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1. Introduction

Obtaining covariance matrices for portfolios with a large number of assets remains a fundamental chal-
lenge in many areas of financial management, such as asset pricing, portfolio optimization and market risk
management. Many of the the initial attempts to build models for conditional covariances, such as the VEC
model of Bollerslev et al. (1988) and the BEKK model of Engle and Kroner (1995), among others, suffered
from the so-called curse of dimensionality. In these specifications, the number of parameters increase very
rapidly as the cross-section dimension grows, thus creating difficulties in the estimation process and entailing
a large amount of estimation error in the resulting covariance matrices.

In this context, factor models emerge as promising alternatives to circumvent the problem of dimension-
ality and to alleviate the burden of the estimation process. The idea behind factor models is to assume that
the co-movements of financial returns can depend on a small number of underlying variables, which are called
factors. This dimensionality reduction allows for a great flexibility in the econometric specification and in the
modeling strategy; see Santos and Moura (2011). In fact, alternative approaches for conditional covariance
matrices based on factors models have been proposed in the literature. Generally, these models differ in their
assumptions regarding the characteristics of the factors. For instance, Alexander and Chibumba (1996) and
Alexander (2001) obtain common factors from statistical techniques such as principal components analysis
(PCA) whereas Chan et al. (1999) use common factors extracted from asset returns. Engle et al. (1990),
Alexander and Chibumba (1996), Alexander (2001), and Vrontos et al. (2003) assume that factors follow a
GARCH process, whereas Aguilar and West (2000) and Han (2006) consider a stochastic volatility (SV) dy-
namics. Moreover, van der Weide (2002) extends previous studies by assuming that factors are not mutually
orthogonal.

In this paper, we use a flexible approach to obtain conditional covariance matrices proposed by Santos
and Moura (2011) to model a well known extension of the Fama and French’s (1993) 3-factor model pro-
posed by Carhart (1997). In particular, the model allows for a parsimonious multivariate specification for
the covariances among factors based on a conditional correlation model and consider alternative univariate
GARCH specifications to model the volatility of individual assets.

We apply the proposed model to obtain in-sample and out-of-sample one-step-ahead forecasts of the
conditional covariance matrix of 61 assets traded in the São Paulo stock exchange BM&FBovespa during
the sample period, and use the estimated matrices to compute short selling-constrained and unconstrained
minimum variance portfolios. The performance of the proposed model is compared to that of alternative
benchmark models, including existing factor approaches. The results indicate that the proposed model
delivers less risky portfolios in comparison to the benchmarks.

The paper is organized as follows. In Section 2 we describe the model specification and give details
regarding estimation and related models. Section 3 discusses an application in the context of portfolio
optimization and proposes a methodology to perform out-of-sample evaluation. Finally, Section 4 brings
concluding remarks.

2. The model

The extension of the Fama and French’s (1993) 3-factor model proposed by Carhart (1997) is given by,

yit = αit + β1i(Rm −Rf ) + β2iSMBt + β3iHMLt + β4iPR1Y Rt + εit (1)

where yit is the return of asset i at time t, Rm − Rf is the excess return of the value-weight return on 61
stocks traded in the BM&FBovespa minus the one-month CDI rate1 and SMB, HML and PR1Y R are
returns on value-weighted, zero-investment, factor-mimicking portfolios for size, book-to-market equity, and
one-year momentum in stock returns, respectively. See Fama and French (1993) and Carhart (1997) for
details regarding the construction of these factor-mimicking portfolios.

