# **Economics Bulletin**

# Volume 33, Issue 1

Housing bubble implications: The perspective of housing price predictability

Meichi Huang National Taipei University

# Abstract

The paper extracts housing bubble implications from the perspective of housing price predictability. Specifically, it examines predictive powers of the good-time-to-buy (GTTB) index and the federal funds rate in nationwide and statelevel housing price returns by means of out-of-sample tests suggested in Rapach and Wohar (2006). The GTTB index is used to proxy for households' expectations, and the interest rate represents the economic fundamental. The empirical results indicate the predictive advantage of the GTTB index over the federal funds rate, and suggest higher vulnerability to bubble-like housing cycles in the housing markets of California, New York, New Jersey, Washington, Massachusetts and Arizona than other states. Overall, the study sheds insights into divergent predictability patterns between in-sample and out-of-sample forecasts, those between aggregate and disaggregate housing price dynamics, and those across state-level housing markets.

Citation: Meichi Huang, (2013) "Housing bubble implications: The perspective of housing price predictability", *Economics Bulletin*, Vol. 33 No. 1 pp. 586-596.

Contact: Meichi Huang - meichihuang@mail.ntpu.edu.tw.

Submitted: October 15, 2012. Published: March 04, 2013.

# Housing bubble implications: The perspective of housing price predictability

# 1. Introduction

The predictability of asset price dynamics is a highly appealing issue for researchers, policy-makers and investors. A useful signal of asset price movements facilitates risk management by protecting investors from big losses during asset market crises. Noticeably, while the prediction of stock returns is intensively documented by numerous studies, the literature on housing price forecasts is relatively rare. Motivated by the recent dramatic housing boom-and-bust cycle, a growing body of literature has been devoted to predicting asset price returns although it is always a challenge to deliver a satisfactory forecast. Also, comparisons between in-sample and out-of-sample housing price forecasts, and predictive differences between aggregate and disaggregate housing price returns are hardly addressed.

Thus, this study adds to the thin literature on prediction of housing price returns by investigating predictive powers of two potential housing price predictors, households' expectations and the interest rate, respectively. On the one hand, the federal funds rate is chosen to proxy for the monetary policy shock, and it represents the economic fundamental. On the other hand, the good-time-to-buy (GTTB) index, which is computed as the sum of 100 and the percentage difference between responses of "buy" and "sell" in the Survey of Consumers administered by University of Michigan, is utilized to represent households' expectations about housing price dynamics.

Furthermore, the paper aims to extract important housing bubble implications by means of comparing housing price forecasting abilities of these two potential predictors. As documented in Stiglitz (1990) and Himmelberg *et al.* (2005), a housing bubble refers to that a high price surge is primarily caused by investors' unrealistic beliefs in even higher selling prices in the future rather than economic fundamentals. Similarly, Case and Shiller (2003) document that a housing bubble occurs as economic fundamentals fail to explain a temporary price climb which is mainly driven by peoples' over-optimistic expectations of future housing price appreciation. Thus, households' expectations from the demand side have attracted considerable attention of many researchers who attempt to explore the underlying causes of the recent bubble-like housing boom-bust cycle after the NBER-dated recession in 2001. In addition, there has been a vast of literature which discusses the critical roles of interest rates in driving housing price sis an ongoing debate.

Noticeably, a weak predictive power of the federal funds rate and a strong forecasting ability of the GTTB index in housing market dynamics jointly imply high vulnerability to a bubble-like housing cycle. As defined in the housing market literature, a housing bubble is likely to occur as the economic fundamental fails to explain the housing asset dynamics. Although the study does not deliver direct evidence of the existence of housing bubbles during the recent decade, it provides informative implications of housing bubbles in the state-level housing markets.

Spotlighting the out-of-sample forecastability comparison across states, this paper utilizes three out-of-sample predictability tests: the Theil's U ratio, the encompassing test in McCracken (2004) (*MSE-F* statistic), and the encompassing test in Clark and McCracken(2001) (*ENC-NEW* statistic), which were employed to evaluate stock return predictability in Rapach and Wohar(2006). It examines both the nationwide and state-level housing price return predictabilities in the sixteen most populous US states according to 2010 population survey conducted by the U.S. Census Bureau.

