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1. Introduction 
 
At the time of the first population census in 1790, the total population of the United States 
was about 3.9 million people. By the fourth census in 1820, this had more than doubled, to 
9.6 million, and by the seventh census in 1850 it had more than doubled again, to 23.2 
million, and yet again by 1880, to 50.2 million. After that the rate of growth slowed; the next 
doubling was in 1920, when population reached 106 million, followed by 1980, when 
population reached 227 million. This extremely rapid population growth especially in the 19th 
century was driven primarily by migration. At the same time, the 19th century was a time of 
rapid geographical expansion of the United States. Starting from the original 13 colonies on 
the East coast which declared independence in 1776, the national boundaries expanded 
westwards throughout most of the 19th century, reaching the Pacific coast when California 
joined the Union in 1850, although it was not until 1912 when Arizona and New Mexico 
joined the Union that the whole of the continental United States came into being, and in 1959 
Alaska and Hawaii became states as well, completing the 50 states.  
 
This paper explores the size distribution and growth of U.S. state populations, using census 
data from 1790 to 2000. The approach used is to test for the existence of Zipf’s Law (1949) 
on the size distribution of state populations and Gibrat’s Law (1931) on the growth rate of 
state populations. According to Zipf’s Law, the size distribution follows a simple Pareto 
distribution with shape parameter equal to 1. According to Gabaix (1999), such a distribution 
can be obtained from Gibrat’s Law of random growth, which implies that there are constant 
returns to population size, and also that there is no convergence in population size over time.   
 
The main contributions of the present paper are as follows. First, whilst tests for Zipf’s Law 
and Gibrat’s Law have most often been performed for cities (see for example Nitsch (2005), 
Rosen and Resnick (1980), Soo (2005)), recent work has extended this literature to country 
populations (Gonzalez-Val and Sanso-Navarro (2010), Rose (2006)). The present paper, by 
using state-level data, strikes the middle ground between cities on the one hand, and countries 
on the other hand, enabling us to uncover whether both Laws hold at this level of 
aggregation. Using state-level data enables us to consider the entire population of a country, 
hence allowing us to study the entire size distribution of state populations, whereas most 
work using city data focuses on the upper tail of the distribution, although recent work has 
used data on the full set of incorporated and unincorporated places in the U.S. (Eeckhout 
(2004), Gonzalez-Val (2010), Michaels et. al. (2008)). Also, because of U.S. federalism, 
states are the administrative level at which many policies vary1, and because of these 
different policies, states may evolve differently from each other. 
 
The second main contribution of the paper is to more carefully consider the estimation 
methods for Gibrat’s Law, and to present the results of alternative estimation methods. This 
consideration of different methods has not been done in previous work using parametric 
methods (Dobkins and Ioannides (2001), Black and Henderson (2003)), and enables us to 
assess the appropriate estimation methods for this literature2.   

                                                 
1 Although local governments in the U.S. also have legislative authority, the extent of this authority varies 
across states. On the other hand, the Tenth Amendment to the United States Constitution limited the powers of 
the federal government to those delegated to it by the Constitution.  
2 On the other hand, we do not consider non-parametric approaches, such as those used in Ioannides and 
Overman (2001, 2003, 2004), Gonzalez-Val et. al. (2009), and Gonzalez-Val and Sanso-Navarro (2010). 
Parametric approaches have the advantage in this application since they can be used to go beyond Gibrat’s Law 
to consider other explanations for the growth of state populations. It does mean however that we are imposing a 
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Our main findings are as follows. First, we find that the distribution of state populations 
follows a lognormal distribution closely, especially in the 20th century. Nevertheless, we are 
unable to statistically reject Zipf’s Law that state populations follow a Pareto distribution 
with shape parameter equal to 1. Second, we find evidence that more populous states have a 
lower population growth rate, rejecting Gibrat’s Law of proportional growth, suggesting the 
presence of decreasing returns to population and hence convergence in state populations. 
However, there is evidence that Gibrat’s Law holds in the 20th century. We also find that 
higher state population growth is associated with states with higher market potential in the 
20th century, but not in the 19th century.  
 
The next section discusses the size distribution of U.S. state populations. This is followed in 
Section 3 by the growth of U.S. state populations. Section 4 concludes the paper.  
 

