 
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Assumption A1 (exogeneity of W): E[W0]=0. 
Assumption A2 (z as an instrument for x1): E[z1] = 0, z≠ 0. 
Assumption A3 (conditional exogeneity of z): cov(0,z) = 0.  
Assumption A4 (finite covariances): E[(x1 x2 W)′(x1 x2 W)] exists and is finite. 
 
As is standard, consider the case without the exogenous variables W, which is equivalent to 
estimation after projecting y, x1 and x2 onto the vector space spanned by W. Thus, the following 
results hold with additional exogenous variables when interpreted as conditional covariances,  
i.e. the covariances of the residuals after regressing on W. 

yi =   x1ix2i 0i   (4)

x1i =  zzi i   
(5)
 

x2i =  zzi i  (6)

 
3. Bounding result 

 
Consider the following specifications in which x1 is instrumented with z: 

yi =  x1i i   (s1)

yi = x1i x2i i   (s2)

where i=x2ii since (s2) is assumed to be the true model.  Let 1,2=cov(x1,x2),  
z,1=cov(x1,z) and z,2=cov(x2,z) be scalars. Denote 1,s1 and 1,s2 as the estimators of 1 under 
specifications s1 and s2. If A1-A4 hold, then their respectively probability limits are: 

plim 1,s1 =  1 +2(z,2/z,1)   (7)

plim 1,s2 = 1 - Γz,2 cov(x2,ν2)   (8)

where Γ-1=z,12
2– z,2 2,1. If x2 were not endogenous, then cov(x2,ν2)=0 and 1,s2, would be a 

consistent estimate of 1. Alternatively, if either z were uncorrelated with x2 (σz,2=0) or x2 did not 
affect the outcome (α2=0) then 1,s1 would be a consistent estimate of 1. To make the problem 
interesting, however, these trivial cases are ignored.  
 To generate bounds, it is obvious that some stand on the signs of 2, z,1, Γ and cov(x2,ν2) 
is necessary. Notice that z,1 enters the expression of Γ. This fact leads to the definition of a 
strong instrument for the purposes of the current paper. 
 
Definition (strong instrument): The variable z is an strong instrument iff sign(z,1)=sign(Γ). 

 
Notice that sign(signz,1–z,22,1). Thus, a sufficient (but not necessary) condition for 

sign(sign(z,1is |z,1|>|z,2|, i.e. the partial correlation of the instrument with the relevant 
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endogenous regressor is be larger than with the non-relevant regressor. This leads to the 
bounding result. 

 
Proposition 1 (two-sided bounds): If A1-A4 hold; z is a strong instrument; and 
sign(cov(x2,ν2))=sign(2), then max{1,S1,1,S2} is an upper-bound on 1 and min{1,s1,1,s2} is a 
lower-bound on 1.   
 
Proof: By inspection of (7) and (8).■ 
 

Unlike the standard relevancy requirement for IV estimation that only requires that the 
correlation between the instrument and the endogenous variable is non-zero, Proposition 1 
requires that the correlation is sufficiently large, i.e. z is a strong instrument. In addition, the 
researcher must have some prior belief on the relationship between the non-relevant regressor 
and both the outcome and the unobservables. Specifically, if x2 is positively(negatively) related 
to the outcome, it must also be positively(negatively) related to the unobservables.  