The empirical findings suggest that the housing price predictive ability of the GTTB index is generally superior to that of the federal funds rate. Besides, there are differences between in-sample and out-of-sample predictabilities for many state-level housing markets. Moreover, the federal funds rate displays a stronger power in predicting the nationwide(aggregate) housing price return than the state-level(disaggregate) ones. The ENC-NEW statistic indicates that the nationwide housing price return is predictable by the interest rate up to 5-period ahead, while the economic fundamental fails to predict the disaggregate housing price returns in more than half of the selected sixteen state-level housing markets. Also, importantly, there also exists a divergent predictability pattern across states. The housing price returns in California, New York, New Jersey, Washington, Massachusetts and Arizona exhibit unpredictability as the federal funds rate works as the predictor, but they are forecastable as the GTTB index is used as the predictor.

The paper is organized as follows: Section 2 reviews the literature which motivates this study. Section 3 presents the housing market data and the two predictors, and it briefly outlines the forecasting models. Section 4 reports the primary empirical findings: the predictability phenomena of housing price returns in the nationwide and the selected 16 state-level housing markets. Finally, Section 5 makes concluding remarks.

### 2. Motivation

This paper is mainly motivated by three strands of the literature: the important role of households' expectations in the housing markets, the driving force of the interest rate in the housing boom-and-bust cycle, and divergent forecastability patterns between aggregate and disaggregate housing price dynamics as well as those across state-level housing markets.

First of all, both theoretical and empirical studies discuss that people's expectation has an important impact on housing price dynamics. The recent theoretical examples are Piazzesi and Schneider(2009) and Sommervoll *et al.* (2010), etc.; some recent empirical studies consist of Davis and Palumbo (2008), Glaeser *et al.* (2008), Huang(2012), among others. For instance, Piazzesi and Schneider (2009) establish a search model to address that few optimistic traders are sufficient to lead to a substantial housing price boom. Also, Sommervoll *et al.* (2010) develop a housing market model with interactions among heterogeneous agents to address how housing market cycles are associated with adaptive expectations. Concerning empirical studies, Davis and Palumbo (2008) argue that the housing price movement is driven by the demand side much more intensively during 1998-2004 than previous periods. Also, Glaeser *et al.* (2008) suggest that self-sustaining over-optimism results in an endogenous self-reinforcing bubble with irrational expectations. Recently, Huang (2012) proposes that the volatility feedback effect, which reflects the dynamics of investors' updated expectations about housing asset returns, plays an influential role in driving the US housing price dynamics during the post-1999 period.

Regarding the proxy for people's expectations, Croce and Haurin(2009) propose that the GTTB index measures the forward-looking consumer sentiment regarding housing ownership, and it is capable of predicting the housing market dynamics which are jointly characterized by some housing volume variables (i.e., housing permits, housing starts, new and existing home sales). Inspired by Croce and Haurin(2009) with respect to the choice of proxy for households' expectations, this study further examines whether the GTTB index is also able to predict both the aggregate and state-level housing price dynamics.

The second strand of the literature discusses whether the surge in housing prices is attributable to persistently relaxed monetary policies after the 2001 recession. It is an ongoing debate among policy-makers and scholars. On the one hand, Jarocinski and Smets(2008), Leamer(2007), and Taylor(2007) all emphasize that low interest rates during 2003-2005 led to the recent housing boom. Likewise, Edelstein and Tsang (2007), Goodhart and Hofmann(2007), Himmelberg *et al.*(2005), Jin and Zeng (2004), Lai and Van Order (2010), McDonald and Stokes(2012), and Shiller(2009), all advocate that the influential roles of interest rates in the recent remarkable housing market cycle. On the other hand, some recent studies, which consist of Case and Shiller (2003), Campbell *et al.* (2009), Dynan *et al.* (2006), Kuttner(2012), Mayer and Quigley (2003), Veld *et al.* (2011), all argue a minor role of interest rates in the housing boom and bust. Certainly, there are alternative variables which can proxy for the macroeconomic fundamentals. However, motivated by the vast literature which claims the critical role of interest rates in driving the recent housing price movements, the paper investigates the predictive power of the federal funds rate in the dynamics of housing price returns.