2. The size distribution of U.S. state populations 
 
2.1. Data 
 
The primary data source is U.S. census data for state populations. This census has been held 
every decade since 1790. We use data for all 51 states including the District of Columbia. 
Given the geographic expansion of the country, the number of states increases over time. In 
the first census in 1790 there were only 18 states; this increased over time until 1900 when all 
51 states were in the census. States are sometimes included in the census even before the state 
joins the Union: the most notable examples of this are Alaska and Hawaii, both of which 
achieved statehood in 1959, but data for Alaska are available since 1880 and for Hawaii since 
1900. Table 1 documents the increase in the number of states included, as well as the increase 
in the average state population over time.  
 
Table 1. The number of states in each U.S. census.  

Year States Average 
Population 

 Year States Average 
Population  

1790 18 218,290  1900 51 1,494,356 
1800 23 230,804  1910 51 1,808,403   
1810 28 258,567  1920 51 2,078,854 
1820 28 344,249  1930 51 2,415,738   
1830 29 443,472  1940 51 2,591,454    
1840 31 550,431  1950 51 2,967,173 
1850 38 610,312  1960 51 3,516,141 
1860 43 731,240    1970 51 3,984,548 
1870 48 803,750  1980 51 4,442,075 
1880 49 1,024,270     1990 51 4,876,664 
1890 50 1,259,595  2000 51 5,518,077 

 
2.2. Methods and Results 
 
According to Zipf (1949), the size distribution of state populations should follow a Pareto 
distribution with shape parameter equal to 1. That is, letting R be the rank of a state in terms 

                                                                                                                                                        
specific functional form on the data, which may prevent us from uncovering the true relationship between the 
variables of interest.  
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of its population (with a state with a larger population having a lower rank), and P be the 
population of the state, the population size distribution follows 

  𝑅 =  𝐴 𝑃−𝛼      (1) 
Or, 

  ln𝑅 = ln𝐴 –  𝛼 ln𝑃     (2) 
Zipf’s Law states that α = 1. Equation (2) suggests a linear relationship between the natural 
log of a state’s rank and the natural log of its population. Figure 1 plots equation (2) for 1800, 
1850, 1900, 1950 and 2000. The rightward shift of the distribution over time indicates 
population growth. From this figure it is clear that linearity is not a good approximation for 
the relationship, and hence that Zipf’s Law does not hold for U.S. states, although a linear 
relationship appears to hold quite well for the upper tail of the distribution. Drawing on a 
similar relationship between city sizes and city ranks, Eeckhout (2004) suggests that city 
sizes may be lognormally distributed.  
 
Figure 1. Zipf plots for 1800, 1850, 1900, 1950 and 2000.  

 
 
We therefore test whether the population size distribution of U.S. states is lognormally 
distributed. If state populations are lognormally distributed, then the standard Shapiro-Wilks 
and Shapiro-Francia tests for normality should fail to reject the null that the log of state 
populations follows a normal distribution. The results are in Table 2. Using either test, from 
1900 onwards we cannot reject the null hypothesis that the distribution of state populations is 
lognormal at any conventional significance level. The p-value of the test increases further in 
the 20th century, indicating that the distribution is becoming more similar to the lognormal 
over time. One possible explanation for why U.S. state populations follow a lognormal 
distribution is that they are aggregations of lognormally distributed county populations (see 
Eeckhout (2004)).3   
                                                 
3 The sum of lognormally distributed variables is not lognormally distributed, but can be reasonably 
approximated by one, using the Fenton (1960) method.  
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Table 2. Results from the Shapiro-Wilks and Shapiro-Francia tests for lognormality of the 
size distribution of U.S. states. 

Year Observations  Shapiro-Wilks test  Shapiro-Francia test 
   z p-value  z p-value 
1800 23  2.41 0.0081  2.30 0.0108 
1850 38  3.25 0.0006  3.08 0.0010 
1900 51  1.17 0.1218  1.03 0.1517 
1950 51  0.41 0.3424  0.30 0.3820 
2000 51  0.16 0.4357   -0.27 0.6060 

 
To facilitate comparisons with other results we estimate Zipf’s Law, using the approach 
developed by Gabaix and Ibragimov (2011). They propose, instead of estimating equation (2) 
using OLS, to estimate the following equation instead: 

ln �𝑅 − 1
2
� = ln𝐴 –  𝛼 ln𝑃      (3) 

With the standard error of α being given by (2/n)1/2α. This alternative specification is used 
since OLS estimation of equation (2), whilst consistent, leads to a downward bias in the 
estimate of α in small samples. Similarly, OLS estimation of the standard errors 
underestimates the true standard errors. Given the curvature of the Zipf plots in Figure 2, we 
estimate equation (3) for different sample sizes in each year.  
 