1CDI is the average rate that Brazilian banks charge when lending to other banks; see Buchholz et al. (2012) for details.
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Here we assume that the factors and the εit ∼ N(0, hit) are heteroskedastic, so that the conditional
covariance matrix, Ht, of the vector of returns in (1) is given by

Ht = βΩtβ
′ + Ξt (2)

where Ωt is a symmetric positive definite conditional covariance matrix of the factors, and Ξt is a diagonal
covariance matrix of the residuals from the factor model in (1), i.e. Ξt = diag(h1t, . . . , hNt), where diag is the
operator that transforms the N × 1 vector into a N ×N diagonal matrix and hit is the conditional variance
of the residuals of the i-th asset. Note that the positivity of the covariance matrix Ht in (2) is guaranteed as
the two terms in the right-hand side are positive definite.

To model Ωt, the conditional covariance matrix of the factors in (2), alternative specifications can be
considered, including multivariate GARCH models (see Bauwens et al., 2006; Silvennoinen and Teräsvirta,
2009, for comprehensive reviews) and stochastic volatility models Harvey et al. (1994); Aguilar and West
(2000); Chib et al. (2009). In this paper, we consider the dynamic conditional correlation (DCC) model of
Engle (2002)2, which is given by:

Ωt = DtRtDt (3)

where Dt = diag
(√

hf1t , . . . ,
√
hfkt

)
, hfkt

is the conditional variance of the k-th factor, and Rt is a symmetric
positive definite conditional correlation matrix with elements ρij,t, where ρii,t = 1, i, j = 1, . . . ,K. In the
DCC model the conditional correlation ρij,t is given by

ρij,t =
qij,t√
qii,tqjj,t

(4)

where qij,t, i, j = 1, . . . ,K, are collected into the K×K matrix Qt, which is assumed to follow GARCH-type
dynamics,

Qt = (1− α− β) Q̄+ αzt−1z
′
t−1 + βQt−1 (5)

where zft = (zf1t , . . . , zfkt
) with elements zfit = fit/

√
hfit being the standardized factor return, Q̄ is the

K × K unconditional covariance matrix of zt and α and β are non-negative scalar parameters satisfying
α+ β < 1.

We follow a similar modeling strategy of Cappiello et al. (2006) and consider alternative univariate
GARCH-type specifications to model the conditional variance of the factors, hfkt

, and the conditional vari-
ance of the residuals, hit. In particular, we consider the GARCH model of Bollerslev (1986), the asymmetric
GJR-GARCH model of Glosten et al. (1993), the exponential GARCH (EGARCH) model of Nelson (1991),
the threshold GARCH (TGARCH) model of Zakoian (1994), the asymmetric power GARCH (APARCH)
model of Ding et al. (1993), the asymmetric GARCH (AGARCH) of Engle (1990), and the nonlinear asym-
metric GARCH (NAGARCH) of Engle and Ng (1993). In all models, we use their simplest forms where the
conditional variance only depends on one lag of past returns and past conditional variances.

2.1. Estimation

The model is estimated in a multi-step procedure. First, the factor loadings in (1) are estimated via
ordinary least squares (OLS). Second, the conditional covariance matrix of the factors in (3) is obtained by
fitting a DCC model to the time series of factor returns assuming Gaussian innovations. The DCC param-
eters are estimated using the composite likelihood (CL) method proposed by Engle et al. (2008). Finally,
we consider alternative univariate GARCH specifications to obtain conditional variances of the residuals of
the factor model. For each residual series, we pick the specification that minimizes the Akaike Information
Criterion (AIC).

2Recent applications of the DCC model in problems such as asset allocation, value-at-risk forecasting, and volatility trans-
mission can be seen in Billio et al. (2006), Lee et al. (2006), and Dajcman et al. (2012).
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2.2. Forecasting

One-step-ahead forecasts of the conditional covariance matrices based the model can be obtained as:

Ht|t−1 = βΩt|t−1β
′ + Ξt|t−1, (6)

where β, Ωt|t−1, and Ξt|t−1 are, respectively, the vector of coefficients for each factor, one-step-ahead forecasts
of the conditional covariance matrix of the factors computed according to (3), and one-step-ahead forecasts
of the conditional residual variances computed according to a GARCH-type model and collected into the
diagonal matrix Ξt|t−1.