Finally, there exists a growing body of the literature on different dynamic patterns among state-level housing price returns. Three representative studies are worth our more discussions. Firstly, Negro and Otrok (2007) suggest that state-level housing markets experience considerable "local" bubble patterns, but the recent housing boom during 2000-2005 can be regarded as a "national" phenomenon. In addition, they argue that the influence of monetary policy shocks on housing market dynamics is quite limited compared to considerable housing upward movements. Secondly, Rapach and Strauss (2009) propose that housing price forecastability varies substantially across the US states. They specify that the five states, which are California, Massachusetts, New Jersey, New York and Washington, display remarkably different housing <sup>5</sup>/<sub>6</sub>/<sub>6</sub>/<sub>6</sub> in fluctuations from the others. Thirdly, Holly

*et al.*(2010) suggest that house prices in California, New York and Massachusetts deviate from the long-term equilibrium price more significantly than those in Connecticut, Rhode Island, Oregon and Washington. This paper is motivated by the above representative studies in terms of the divergent dynamic patterns of state-level housing markets, and it attempts to examine whether the out-of-sample forecastability phenomena at state levels corresponds to the findings in the existing literature.

# 3. Data and Methodology

The Freddie Mac's Conventional Mortgage Home Price Indexes (CMHPIs) are chosen to represent the housing market dynamics because the time span of CMHPIs is longer than other alternative housing price indexes for both state-level and aggregate housing prices at the monthly frequency. The seasonal-adjusted housing prices are obtained by means of US Census Bureau's X-12-ARIMA seasonal adjustment method. The Consumer Price Index(CPI) for all urban consumers: all items less food and energy from the Department of Labor: Bureau of Labor Statistics(BLS) is used as the deflator to have a real housing price1. Each of the real housing price returns is computed as the log first difference of the real housing price.

Based on 2010 state-level population data from the US Census Bureau, the study selects the sixteen most populous states as the state-level housing markets investigated. The analyzed period spans from 1978M1 to 2010M12 because the monthly GTTB index is available from 19782. The descriptive statistics of the aggregate and state CMHPIs are exhibited in Table 1. The most volatile housing markets are California, Arizona, Florida, Michigan, New York, Washington, Massachusetts, New Jersey, ranked by their standard deviations.



Figure 1 Predictors of housing price returns: The GTTB index (right-axis) & the federal funds rate (left-axis)

The two chosen predictors are the interest rate and the GTTB index. The interest rate is the effective federal funds rate which comes from the dataset of Federal Reserve Bank of St. Louis. The GTTB (good-time-to-buy) index comes from the Survey of Consumers administered by the Survey Research Center of University of Michigan<sup>3</sup>. It proxies for people's expectation of housing price returns and buying conditions of the housing markets in the US. The asked question in the survey is "Generally speaking, do you think now is a good time or a bad time to buy a house?". Based on the

<sup>&</sup>lt;sup>1</sup> Prices of food and energy, which are subject to various supply shocks, are not good proxies for changes in price levels because they are highly volatile and non-persistent. Thus, the core CPI, which is CPI for all urban consumers: all items less food and energy, is used to represent the aggregate price dynamics in a more appropriate manner in some recent empirical studies, such as Davis and Heathcote (2007) and Huang(2012). Similarly, Negro and Otrok(2007) use inflation in the personal consumption expenditure basket less food and energy to obtain state-level real housing price growths.

<sup>&</sup>lt;sup>2</sup> The quarterly GTTB index is available for the period of 195691977.

<sup>&</sup>lt;sup>3</sup> The details of the survey are documented in Curtin (1982).

responses to the question, the GTTB index is computed as follows:

#### *GTTB index=100* +%*Good time* -%*Bad time*

Therefore, GTTB ranges from 0 to 200. Thus, a high GTTB index represents that people are optimistic for expected housing asset returns. The dynamics of the two alternative predictors are displayed in Figure 1. Noticeably, both predictors are at aggregate levels, so the empirical results reflect the association between nationwide and state-level variables of our interest to some extent.

Based on Rapach and Wohar(2006), the model is a simple linear regression with one predictor:

$$y_{t+k} = \alpha + \beta x_t + \varepsilon_{t+k} \tag{1}$$

where  $y_{t+k}$  is the housing price return at period t+k; which is defined as the log first difference of the real housing price;  $x_t$  is the single predictor;  $\varepsilon_{t+k}$  represents the forecast error. To mitigate the concern about serial correlation in  $\varepsilon_{t+k}$ , Newey and West(1987) standard errors of the *t*-statistics are adopted.