Table 3. Results from the Zipf regression equation (3).  
Year 1800 1850 1900 1950 2000 
N = 10 1.874 1.927 2.146 2.056 2.023 
 (1.043) (1.076) (1.194) (1.148) (1.131) 
N = 15 1.444 1.933 2.154 1.829 1.804 
 (0.842) (1.322) (1.467) (1.241) (1.221) 
N = 20 0.705 1.76 2.152 1.784 1.746 
 (1.323) (1.366) (1.693) (1.390) (1.351) 
N = 25 0.421 1.465 2.029 1.717 1.682 
 (4.664)*** (1.122) (1.793)* (1.476) (1.434) 
N = 30  1.075 1.722 1.65 1.57 
  (0.270) (1.624) (1.526) (1.406) 
N = 35  0.674 1.286 1.425 1.406 
  (2.023)* (0.930) (1.248) (1.208) 
N = 40  0.421 1.069 1.134 1.192 
  (5.995)*** (0.289) (0.528) (0.720) 
N = 45   0.897 1.001 1.013 
   (0.545) (0.005) (0.061) 
N = 51   0.675 0.771 0.843 
   (2.431)*** (1.500) (0.940) 
Notes: The table shows the estimated values of α from equation (3). Figures in parentheses are the t-statistics 
relative to the null hypothesis that α = 1. * significant at 10%; ** significant at 5%; *** significant at 1%. The 
maximum number of states in 1800 was 23 and in 1850 was 38. In 1900, 1950 and 2000 the maximum number 
of states was 51. See Table 1 for details. 
 
The results are reported in Table 3.  In every year the Zipf coefficient decreases as the sample 
size increases to include less-populous states, reflecting the concavity indicated in Figure 1. 
In parallel to the discussion on Zipf’s Law for cities, from 1900 onwards the Zipf coefficient 
is fairly stable at the upper tail of the distribution (when N ≤ 25); in these years the average 
Zipf coefficient at the upper tail is between 1.7 and 2.0, larger than the results usually 
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obtained for cities and countries where it is about 1.1 (see for example Nitsch (2005), Rose 
(2006), Soo (2005)). In the earlier part of the sample, the Zipf coefficient decreases much 
more quickly as the sample size increases. However, it is only when all states are included in 
the sample that the Zipf coefficient is ever significantly different from 1 in a statistical sense, 
and even then only for 1900 and before. The least-populous states in the earlier periods are 
states that most recently joined the Union. These states subsequently experienced rapid 
population growth and caught up with other states, reducing the curvature of the Zipf plots.   
 

3. The growth of U.S. state populations 
 
3.1. Methods 
 
Gabaix (1999) shows that Zipf’s Law is an outcome of Gibrat’s Law, which in this context 
would state that the population of a state and its growth rate are independent. Following 
Black and Henderson (2003), Gibrat’s Law may be tested by estimating the following 
equation: 

 𝑙𝑛�𝑃𝑖,𝑡� =  𝛽 + 𝜃𝑖  +  𝛾𝑡 +  𝛿 𝑙𝑛�𝑃𝑖,𝑡−1� +  𝜀𝑖,𝑡     (4) 
Where θi is a set of state fixed effects and γt is a set of year dummies. If Gibrat’s Law holds, 
then δ = 1, and the error term εi,t is i.i.d. Hence, equation (4) may be estimated using OLS. 
Equation (4) may be augmented with additional explanatory variables that may explain the 
growth of state populations: 

𝑙𝑛�𝑃𝑖,𝑡� =  𝛽 + 𝜃𝑖 + 𝛾𝑡 +  𝛿 𝑙𝑛�𝑃𝑖,𝑡−1� +  𝜂 𝒁𝒊,𝒕 +  𝜀𝑖,𝑡    (5) 
Where Zi,t is a vector containing both time varying and time invariant variables. If Gibrat’s 
Law does not hold, then the inclusion of lagged state population in equations (4) and (5) 
means that conventional OLS, fixed- and random-effects models are all biased (see Baltagi 
(2005) for details). Since our dataset has more states than time periods, the appropriate 
estimation method is a dynamic panel data model.  
 