2.3. Benchmark models

We consider two well known benchmark specifications for the conditional covariance matrix of returns.
The first benchmark model is the orthogonal GARCH (OGARCH) model of Alexander and Chibumba (1996)
and Alexander (2001),

Ht = WΛtW
′, (7)

where W is a N × K matrix of eigenvectors of the first K ≤ N orthogonal factors obtained via principal
components analysis (PCA) and Λt is a diagonal covariance matrix of the conditional variances of the principal
components, i.e. Λt = diag (hPC1t

, . . . , hPCkt
) where hPCt

follows a GARCH model.
The second benchmark model is the Risk Metrics model, which consists of an exponentially-weighted

moving average scheme to model conditional covariances. In this approach, the conditional covariance matrix
is given by

Ht = (1− λ)Yt−1Y
′
t−1 + λHt−1, (8)

with the recommended value for the model parameter for daily returns being λ = 0.94.

3. Application to portfolio optimization

To evaluate the performance of the proposed model in comparison to benchmark models we consider
the minimum variance portfolio (MVP) problem. We examine the properties of MVP under two alternative
weighting schemes: unconstrained; and short-sales constrained. In the unconstrained case, the MVP can be
formulated as:

min
wt

wtHt|t−1wt

subject to
w′tι = 1

(9)

where ι is a N × 1 vector of ones. The solution to the unconstrained MVP problem in (9) is given by:

wt =
H−1t|t−1ι

ι′H−1t|t−1ι
. (10)

In the short-sales constrained case, we add in (9) a restriction to avoid negative weights, i.e. wt ≥ 0.
Previous research has shown that imposing such constraints may substantially improve performance, mostly
by reducing portfolio turnover, see Jagannathan and Ma (2003), among others. In the constrained case,
optimal MVP weights are obtained using numerical methods.

3.1. Data and implementation details

To evaluate the performance of the model vs. benchmark models, we use a data set composed of daily
observations of 61 stocks that were traded in BM&FBovespa from January 4, 2000 until December 31, 2010,
summing up to 2766 observations. Returns are computed as the differences in log prices.

The first 1722 observations are used to estimate the parameters of all models and to obtain in-sample
forecasts, whereas the last 1000 observations are used to obtain out-of-sample forecasts. These forecasts are
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nonadaptative, i.e. the parameters estimated in the in-sample period were kept fixed in the out-of-sample
period.

It is worth pointing out two technical details regarding the implementation of the benchmark models.
First, the Risk Metrics approach does not involve any unknown coefficients as we set λ = 0.94. Second, when
implementing the OGARCH model we consider alternative number of factors. In particular, we vary the
number of factors from 1 up to N . To facilitate the exposition and discussion of results, we report the results
for the OGARCH only for the best performing specification.

3.2. Methodology for evaluating performance

We examine the portfolios’ performance in terms of the variance of returns (σ̂2), Sharpe ratio (SR) and
turnover. These statistics are computed as follows:

σ̂2 =
1

T − 1

T−1∑
t=1

(w′tRt+1 − µ̂)2

SR =
µ̂

σ̂
, where µ̂ =

1

T − 1

T−1∑
t=1

w′tRt+1

Turnover =
1

T − 1

T−1∑
t=1

N∑
j=1

(∣∣wj,t+1 − wj,t+
∣∣),

where wj,t+ is the portfolio weight in asset j at time t + 1 but before re-balancing and wj,t+1 is the desired
portfolio weight in asset j at time t + 1. As pointed out by DeMiguel et al. (2009b), turnover as defined
above can be interpreted as the average fraction of wealth traded in each period.

To test the statistical significance of the difference between the variances and Sharpe ratios of the returns
for two given portfolios, we follow DeMiguel et al. (2009a) and use the stationary bootstrap of Politis and
Romano (1994) with B=1,000 bootstrap resamples and expected block length b=5.3 The resulting bootstrap
p-values are obtained using the methodology suggested in Remark 3.2 of Ledoit and Wolf (2008).