Furthermore, to avoid size distortions (i.e., *t*-statistic increases along with *k* when testing the null hypothesis of no predictability:  $\beta = 0$ ), the bootstrap procedure is implemented based on Kilian (1999), Kothari and Shanken (1997), Mark (1995) and Nelson and Kim (1993) as follows:

$$y_t = a_0 + u_{0,t}$$
 (2)

$$x_t = b_0 + b_1 x_{t-1} + \dots + b_p x_{t-p} + u_{1,t}$$
(3)

where  $u_t = (u_{0,t}, u_{1,t})$  is *i.i.d.* with covariance matrix  $\Sigma$ .

Equation (2) and (3) are estimated by the OLS (i.e., ordinary least squares) method and the OLS residuals (i.e.,  $\hat{u}_t = \{\hat{u}_{0,t}, \hat{u}_{1,t}\}_{t=1}^{t=T-p}$ ) are generated. The optimal lag order p is chosen by Akaike information criterion (AIC) criteria, and it is restricted to the maximum order of four. The pseudo-series of disturbance terms,  $\{\hat{u}_t^*\}_{t=1}^{T+100}$ , are produced by T+100 times of randomly draws from the OLS residuals. The procedures of establishing  $\{y_t^*, x_t^*\}_{t=1}^{T+100}$ , and the approaches of obtaining the empirical distribution of the in-sample *t*-statistic and each out-of-sample statistics follow Rapach and Wohar (2006).

There are two out-of-sample forecasting models: the unrestricted model with non-zero  $\beta$  and the unrestricted forecast error  $\hat{\varepsilon}_{1,t+k}$ , as well as the restricted model with zero  $\beta$  and the restricted forecast error  $\hat{\varepsilon}_{0,t+k}$ . The zero  $\beta$  implies that the predictor lack a predictive power for the housing price return. The whole sample is divided into two parts: period *R* and period *T*-*R*. Thus, *R* refers to the "sample-split" parameter because we assume the observations in the first *R* periods are available to be used in the out-of-sample forecast. In this study, the total observation *T* is 396(i.e.,*T*=396, from 1978M1 to 2010M10); *R* is set to be half of the total observation *T* (i.e., *R*=396/2=198) as suggested in Rapach and Strauss(2009)<sup>4</sup>.

The out-of-sample forecasts are generated recursively. The first sets of forecasts for both restricted and unrestricted models are generated by estimating Equation (1) via OLS using the first *R*-period observations. Then the fitted model is used to establish a forecasting housing price return  $\hat{y}_{1,R+k} = \hat{\alpha}_{1,R} + \hat{\beta}_{1,R}x_R$  for the unrestricted model and  $\hat{y}_{0,R+k} = \hat{\alpha}_{0,R} + \hat{\beta}_{0,R}x_R$  for the restricted model. Thus,  $\hat{\varepsilon}_{1,R+k} = y_{R+k} - \hat{y}_{1,R+k}$ , and  $\hat{\varepsilon}_{0,R+k} = y_{R+k} - \hat{y}_{0,R+k}$  are the forecast errors of the unrestricted models, respectively. Next, the second set of forecasts is estimated by means of the data available up to period *R*+1. Then the parameters, which are separately estimated in the two models, and the predictor  $x_{R+l}$  are used jointly to construct  $\hat{y}_{i,(R+1)+k}$  and  $\hat{\varepsilon}_{i,(R+1)+k}$  for i=0 (restricted model),1(unrestricted). This process is repeated for both models and finally two sets of (T-R-k+1) recursive forecast errors,  $\{\hat{\varepsilon}_{i,t+k}\}_{t=R}^{t=T-k}$  for i=0,1, are generated. The three out-of-sample tests consist of Theil's *U* ratio, the McCracken(2004) *MSE-F* statistic,

The three out-of-sample tests consist of Theil's U ratio, the McCracken(2004) MSE-F statistic, and the Clark and McCracken(2001) ENC-NEW statistic. They are briefly outlined in Equation (4)-(6). First, Theil's U ratio compares mean squared errors of the restricted and unrestricted models:

<sup>&</sup>lt;sup>4</sup> Rapach and Strauss (2009) choose half of the whole sample as R.