Our dataset includes a relatively large number of both cross-sectional (51 states) and time-
series units (21 census periods after dropping the first census from the sample; see the results 
section for more discussion). Therefore, to estimate equation (5), we use the method 
originally proposed by Kiviet (1995), which involves correcting the bias of the fixed effects 
models. Judson and Owen (1999) show that for samples with relatively large time and cross 
sectional dimensions, fixed effects estimation with Kiviet’s correction outperforms OLS, 
uncorrected fixed effects, the Arellano-Bond (1991) GMM estimator and the Anderson-Hsiao 
(1982) instrumental variables estimator, in terms of the root mean square error, for every 
sample size which they tested. At the time of Judson and Owen (1999), Kiviet’s correction 
was not available for unbalanced panels. This was rectified by Bruno (2005a, 2005b), who 
shows that Kiviet’s correction outperforms alternative estimation methods in unbalanced 
panels in terms of bias and root mean square error. We estimate the model using Bruno’s 
(2005a, 2005b) corrected fixed effects, with the correction initiated by the Anderson-Hsiao 
(1982) estimator, and the bias correction is O(1/T) (see Bruno (2005a) for details). 
Nevertheless, one key limitation of the Kiviet-Bruno correction is that all the other 
explanatory variables must be strictly exogenous. In the robustness section we compare the 
results of using this method, with alternative estimation methods.  
 
Models of economic geography (see for example Fujita et. al. (1999)) suggest that market 
potential plays an important role in determining the attractiveness of locations to workers and 
firms. This may influence state population growth. Therefore, in addition to the lagged 
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dependent variable, we include in equation (5) market potential as a measure of economic 
geography, defined as:  

  𝑀𝑃𝑗,𝑡 =  ∑ �𝑃𝑖,𝑡
𝐷𝑖,𝑡
�𝑖≠𝑗       (6) 

That is, the market potential of a state j in year t is the sum of the population of all other 
states weighted by the inverse of the distance from the state, where the distance is the great 
circle distance between state capitals4. Market potential captures the potential market and 
competition facing a state. Small states on the East Coast such as Connecticut, Delaware, 
District of Columbia, Maryland and Rhode Island have the largest market potential, for two 
reasons: first, they are in a densely populated region, and second, being small states, they are 
closer to their neighbours than larger states. At the other end of the spectrum, perhaps 
unsurprisingly Alaska and Hawaii have the lowest market potential, but California has a low 
market potential as well, since despite being the most populous state, it borders large and less 
densely populated states. 5 
 
3.2. Results 
 
Table 4. State population growth and Gibrat’s Law. Dependent variable: log state population, 
ln(Pi,t). 

 Full sample:  
1800-2000 

19th century:  
1800-1910 

20th century:  
1920-2000 

 (1) (2) (3) (4) (5) (6) 
ln(Pi,t-1) 0.760** 0.751** 0.674** 0.701** 1.029** 0.952** 
 (0.017) (0.021) (0.029) (0.038) (0.030) (0.040) 
ln(Market potential)  0.038  -0.361  0.497** 
  (0.092)  (0.239)  (0.146) 
N 826 826 367 367 408 408 
F-Test δ = 1 p-value 0.00 0.00 0.00 0.00 0.32 0.23 
Time dummies Yes Yes Yes Yes Yes Yes 

Notes: Estimation method is the Kiviet-Bruno corrected fixed effects estimator. All regressions include 
unreported constants. * significant at 5%; ** significant at 1%. Figures in parentheses are standard errors 
obtained through 100 bootstrap replications. The test for δ = 1 is the test for Gibrat’s Law. Bias corrections are 
initialised by the Anderson-Hsiao (1982) estimator, and the bias correction is O(1/T). See Bruno (2005a) for 
details.  
 
Table 4 presents the results of regressions (4) and (5), estimated using the Kiviet-Bruno 
corrected fixed effects estimator for unbalanced panels. The first year a state enters the 
census is dropped from the sample, as states often experienced very rapid initial population 
growth from very low bases. All results reported include unreported time dummies. Standard 
errors are estimated using bootstrap methods with 100 replications. Column (1) which is for 
the full sample shows that the coefficient on the lagged dependent variable is 0.76, which is 
significantly less than 1. This indicates that Gibrat’s Law of proportional growth in state 
populations does not hold. States with a higher population grow more slowly than states with 
a lower population, suggesting decreasing returns to population and convergence of state 
populations. Column (2) of Table 4 includes the log of market potential as an additional 

                                                 
4 We use great circle distances since over the long time period under investigation, new transport links were 
developed, but we do not have the data to capture these developments.  
5 Because of the use of fixed effects methods, we are unable to include any time-invariant variables in the 
model, such as geographical measures like land area, which would be captured by the state fixed effects.  
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explanatory variable. This has no significant impact on state population growth6, and does 
not change the coefficient on the lagged dependent variable.  
 