The need for additional restrictions to achieve some degree of identification follows 
naturally since the researcher is implicitly relaxing the necessary assumption for point 
identification that a second exclusion restriction exists. For example, the restriction that 
sign(cov(x2,ν2)) = sign(2) is similar in spirit to the monotone treatment selection and monotone 
treatment response properties used by Manski and Pepper (2000) to attain bounds on the 
treatment effect when no instrument is available for a single endogenous regressor. In their 
application, education is assumed to increase labor income (2>0) and individuals who benefit 
most from additional schooling select into high education levels (cov(x2,ν2)>0). For some 
applications, it may be more plausible to make this type of assumption about the non-relevant 
endogenous variable than about the relevant one. It may also be more reasonable than assuming 
the second independent exclusion restriction that is necessary for point identification.  
 It is worth noting that in other applications, selection and treatment may work in opposite 
directions for the non-relevant regressor. For example, an increase in the mortality risk 
associated with an occupation will tend to increase the wage rate, but individuals who are the 
least risk averse and who therefore require the lowest risk premium will tend to select into these 
occupations. Although Proposition 1 does not cover this situation, one-sided bounds may still be 
possible as reported in Table 1. 
 Finally, the construction of confidence intervals, and therefore inference, is possible by 
recognizing that the bounded set of parameter values is constructed as the intersection of two 
intervals (Chernozhukov, Lee and Rosen, 2008; Nevo and Rosen, 2012; Imbens and Manski, 
2004). 
 

3.1 Bounding the non-relevant regressor 
 

It is also possible to use the estimate of 2,S2 to provide bounds on the true parameter value of 2 
if A1-A4 hold.  The probability limit for 2,S2 is straight-forward to calculate: 
 
    plim 2,S2 = 2 + Γz,1 cov(x2,ν2) 
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Proposition 2: Suppose A1-A4 hold and z is a strong instrument for x1. If 
sign(2)=sign(cov(x2,ν2)), then min{0,2,S2} is a lower-bound on 2 and max{0,2,S2} is an 
upper-bound on 2. If sign(2)≠sign(cov(x2,ν2)) and 2<0, then 2<2,S2. If 
sign(2)≠sign(cov(x2,ν2)) and 2>0, then 2>2,S2.   
 
Proof: If z is a strong instrument for x1, then sign()=sign(z,1 ) and the result then follows. ■ 
 
 Proposition 2 is also useful as a specification check if the researcher feels comfortable 
signing 2 beforehand. For example, if 2 is assumed positive and it is also assumed that 
sign(2)=sign(cov(x2,ν2)), then an estimated coefficient which is negative reveals that one of the 
two assumptions must be mistaken. Either both the signs of 2 and cov(x2,ν2) are negative and 
Proposition 1 still follows or the signs are not the same and Proposition 1 no longer applies.  
 Moreover, Proposition 2 along with the probability limits for 1,S1  and  1,S2 actually yield a 
collection of one-sided bounds on the relevant endogenous regressor even when the conditions of 
Proposition 1 are not met. These are summarized in Table 1. 
 
Table 1: Matrix of bounding results based on prior assumptions and data attributes 

       

Prior assumptions From data Implication 
 

2 cov(x2,2) z,1|>|z,2,1 | sign(z,1)=sign(z,2) lower bound on 1 upper bound on 1 
 

+ + Y Y 1,S2 1,S1 

†

+ + Y N 1,S1 1,S2 

†

+ + N Y −∞ min{1,S1,1,S2}  

+ + N N 1,S1 ∞  

+ - Y Y −∞ min{1,S1,1,S2}  

+ - Y N max{1,S1,1,S2} ∞  

+ - N Y −∞ 1,S1 

+ - N N 1,S1 ∞  

- + Y Y max{1,S1,1,S2} ∞  

- + Y N −∞ min{1,S1,1,S2}  

- + N Y 1,S1 ∞ 

- + N N −∞ 1,S1 
 

- - Y Y 1,S1 1,S2 

†

- - Y N 1,S2 1,S1 

†

- - N Y max{1,S1,1,S2} ∞  

- - N N −∞ 1,S1 
 

Notes: † denotes Proposition 1 applies. All bounds assume A1-A4 hold. 
 

 

1079



Economics Bulletin, 2012, Vol. 32 No. 2 pp. 1074-1081

 

 

4. Discussion 
 

 This paper has demonstrated how to find upper and lower bounds on a policy relevant 
endogenous variable when the proposed instrument is also correlated with a second endogenous 
variable. The only a priori knowledge that is required to estimate these bounds involves 
assumptions on the non-relevant endogenous regressor. In empirical work, these may be more 
reasonable than assumptions about the relevant regressor itself or assuming additional exclusion 
restrictions. 
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