Theil's 
$$U = \frac{MSE_1}{MSE_0}$$
 (4)

where MSE<sub>i</sub>= $\sum_{t=R}^{T-k} (\hat{\varepsilon}_{1,t+k})^2$ , *i*=0,1

Second, the MSE-F statistic tests the null hypothesis that the mean squared errors of the unrestricted and restricted models are equal (i.e.,  $MSE_1=MSE_0$ ) against the alternative one that the unrestricted MSE is smaller than the restricted MSE (i.e.,  $MSE_1 < MSE_0$ ). Let  $\hat{d}_{t+k} = (\hat{\varepsilon}_{0,t+k})^2 - (\hat{\varepsilon}_{1,t+k})^2$  and  $\bar{d} = (T-R-k+1)^{-1} \sum_{t=R}^{T-k} \hat{d}_{t+k} = MSE_0 - MSE_1$ ,  $MSE_i = \sum_{t=R}^{T-k} (\hat{\varepsilon}_{i,t+k})^2$ , i=0,1. The *MSE-F* statistic is represented as follows:

$$MSE-F=(T-R-k+1)\bar{d}/MSE_{1},$$
(5)

Third, the *ENC-NEW* statistic tests the null hypothesis that the restricted model forecasts encompass the unrestricted ones, and it is of the following form:

$$ENC-NEW = (T - R - k + 1)\overline{c}/MSE_1.$$
(6)

where  $\hat{c}_{t+k} = (\hat{\varepsilon}_{0,t+k}) (\hat{\varepsilon}_{0,t+k} - \hat{\varepsilon}_{1,t+k})$  and  $\bar{c} = (T - R - k + 1)^{-1} \sum_{t=R}^{T-k} \hat{c}_{t+k}$ 

If the predictor has a predictive power in housing price returns and the unrestricted model forecasts are superior to the restricted model forecasts (i.e.,  $MSE_1 < MSE_0$ ), Theil's *U* ratio is less than unity, and both of the *MSE-F* and *ENC-NEW* statistics are positive.

#### 4. Empirical Results

This section presents the main findings about housing price return forecastability as the two alternative predictors, which are the GTTB index and the federal funds rate, are employed in the in-sample and out-of-sample forecasts. Besides, the housing-bubble implications derived from divergent forecastability patterns across state-level housing markets are addressed.

#### 4.1 The GTTB index

The most important finding lies in the strong predictive powers of the GTTB index: it is capable of forecasting the housing price returns in all the state-level housing markets except the three states: Texas, Illinois, and Michigan (shown in Table 2, the bold statistics indicate the significant forecastability). Noticeably, the predictive powers of the index remain significant up to the 25-year horizon for Pennsylvania, Ohio, .North Carolina, Virginia, Washington and Indiana whose in-sample and out-of-sample housing price returns are both forecastable. On the other hand, California, New York and Massachusetts, which are considered to be more likely to have housing bubbles in existing studies (e.g., Rapach and Strauss(2009), Holly, Pesaran and Yamagata (2010), among others), display short-term forecastability because their housing price returns are only significantly predictable in less than ten year horizons. Particularly, the in-sample forecastability only lasts for one period in New York, and all in-sample forecasts in California are not significant.

Noticeably, there are marked differences between in-sample and out-of-sample forecastability patterns in some states, such as California, New York, and Florida: their 5-year-ahead out-of-sample forecasts are significant but the in-sample ones are otherwise. Moreover, the nationwide CMHPI displays significant out-of-sample forecastability up to the 20-year horizon, but none of its in-sample forecastability is significant. It implies robust out-of-sample tests facilitate our investigations into housing price return forecastability while the conventional in-sample *t*-statistics fail to provide the information. The results suggest that the two out-of-sample tests adopted in the study (McCracken(2004) *MSE-F* statistic and the Clark and McCracken(2001) *ENC-NEW* statistic) contribute to empirical studies on housing-price predictability. Furthermore, the results suggest that the GTTB index not only works as a good predictor of housing *volumes* as Croce and Haurin(2009) propose, but also has good performances in the out-of-sample forecasts of housing *price returns*.