There are essentially two phases in the geographical development of the United States: the 
first phase, which occurred in the 19th century, involved the expansion of the country to new 
states. This expansion was concluded with the acceptance of Arizona and New Mexico into 
the Union in 1912. The second phase after 1912 involved no geographical expansion, but 
population movement across states is not uncommon. Since some population data for states is 
available even before formal admission into the Union, we divided the sample into two time 
periods, the first from 1800 to 1910, and the second from 1920 to 2000, to investigate 
whether state population growth behaves differently in the two phases of development.7  
 
Columns (3) and (4) of Table 4 report the results for the 1800-1910 sample (henceforth the 
19th century), while columns (5) and (6) report the results for the 1920-2000 sample 
(henceforth the 20th century). The coefficient on the lagged dependent variable is 
significantly smaller in the 19th century than in the 20th century. Also, the coefficient is not 
significantly different from 1 in the 20th century. That is, we cannot reject Gibrat’s Law of 
proportional growth in the 20th century, but we can do so in the 19th century. In addition, 
market potential is positively related to population growth in the 20th century, but not in the 
19th century. The results of columns (3) to (6) of Table 4 suggest that, in the 19th century, 
there were decreasing returns to population, possibly due to the expansion into new territories 
which encouraged the growth of new settlements, so that newly settled, less-populous states 
experienced faster population growth. On the other hand, in the 20th century, there are 
constant returns to population, and increasing attractiveness of proximity to other economic 
agents. We do not have the data to investigate this further, but it is possible that this is caused 
by improvements in transportation technology and infrastructure during this period (see for 
example Michaels (2008), Duranton and Turner (2010)).  
 
3.3. Robustness 
 
In this section we compare the results from the previous subsection using the Kiviet-Bruno 
corrected fixed effects estimator, with other methods of estimating the model. The methods 
we compare are: (1) OLS; (2) fixed effects; (3) the Anderson-Hsiao (1982) first-differences 
model with the differenced lagged dependent variable instrumented by the second lag of the 
dependent variable in levels; (4) the Arellano-Bond (1991) Difference GMM model in first-
differences in which additional lags of the dependent variable are used as instruments; (5) the 
Blundell-Bond (1998) System GMM model in which the equation in levels is included in the 
estimated system to exploit the additional moment conditions; and (6) the Kelejian-Prucha 
(1999) GMM estimator of a spatial autoregressive model with spatial-autoregressive 
disturbances (SARAR)8. For a more detailed discussion of methods (1) to (5) above, see 
Roodman (2009a).  
 
In both the Arellano-Bond (1991) and Blundell-Bond (1998) GMM models, to avoid the 
problem of too many instruments (see Roodman (2009b)), we collapse the set of instruments, 
and use only two lags of the endogenous variables as instruments. In addition, we estimate 
                                                 
6 Equations (4) and (5) can be rearranged as equations with population growth rates (differences in log 
population) on the left-hand-side, without changing the rest of the equations.   
7 Estimating equations (4) and (5) excluding Hawaii and Alaska does not significantly change the results.  
8 See also Kapoor et al (2007) and Drukker et al (2011). The SARAR model was estimated using the 
GS2SLSXT module in STATA, written by Shehata (2011).  
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both the Arellano-Bond and Blundell-Bond models in their asymptotically efficient, two-step 
form, and correct for the standard errors using the Windmeijer (2005) correction. As noted 
above, OLS and fixed effects methods are biased in the presence of the lagged dependent 
variable. On the other hand, the properties of the Anderson-Hsiao (1982) and GMM 
estimators hold when N is large, so they can be biased in panels with a small number of 
cross-sectional units.  
 
Table 5. State population growth and Gibrat’s Law: Estimating equation (5) using alternative 
methods. Dependent variable: log state population, ln(Pi,t). 