3.3. Results

Table 1 reports the in-sample and out-of-sample portfolio variance, the Sharpe ratio and the portfolio
turnover of the short-sales constrained and unconstrained minimum variance portfolio policies obtained with
covariance matrices generated by the flexible multivariate factor GARCH model (hereafter FlexFGARCH)
proposed by Santos and Moura (2011), and by the benchmark models. Stars in the tables indicate that the
portfolio variance and the Sharpe ratio are statistically different with respect to those obtained with the Risk
Metrics model at a confidence level of 10%.

The results in terms of portfolio variance indicate that the FlexFGARCH model delivers statistically lower
portfolio variance in comparison to the benchmarks, for both in- and out-of-sample periods, and for both
constrained and unconstrained policies. For instance, in the out-of-sample period the FlexFGARCH model
achieves a portfolio variance of 0.836 for the unconstrained policy, which is substantially (and statistically)
lower than the portfolio variance delivered by the OGARCH and the Risk Metrics models (2.849 and 1.560,
respectively). The only exception to these results is the out-of-sample performance of the constrained MVP,
in which the FlexFGARCH model delivers a statistically similar portfolio variance in comparison to the
benchmark.

The results for the Sharpe ratios indicate that the FlexFGARCH model deliver a better risk-adjusted per-
formance in comparison to the benchmark models. For instance, the FlexFGARCH model delivered a SR of
0.07 for the unconstrained policy during the out-of-sample period, whereas the Risk Metrics model delivered
a SR of 0.03. However, the differences in SR are not statistically significant. In terms of portfolio turnover,

3We performed extensive robustness checks regarding the choice of the block length, using a range of values for b between 5
and 250. Regardless of the block length, the test results for the variances and Sharpe ratios are similar to those reported here.
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we observe that the FlexFGARCH specification yields MVP with lower turnover in several cases, specially
for the unconstrained policy. Finally, we observe that the portfolio turnover associated to the constrained
policies tends to be lower in comparison to that of unconstrained policies. This result is in line with previous
empirical literature such as DeMiguel et al. (2009a).

Alternative re-balancing frequencies
The results discussed above are based on the assumption that investors adjust their portfolio on a daily

basis. The transaction costs incurred with such frequent trading can possibly deteriorate the net portfolio
performance. Obviously this effect can be reduced by adjusting the portfolio less frequently, such as on a
weekly or monthly basis, which in fact is done in practice by many institutional investors. A drawback of
re-balancing the portfolio less frequently is that the portfolio weights become outdated, which may harm its
performance. We examine the performance of the MVP under alternative re-balancing frequencies. Tables
2 and 3 show the results for weekly and monthly re-balancing frequencies, respectively. As expected, we
find that lowering the re-balancing frequency results in a substantial reduction in portfolio turnover. We
observe that the FlexFGARCH model delivers the lowest turnover and the lowest portfolio variance in all
cases, except in the constrained out-of-sample portfolio with weekly re-balancing. Summarizing the results
in Tables 1 to 3, we find that lowering the re-balancing frequency leads to similar risk-adjusted performance
in terms of SR and substantially lower portfolio turnover.

4. Concluding remarks

Factor models are currently established as an alternative to alleviate the problem of dimensionality and
the burden of the estimation process when modeling covariance matrices of portfolios containing a large
number of assets. In this paper, we use the well known extension of the Fama and French’s (1993) 3-factor
model proposed by Carhart (1997) to parsimoniously model the conditional covariance matrix of 61 stocks
traded at BM&FBovespa. Our approach achieves great flexibility by allowing a parsimonious specification
for the common factors and alternative specifications the individual assets in the portfolio.