### 4.2 The federal funds rate

The empirical results of the federal fund rate suggest, in contract to the GTTB index, all in-sample forecastability patterns at the state levels are not significant except the 1-year-horizon forecast in Michigan (shown in Table 3). Other than the three states (Texas, Illinois, and Michigan), there are more states whose housing price returns are unpredictable for the interest rate than the GTTB index: California, New York, New Jersey, Washington, Massachusetts and Arizona. Regarding

out-of-sample forecasting performances, the interest rate works as a significant predictor only in the 25-year horizon out-of-sample forecast for Washington. In New Jersey, out-of-sample forecastability remains significant up to the 3-year horizon.

The empirical findings deliver interesting monetary-policy implications. Both in-sample and out-of-sample housing price dynamics in California, New York, Massachusetts and Arizona are not significantly predictable through the interest rate at all horizons. Importantly, the lack of housing-price predictability for the federal funds rate suggests weak predictive powers of monetary policies which are adopted to stabilize the housing boom-bust cycle to some extent. Thus, the housing markets in these four states are vulnerable to housing bubbles as the government fails to mitigate dramatic fluctuations of housing prices. Noticeably, these four states are all considered to be more likely to experience bubble-like price dynamics than other states by growing empirical studies. Furthermore, the findings are consistent with the literature which attributes the recent housing bubble-like boom-bust cycle to limited influences of monetary policies on housing price dynamics and disconnections between housing markets and the economic fundamental.

## 5. Conclusion

This paper examines housing price return predictability at the nationwide and state levels from both in-sample and out-of-sample perspectives, utilizing the GTTB index and the federal funds rate as two alternative predictors. Specifically, two robust out-of-sample tests, the McCracken(2004) *MSE-F* statistic and the Clark and McCracken(2001) *ENC-NEW* statistic which are employed to discuss stock return predictability in Rapach and Wohar(2006), are adopted to evaluate our-of-sample forecastability of housing price returns. The main contributions of this study lie in three dimensions. Firstly, it provides confirmative evidence of stronger predictive powers of households' expectations than those of the interest rate in housing markets. Next, this study detects the discrepancy between in-sample and out-of-sample forecastability for both predictors. Finally and also importantly, consistent with the existing literature on divergent state-level housing price dynamics, the findings indicate that some state-level markets, which consist of California, New York, New Jersey, Washington, Massachusetts and Arizona, are more vulnerable to bubble-like housing cycles than other sates analyzed.

#### References

- Campbell, S. D., M. A. Davis, J. Gallin, F. Robert and R. F. Martin (2009) "What moves housing markets: A variance decomposition of the rent-price ratio" *Journal of Urban Economics* 66, 90-102.
- Case, K. E. and R. J. Shiller (2003) "Is there a bubble in the housing market?" *Brookings Papers on Economic Activity* **2**, 299-362.

Clark, T. E. and M. W. McCracken (2001) "Tests of equal forecast accuracy and encompassing for nested models" *Journal of Econometrics* **105**, 85–110.

- Croce, R. M. and D.R. Haurin (2009). "Predicting turning points in the housing market" *Journal of Housing Economics* 18, 281-293.
- Curtin, R.T.(1982) "Indicators of consumer behavior: The University of Michigan surveys of consumers" *Public Opinion Quarterly* **46**, 340-352.
- Davis, M. A. and G. M. Palumbo (2008) "The price of residential land in large U.S. cities" *Journal of Urban Economics* 63, 352-384.
- Davis, M.A. and J. Heathcote (2007) "The price and quantity of residential land in the United States" *Journal of Monetary Economics* **54**, 2595-2620.
- Dynan, K. E., D. W. Elmendorf and D. E. Sichel (2006) "Can financial innovation help to explain the reduced volatility of economic activity?" *Journal of Monetary Economics* **53**, 123-150.
- Edelstein, R. H. and D. Tsang (2007) "Dynamic residential housing cycles analysis" *Journal of Real Estate Finance and Economics* **35**, 295-313.
- Glaeser, E. L., J. Gyourko and A. Saiz (2008) "Symposium: Mortgages and the housing crash: Housing supply and housing boom and busts" *Journal of Urban Economics* **64**, 198-217.
- Goodhart, C and B. Hofmann (2007) "House Prices and the Macroeconomy: Implications for Banking and Price Stability" Oxford: Oxford University Press.

