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1. Introduction 

 

Since the introduction of the mathematical theory of portfolio selection and of the 

Capital Asset Pricing Model (CAPM), the issue of dependence has always been of 

fundamental importance to financial economics. In the context of international 

diversification, there is the need for minimizing the risk of specific assets through optimal 

allocation of resources. Therefore, it is necessary to understand the multivariate relationship 

between different markets. Thus we need a statistical model able to measure the temporal 

dependence between shocks of different countries. 

The global extent of extreme shocks and the potential damaging consequences 

continuously attract attention among economists and policymakers. These extreme 

dependences, which represent the tails of the probability function, beyond any fundamental 

link, has long been an issue of interest to academics, fund managers and traders, as it has 

important implications for portfolio allocation and asset pricing. 

An inappropriate model for model this extreme dependence can lead to suboptimal 

portfolios and inaccurate assessments of risk exposures. Traditionally, correlation is used to 

describe dependence between random variables, but recent studies have ascertained the 

superiority of copulas to model dependence, as they offer much more flexibility than the 

correlation approach, because a copula function can deal with non-linearity, asymmetry, 

serial dependence and also the well-known heavy-tails of financial assets marginal and joint 

probability distribution.  

A copula is a function that links univariate marginals to their multivariate distribution. 

Since it is always possible to map any vector of random variables into a vector with uniform 

margins, we are able to split the margins of that vector and a digest of the dependence, which 

is the copula. Despite the literature on copulas is consistent, the great part of the research is 

still limited to the bivariate case. Thus, construct higher dimensional copulas is the natural 

next step, even this do not being an easy task. Apart from the multivariate Gaussian and 

Student, the selection of higher-dimensional parametric copulas is still rather limited (Genest 

et al., 2009). 

The developments in this area tend to hierarchical, copula-based structures. It is very 

possible that the most promising of these is the pair-copula construction (PCC). Originally 

proposed by Joe (1996), it has been further discussed and explored in the literature for 

questions of inference and simulation (Bedford and Cooke, 2001; Bedford and Cooke, 2002; 

Kurowicka and Cooke, 2006; Aas et al, 2009). The PCC is based on a decomposition of a 

multivariate density into bivariate copula densities, of which some are dependency structures 

of unconditional bivariate distributions, and the rest are dependency structures of conditional 

bivariate distributions. 

In this sense, this paper aims to estimate and compare the tail dependence structure 

existing in the global markets. To that, we collected data from developed markets (U.S., 

Germany, England and Japan), Latin (Argentina, Brazil, Mexico and Chile) and Asia-Pacific 

(China, Hong Kong, Indonesia and Singapore) emerging markets in the period from January, 

2003 to November, 2011. This period was chosen due to the need to consider the 

international market openness without give too much importance to very past information. 

For each set of markets, we estimated a PCC, in order to estimate the diverse bivariate tail 

dependences. 

The sequence of this paper is structured on the following way: Section 2 briefly 

expose the background about copulas and PCC; Section 3 presents the material and methods 

of the study, presenting the data and the procedures to achieve the objective of the paper; 

Section 4 presents the found results and their discussion; Section 5 expose the conclusions of 

the paper. 
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2. Background 

 

This section is subdivided on: i) Copulas, which briefly explain about definition and 

properties of this class of function; ii) Pair Copula Construction, which succinctly expose the 

concepts of this construction. 

 

2.1 Copulas 

 

Dependence between random variables can be modeled by copulas. A copula returns 

the joint probability of events as a function of the marginal probabilities of each event. This 

makes copulas attractive, as the univariate marginal behavior of random variables can be 

modeled separately from their dependence (Kojadinovic and Yan, 2010). 

The concept of copula was introduced by Sklar (1959). However, only recently its 

applications have become clear. A detailed treatment of copulas as well as of their 

relationship to concepts of dependence is given by Joe (1997) and Nelsen (2006). A review 

of applications of copulas to finance can be found in Embrechts et al. (2003) and in 

Cherubini et al. (2004). 