We apply the proposed model to obtain in-sample and out-of-sample one-step-ahead forecasts of the
conditional covariance matrix, and use the estimated matrices to compute short selling-constrained and
unconstrained minimum variance portfolios. The performance of the proposed model is compared to that of
alternative benchmark models, including existing factor approaches. The results indicate that the proposed
model delivers less risky portfolios in comparison to the benchmark models. Moreover, we show that the
results are robust to the portfolio re-balancing frequency.
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Table 1: Minimum variance portfolio performance

The Table reports the average daily portfolio variance, the Sharpe ratio and the portfolio turnover of the short-sales constrained

and unconstrained minimum variance portfolio policies obtained with covariance matrices generated by the FlexFGARCH model,

the OGARCH model, and the Risk Metrics model. The asterisks indicate that the portfolio variance and the Sharpe ratio are

statistically different with respect to those obtained with the Risk Metrics model at a confidence level of 10%.

Variance Sharpe ratio Turnover Variance Sharpe ratio Turnover
In-sample Constrained Unconstrained

FlexFGARCH 0.642∗ 0.097 0.093 0.586∗ 0.104 0.159
OGARCH 1.910∗ 0.068 0.032 2.116∗ 0.067 0.070
Risk Metrics 0.958 0.074 0.173 1.858 0.074 0.929

Out-of-sample Constrained Unconstrained

FlexFGARCH 1.051 0.056 0.108 0.836∗ 0.070 0.179
OGARCH 2.533∗ 0.027 0.028 2.849∗ 0.024 0.179
Risk Metrics 0.806 0.053 0.028 1.560 0.031 0.938

Table 2: Minimum variance portfolio performance with weekly re-balancing

The Table reports the average daily portfolio variance, the Sharpe ratio and the portfolio turnover of the short-sales constrained

and unconstrained minimum variance portfolio policies obtained with covariance matrices generated by the FlexFGARCH model,

the OGARCH model, and the Risk Metrics model. The asterisks indicate that the portfolio variance and the Sharpe ratio are

statistically different with respect to those obtained with the Risk Metrics model at a confidence level of 10%.

Variance Sharpe ratio Turnover Variance Sharpe ratio Turnover
In-sample Constrained Unconstrained

FlexFGARCH 0.664∗ 0.106∗ 0.043 0.604∗ 0.113∗ 0.072
OGARCH 1.910∗ 0.068 0.014 2.117 0.067 0.016
Risk Metrics 1.075 0.069 0.091 1.973 0.066 0.475

Out-of-sample Constrained Unconstrained

FlexFGARCH 1.056 0.058 0.050 0.865∗ 0.072 0.081
OGARCH 2.553∗ 0.026 0.013 2.854∗ 0.022 0.031
Risk Metrics 0.888 0.041 0.093 1.583 0.019 0.486
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Table 3: Minimum variance portfolio performance with monthly re-balancing

The Table reports the average daily portfolio variance, the Sharpe ratio and the portfolio turnover of the short-sales constrained

and unconstrained minimum variance portfolio policies obtained with covariance matrices generated by the FlexFGARCH model,

the OGARCH model, and the Risk Metrics model. The asterisks indicate that the portfolio variance and the Sharpe ratio are

statistically different with respect to those obtained with the Risk Metrics model at a confidence level of 10%.

Variance Sharpe ratio Turnover Variance Sharpe ratio Turnover
In-sample Constrained Unconstrained

FlexFGARCH 0.688∗ 0.108 0.017 0.633∗ 0.115 0.028
OGARCH 1.912∗ 0.068 0.006 2.125∗ 0.065 0.014
Risk Metrics 0.902 0.077 0.041 1.796 0.092 0.209

Out-of-sample Constrained Unconstrained

FlexFGARCH 1.050 0.064 0.021 0.892∗ 0.077 0.032
OGARCH 2.552∗ 0.026 0.006 2.854∗ 0.023 0.014
Risk Metrics 1.310 0.037 0.047 1.997 0.032 0.224
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