 (1) (2) (3) (4) (5) (6) 
Estimation method OLS Fixed 

effects 
Anderson-

Hsiao 
Arellano-

Bond 
Blundell-

Bond 
Kelejian-
Prucha 

ln(Pi,t-1) 0.939** 0.915** 0.699** 0.395** 0.563** 0.938** 
 (0.014) (0.018) (0.083) (0.058) (0.084) (0.017) 
ln(Market potential) -0.135** -0.113** 0.467 1.469** -0.028 0.582** 
 (0.032) (0.040) (0.361) (0.336) (0.324) (0.084) 
Spatial lag      -0.275** 
      (0.089) 
N 844 844 844 844 844 459 
F-Test δ = 1 p-value 0.00 0.00 0.00 0.00 0.00 0.00 
Time dummies Yes Yes Yes Yes Yes Yes 
Time period 1800-2000 1800-2000 1800-2000 1800-2000 1800-2000 1920-2000 
Instruments    24 26  

Notes: All regressions include unreported constants. * significant at 5%; ** significant at 1%. Standard errors 
clustered by state reported in parentheses. The test for δ = 1 is the test for Gibrat’s Law. See the text and 
Roodman (2009a) for details on the estimation methods used.  
 
Table 5 presents the results for equation (5). Columns (1) to (5) report the results for the full 
sample; this corresponds to column (2) of Table 4. All standard errors reported are clustered 
by state. The OLS and fixed effects estimates of the coefficient on lagged population are 
larger than the Kiviet-Bruno estimates; this indicates the endogeneity bias of these methods. 
On the other hand, the GMM estimates (columns (4) and (5)) are smaller than the Kiviet-
Bruno estimates, which again suggests that these methods suffer from bias due to the 
relatively small number of cross-sectional units. The Anderson-Hsiao estimate is fairly close 
to the Kiviet-Bruno estimate. For market potential, the OLS and fixed effects results are 
significantly negatively related to population growth, whereas with Arellano-Bond, it is 
positively related to population growth.  
 
Finally, column (6) of Table 5 reports the results of the Kelejian-Prucha SARAR model, for 
the 1920-2000 sample, corresponding to column (6) of Table 4. This sample was chosen 
since the GS2SLSXT module in STATA requires a balanced panel. The Kelejian-Prucha 
model yields results for both lagged population and market potential which are very similar to 
the Kiviet-Bruno estimates. This suggests that the Kelejian-Prucha model may be an 
alternative to the Kiviet-Bruno estimator. In addition, the negative coefficient on the spatial 
lag term suggests that states which are close to other rapidly growing states may experience 
slower population growth, maybe because these neighbouring states are attracting migrants 
from the state. Overall, the results of Table 5 provide evidence to support our use of the 
Kiviet-Bruno corrected fixed effects method, as the results differ across methods, and the 
Monte Carlo evidence from Bruno (2005a, 2005b) indicates that the Kiviet-Bruno estimator 
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outperforms the other estimators. The Kelejian-Prucha SARAR model appears to provide an 
alternative to the Kiviet-Bruno estimator.  
 

4. Conclusions 
 
In this paper we explore the size distribution and growth of U.S. state populations over a long 
time period, using census data from 1790 to 2000. Our main findings are as follows. First, we 
find that the size distribution of state populations follows a lognormal distribution, especially 
since 1900. Nevertheless, we are unable to reject Zipf’s Law (that state population follows a 
Pareto distribution with shape parameter equal to 1) despite the concavity of the Zipf plots.  
 
Our second main finding is that more populous states tend to have slower population growth 
rates than less populous states, and this result holds controlling for market potential. That is, 
we do not find evidence for Gibrat’s Law of proportional growth in state populations. 
However, when we divide the sample into 19th century and 20th century samples, we find 
evidence that Gibrat’s Law holds in the 20th century but not in the 19th century. This suggests 
the presence of decreasing returns to population in the 19th century, but not in the 20th 
century, and also that there is no evidence of convergence in state populations in the 20th 
century. Also, market potential is positively related to state population growth in the 20th 
century, but not in the 19th century.  
 
Our results represent new findings in this literature. Most of the studies in this area have 
focussed on the size distribution and growth of cities. More recent studies such as Rose 
(2006) have suggested that similar patterns can be found for countries as well. This paper 
presents evidence at an intermediate level between cities and countries, and besides showing 
where the results follow Zipf’s Law and Gibrat’s Law and where they do not, we also extend 
the analysis to consider the changing patterns over time, and the econometric issues that arise 
when analysing dynamic panel data models of this type.  
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