For ease of notation we restrict our attention to the bivariate case. The extensions to 

the n-dimentional case are straightforward. A function    [   ]  [   ] is a copula if, for 

       and               (      ) (      )    [   ]
    it fulfills the following 

properties: 

 (   )   (   )        (   )   (   )                                                            (1) 

 (      )   (      )   (      )   (      )                                                    (2) 

Property (1) means uniformity of the margins, while (2), the n-increasing property 

means that  (               )    for (X,Y) with distribution function C. 

In the seminal paper of Sklar (1959), it was demonstrated that a Copula is linked with 

a distribution function and its marginal distributions. This important theorem states that: 

(i) Let C be a copula and    and    univariate distribution functions. Then (3) defines 

a distribution function F with marginals    and   . 

 (   )   (  ( )   ( )) (   )    
                                                                        (3)  

(ii) For a two-dimensional distribution function F with marginals    and   , there 

exists a copula C satisfying (3). This is unique if    and    are continuous and then, for 

every (   )   [   ] : 

  (   )   (  
  ( )   

  ( ))                                                                                   (4) 

In (4),   
        

   denote the generalized left continuous inverses of    and   . 

However, as Frees and Valdez (1998) note, it is not always obvious to identify the copula. 

Indeed, for many financial applications, the problem is not to use a given multivariate 

distribution but consists in finding a convenient distribution to describe some stylized facts, 

for example the relationships between different asset returns. 

 

2.2 Pair Copula Construction 

 

The PCC is a very flexible construction, which allows for the free specification of 

n(n−1)/2 copulas. This construction was proposed by the seminal paper of Joe (1996), and it 

has been discussed in detail, especially, for applications in simulation and inference. Similar 

to the NAC, the PCC is hierarchical in nature. The modeling scheme is based on a 

decomposition of a multivariate density into n(n−1)/2 bivariate copula densities, of which the 

first n−1 are dependency structures of unconditional bivariate distributions, and the rest are 

dependency structures of conditional bivariate distributions (Aas and Berg, 2011). 
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The PCC is usually represented in terms of the density. The two main types of PCC 

that have been proposed in the literature are the C (canonical)-vines and D-vines. In the 

present paper we focus on the D-vine estimation, which accordingly to Aas et al. (2009) has 

the density as in formulation (5) 

 (       )  ∏  ( 
     )∏ ∏  {

 (                ) 

 (                  )
}

   
   

   
                          (5) 

In (5),         are variables;   is the density function;  (   ) is a bivariate copula 

density and the conditional distribution functions are computed, accordingly to Joe (1996), by 

formulation (6). 

 (   )  
          { 

(     )  (      )}

  (      )
.                                                                          (6) 

In (6)           is the dependency structure of the bivariate conditional distribution of 

x and   conditioned on    , where the vector    is the vector v excluding the component   .  
Thus, the conditional distributions involved at one level of the construction are always 

computed as partial derivatives of the bivariate copulas at the previous level (Aas and Berg, 

2011). Since only bivariate copulas are involved, the partial derivatives may be obtained 

relatively easily for most parametric copula families. It is worth to note that the copulas 

involved in (5) do not have to belong to the same family. Hence, we should choose, for each 

pair of variables, the parametric copula that best fits the data. 

 

3. Empirical Method 

 

We collected daily prices from January 2003 to November 2011, totaling 1872 

observations of S&P500 (U.S.), DAX (Germany), FTSE100 (England), Nikkei225 (Japan), 

which represents the developed markets (set 1); Merval (Argentina), Ibovespa (Brazil), IPC 

(Mexico), IPSA (Mexico), which are the emerging Latin markets; SSEC (China), HSI (Hong 

Kong), JKSE (Indonesia) and STI (Singapore), which compose the Asia-Pacific emerging 

markets (set 3). This period was chosen due to the need to consider the international market 

openness without give too much importance to very past information, which could cause 

some bias to the found results. 

Firstly, in order to avoid non-stationarity issues we calculated the log-returns of the 

assets by formulation (7). 

              .                                                                                                     (7) 

In (7),    is the log-return at period t;    is the price at period t.  

Before estimate the PCCs, for each set of assets we modeled their marginal. Initially, 

we used a vector autoregressive model (VAR) to obtain the estimated returns and residuals of 

each set. The mathematical form of the VAR(p) model used is represented by (8). 

                       .                                                                       (8) 

In (8),    is a k-dimensional vector of the log-returns at period t;    is a k-dimensional vector 

of constants;   , i=1,…,p are k x k matrixes of parameters; {  } is a sequence of serially 

uncorrelated random vectors with mean zero and covariance matrix Ʃ. 

 Subsequently, to consider the well-known conditional heteroscedastic behavior of 

financial assets, using the residuals of the VAR applied to each set of returns, we used 

estimated a copula-based GARCH model, with skew-t innovations to fit the asymmetry of the 

returns, as represented in (9). 

    
             

          
                                                                                       (9)                       
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Where     
  is the conditional variance of asset I in period t;   ,    and    are 

parameters;                            (     ). ϕ is the asymmetry parameter. Further, 

the model was estimated with a student copula as multivariate distribution. 

After model the marginal, we estimated a PCC for each set of returns. To that, we 

standardized the residuals of the VAR-GARCH approach into pseudo-observations    

(         ) through the ranks as         (   ). Subsequently, we ordered the variables 

by the decreasing order of the sum of the non-linear dependence with the other variables in 

the set by the Kendall’s tau. Subsequently, to choose the copula that best fits each bivariate 

pair of variables we employed the AIC criterion.  

To validate the choice of a D-vine PCC, we compared each model with their 

counterpart C-vine by the test proposed by Clark (2007). This test allows comparing non-

nested models. For this let C1 and C2 be two competing vine copulas in terms of their 

densities and with estimated parameter sets θ1 and θ2. The null hypothesis of statistical 

indifference of the two models is: 

    (    )      ,       [
  (     )

  (     )
] ,          .                                      (10) 

We used the fitted PCCs in order to estimate each bivariate tail dependence index. 

Given the estimated bivariate copula C, the lower and upper tail dependence are represented 

by formulations (11) and (12), respectively. 

          
 (   )

 
.                                                                                                   (11) 

          
      (   )

   
.                                                                                         (12) 

 

4. Results and discussion 

 

We first calculated the log-returns of each asset for the studied period. The Figures 1, 

2 and 3 exhibit the plots of these returns for each set of markets. These Figures elucidate that 

the developed markets has less oscillation than the emerging ones, as expected due to their 

economic solidity and financial liquidity. It should be noted also that there was clear vestiges 

of turbulence periods during the well-known financial crisis, as pointed by the volatility 

clusters. The most noted clusters occurred around the observations 1200 to 1400, 

representing the sub-prime crisis of 2007/2008.  

In order to complementing this initial visual analysis, we present in Table 1 the 

descriptive statistics of the markets during the analyzed period. The results in Table 1 

confirm that the developed markets tend to have less oscillation than the emerging ones. The 

mean of the log-returns in these developed markets is also slightly smaller, although no one 

of the calculated means was significantly different of zero. Further, all markets had 

leptokurtic log-returns, and, with exception of Mexico and Chile, there was a predominance 

of negative skewness. These results reinforce the use of a skew-t distribution to model the 

innovations of the log-returns. 

Subsequently, to choose the order of the variables in the PCC construction, we 

estimated the dependence matrix for each set of returns by the Kendall’s tau approach. Table 

2 presents the results of these dependence matrixes. The chosen criteria was order the assets 

conform the absolute sum of their calculated Kendall’s tau to the others.  

The results in Table 2 indicate that, in a general way, the Asia-Pacific markets are 

more dependent with the others, if compared to the remaining sets. The negative signal in the 

calculated Kendall’s tau only appeared in the Latin markets, for the bivariate cases of 

Brazil/Argentina and Brazil/Mexico. This result corroborate with the increasing in the 

globalization of the financial markets, as pointed by the predominance of positive 

dependence among the log-returns. 
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Figure 1. Daily log-returns of the developed markets (set 1) during the period from January 

2003, to November 2011. 

 
Figure 2. Daily log-returns of the Latin emerging markets (set 2) during the period from 

January 2003, to November 2011. 
 

With the results contained in Table 2 we decided the order of the variables in the 

PCCs. For set 1: DAX, FTSE100, Nikkei225 and S&P500; for set 2: IPC, Merval, IPSA and 

Ibovespa; for set 3: HIS, STI, JKSE and SSEC. After, we modeled the marginal of the assets 

through the VAR-copula based GARCH procedure explained in the subsection 2.3 of the 
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current paper. The results of the estimation of these model were omitted due to lack of space, 

beyond are not the principal scope of the study. The residuals of the previous modeling were 

standardized and utilized to estimate the PCCs. The results of the estimation of the 

dependence structure of each set of markets are presented in Table 3. 

 
Figure 3. Daily log-returns of the Asia-Pacific emerging markets (set 3) during the period 

from January 2003, to November 2011. 

 

Table 1. Descriptive statistics of the daily log-returns of the studied markets during 

the period from January 2003, to November 2011. 

Statistic Minimum Maximum Mean St. Dev. Skewness Kurtosis 

Set 1       

S&P500 -0.0947 0.1042 0.0001 0.0142 -0.3695 9.1437 

DAX -0.0883 0.1068 0.0003 0.0149 -0.2687 5.3675 

FTSE100 -0.0818 0.0847 0.0001 0.0131 -0.1855 5.7954 

Nikkei225 -0.1211 0.1323 -0.0001 0.0167 -0.6222 8.6198 

Set 2       

Merval -0.1295 0.1249 0.0009 0.0205 -0.5819 5.4675 

Ibovespa -0.1210 0.1547 0.0011 0.0200 -0.1724 4.8367 

IPC -0.0726 0.1111 0.0009 0.0152 0.1385 5.5279 

IPSA -0.0621 0.1502 0.0008 0.0117 0.5051 19.4637 

Set 3       

SSEC -0.1597 0.1341 0.0004 0.0176 -0.3919 12.4328 

HSI -0.1063 0.0835 0.0004 0.0135 -0.3978 8.1862 

JKSE -0.1147 0.0736 0.0011 0.0161 -0.8622 7.2178 

STI -0.1417 0.0903 0.0004 0.0192 -0.3907 4.5633 

 

The results contained in Table 3 indicate that there is a clear predominance of the 

Student and BB7 copulas in the bivariate relationships among the three sets of studied 

markets. Gumbel and BB1 copulas also appeared as having the best fit to some data. These 
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copulas assign, in certain degree, importance to the tails of the joint probability distribution. 

This fact clarify that there is more dependence among the markets in extreme events than the 

normally expected. This corroborate with the studies that appoint to an increase of the 

dependence between markets in periods of great shocks.  

 

Table 2. Kendall’s Tau dependence matrixes of each set of daily log-returns of the 

studied markets during the period from January 2003, to November 2011. 

Developed markets 

 S&P500 DAX FTSE100 Nikkei225 
S&P500 1.0000 0.0171 0.0034 0.0890 
DAX 0.0171 1.0000 0.6645 0.2825 
FTSE100 0.0034 0.6645 1.0000 0.2658 
Nikkei225 0.0890 0.2825 0.2658 1.0000 

Sum 0.1095 0.9641 0.9337 0.6373 

Latin markets 

 Merval Ibovespa IPC IPSA 

Merval 1.0000 -0.0386 0.3586 0.3091 

Ibovespa -0.0386 1.0000 -0.0148 0.0043 

IPC 0.3586 -0.0148 1.0000 0.3465 

IPSA 0.3091 0.0043 0.3465 1.0000 

Sum 0.7063 0.0577 0.7199 0.6599 

Asia-Pacific markets 

 SSEC HSI JKSE STI 

SSEC 1.0000 0.2458 0.1360 0.1836 

HIS 0.2458 1.0000 0.3686 0.5180 

JKSE 0.1360 0.3686 1.0000 0.3792 

STI 0.1836 0.5180 0.3792 1.0000 

Sum 0.5654 1.1324 0.8838 1.0808 

 

Regarding to the differences of the estimated PCCs, the results in Table 3 emphasizes 

that in the developed markets dependence structure, the student copula was predominant, 

while BB7 copula obtained the best fit in the most of bivariate relationships. Again, in a 

general form, the Asia-Pacific markets presented the bigger dependence. Further, all the 

PCCs rejected the null hypothesis of the Clark test, which states that there is no distinction in 

the fit of the utilized D-vine approach and the C-vine construction. 

The results in Table 3 fundamentally emphasize the need for a properly estimation of 

the dependence structure of financial assets. This procedure allied with a precise estimation 

of the marginal of the log-returns should lead to a trustable prediction of the dynamic risk of 

a portfolio. Subsequently, we calculated the lower and upper tail dependence index for each 

bivariate relationship through formulations (11) and (12). The results are presented in Table 

4.  

Firstly, the results in Table 4 indicate that some relationships exhibited more 

importance in its structures regarding to the dependence in the tails than that showed by the 

absolute Kendall’s Tau measure. This is the case, for example, of IPC,IPSA|Merval and 

STI,SSEC|JKSE. Further, there are discrepancies in the dependence of the lower and upper 

tails for some relationships, as is the case of Nikkei225,S&P500; DAX,Nikkei225|FTSE100 

and IPC,IPSA|Merval. The bigger values for the tail dependences was obtained, in each set of 

markets, for the countries with more absolute dependence: DAX and FTSE100 (developed); 

IPC and Merval (Latin); HSI and STI (Asia-Pacific). 
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Regarding to comparisons among the three sets of markets, the predominance of the 

Asia-Pacific markets obtained for the Kendall’s Tau measure was maintained in the tails 

dependence. This set presented the great means for both lower and upper tails. The developed 

and the Latin emerging countries showed similar general tail dependences. These results 

reinforced the need for a concise estimation of the dependence, beyond the importance of the 

risk management caused by the fact that the tails generally represent extreme events 

(especially losses). 

 

Table 3. Pair Copula Constructions for each set of markets during the period from 

January 2003, to November 2011.  

Developed markets 

Pair Copula Parameter 1 Parameter 2 

DAX,FTSE100 Student 0.7705 4.4751 

FTSE100,Nikkei225 Student 0.2116 3.9106 

Nikkei225,S&P500 BB7 1.2355 0.2081 

DAX,Nikkei225|FTSE100 Gumbel 1.1038 - 

FTSE100,S&P500|Nikkei225 Student 0.0606 4.2582 

DAX,S&P500|FTSE100,Nikkei225 Student 0.0415 5.9611 

Clark test   739 (0.0000) 

Latin emerging markets 

Pair Copula Parameter 1 Parameter 2 

IPC,Merval BB7 1.4136 0.7968 

Merval, IPSA BB7 1.3288 0.6283 

IPSA, Ibovespa Student 0.0044 13.8539 

IPC,IPSA|Merval BB1 1.1918 1.1994 

Merval,Ibovespa|IPSA Gumbel (rotated 90º) -1.0302 - 

IPC,Ibovespa|Merval,IPSA Student -0.0080 20.1479 

Clark test   907 (0.0003) 

Asia-Pacific emerging markets 

Pair Copula Parameter 1 Parameter 2 

HSI, STI BB7 (rotated 180º) 2.1605 1.2245 

STI, JKSE BB7 1.5307 0.8327 

JKSE,SSEC Student 0.2076 6.2932 

HSI,JKSE|STI Student 0.2063 10.5908 

STI,SSEC|JKSE Gumbel (rotated 180º) 1.1447 - 

HSI,SSEC|STI,JKSE BB7 (rotated 180º) 1.1163 0.2604 

Clark test   882 (0.0260) 

 

Table 4. Lower and Upper bivariate tail dependence for each set of markets during the 

period from January 2003, to November 2011.  

Pair Lower Tail Upper Tail 

DAX,FTSE100 0.4141 0.4141 

FTSE100,Nikkei225 0.1350 0.1350 

Nikkei225,S&P500 0.0357 0.2476 

DAX,Nikkei225|FTSE100 0.0000        0.1262 

FTSE100,S&P500|Nikkei225 0.0807 0.0807 

DAX,S&P500|FTSE100,Nikkei225 0.0393 0.0393 

Mean 0.1175 0.1738 

Pair Lower Tail Upper Tail 
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IPC,Merval 0.4190 0.3671 

Merval, IPSA 0.3318 0.3152 

IPSA, Ibovespa 0.0016 0.0016 

IPC,IPSA|Merval 0.0491 0.2177 

Merval,Ibovespa|IPSA 0.0000 0.0000 

IPC,Ibovespa|Merval,IPSA 0.0001 0.0001 

Mean 0.1336 0.1502 

Pair Lower Tail Upper Tail 

HSI, STI 0.6217 0.5677 

STI, JKSE 0.4350 0.4273 

JKSE,SSEC 0.0634 0.0634 

HSI,JKSE|STI 0.0177 0.0177 

STI,SSEC|JKSE 0.1678 0.1678 

HSI,SSEC|STI,JKSE 0.1393 0.0698 

Mean 0.2408 0.2189 

 

 

4. Conclusions 

 

In this paper we estimated and compared compare the tail dependence structure 

existing in the global markets. To that, we used data from developed markets (U.S., 

Germany, England and Japan), Latin (Argentina, Brazil, Mexico and Chile) and Asia-Pacific 

(China, Hong Kong, Indonesia and Singapore) emerging markets in the period from January 

2003, to November 2011.  

We first estimated the marginal of the assets through a copula based multivariate 

GARCH model for each set of markets. Subsequently, we standardized the residuals of the 

GARCH models and estimated the PCCs. The results evidenced that the Student copula 

predominated in the bivariate relationships of the developed markets, while the BB7 copula 

was the most present in the relationships of the emerging markets. Gumbel and BB1 copula 

also appeared in the PCCs. This fact clarify that there is more dependence among the markets 

in extreme events than the normally expected, once that these copulas assign, in certain 

degree, importance to the tails of the joint probability distribution. Thus, this dependence 

structure estimation reinforced the need for a properly estimation of the dependence structure 

of financial assets, independently of its economic stage. 

After, based on the estimated copulas, we calculated the lower and upper tail 

dependence for each bivariate relationship. Some relationships exhibited more importance 

regarding to the dependence in the tails than that showed by the absolute Kendall’s Tau 

measure, while others presented discrepancies in the dependence of the lower and upper tails. 

In each set, the more relevant tail dependences were obtained by the countries with more 

absolute dependence. The Asia-Pacific markets obtained the great general absolute and tail 

dependences.  

These results reinforced the need for a correct risk management in the case of 

international portfolios due to the fact that the tails generally represent extreme events, as 

crisis for example, which can lead to deep losses periods occasioned by eventual contagions 

caused by the tail dependence among the markets. Further, the diversification must be done 

properly, with optimization process that consider this dependence in the extreme values. 

Finally, we suggest for future research that the PCC procedure be used for others 

financial applications, as the optimal allocation in a portfolio based on the tail dependence 

indexes obtained through the parameters of the estimated copulas, beyond the absolute non-

linear dependence measures.  
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