- Himmelberg, C., C. Mayer and T. Sinai (2005) "Assessing high house prices: Bubbles, fundamentals, and misperceptions" *Journal of Economic Perspectives* **19**, 67-92.
- Huang, M. C. (2012) "The role of people's expectation in the recent US housing boom and bust" *Journal of Real Estate Finance and Economics*, doi:10.1007/s11146-011-9341-0.
- Jarocinski, M. and F. R. Smets (2008) "House prices and the stance of monetary policy" *Federal Reserve Bank of St. Louis Review* **90**, 339-365.
- Jin, Y. and Z. Zeng (2004) "Residential investment and house prices in a multi-sector monetary business cycle model" *Journal of Housing Economics* **13**, 268-286.
- Kilian, L. (1999) "Exchange rates and monetary fundamentals: What do we learn from long-horizon regressions?" *Journal of Applied Econometrics* **14**, 491–510.
- Kothari, S.P. and J. Shanken (1997) "Book-to-market, dividend yield, and expected market returns: a time series analysis" *Journal of Financial Economics* **44**, 169–203.
- Kuttner, K.N.(2012) "Low Interest Rates and Housing Bubbles: Still No Smoking Gun" working paper.
- Lai, R. N. and R. V. Order (2010) "Momentum and house price growth in the U.S.: Anatomy of a bubble" *Real Estate Economics* **38**, 753-773.
- Leamer, E. E. (2007) "Housing and the Business Cycle", Presented at the Federal Reserve Bank of Kansas City symposium Housing, Housing Finance, and Monetary Policy.
- Mark, N.C.(1995) "Exchange rates and fundamentals: Evidence on long-horizon predictability" *American Economic Review* **85**, 201–218.
- Mayer, C. and J. M. Quigley (2003) "Is there a bubble in the housing market?—Comments and discussion" *Brookings Papers on Economic Activity* **2**, 343–362.
- McDonald, J. F. and H. H. Stokes (2012) "Monetary policy and the housing bubble" *Journal of Real Estate Finance and Economics*, doi: 10.1007/s11146-011-9329-9.
- McCracken, M. W. (2004) "Asymptotics for Out-of-sample Tests of Granger Causality" Manuscript, University of Missouri at Columbia.
- Negro, M. D. and C. Otrok (2007) "99 Luftballons: Monetary policy and the house price boom across U.S. states" *Journal of Monetary Econom*ics **54**, 1962-1985.
- Nelson, C.R. and M. J. Kim (1993) "Predictable stock returns: the role of small sample bias" *Journal of Finance* **48**, 641–661.
- Piazzesi, M. and M. Schneide (2009) "Momentum traders in the housing market: Survey evidence and a search model" *American Economic Review* **99**, 406-411.
- Rapach, D. E. and J K. Strauss (2009) "Differences in housing price forecastability across US states" *International Journal of Forecasting* **25**, 351-372.
- Rapach, D. E. and M. E. Wohar (2006) "In-Sample vs. out-of-Sample tests of stock return predictability in the context of data mining" *Journal of Empirical Finance* 13, 231-247.
- Sommervoll, D. E., T. A. Borgersen and T. Wennemo (2010) "Endogenous housing market cycles" *Journal of Banking and Finance* **34**, 557-567.
- Shiller, R. (2009) "The Subprime Solution" Princeton: Princeton University Press.
- Stiglitz, J. U. (1990) "Symposium on bubbles" Journal of Economic Perspectives 4, 13-18.
- Taylor, J. B. (2007) "Housing and Monetary Policy" Panel discussion at the Federal Reserve Bank of Kansas City symposium, Housing, Housing Finance, and Monetary Policy.
- Veld, J. I., R. Raciborski, M. Ratto and W. Roeger (2011) "The recent boom-bust cycle: The relative contribution of capital flows, credit supply and asset bubbles" *European Economic Review* 55, 386-406.

| Table 1                                                                                   |
|-------------------------------------------------------------------------------------------|
| Summary of descriptive statistics: Freddie Mac's Conventional Mortgage Home Price Indexes |
| (CMHPIs) of the 16 <sup>th</sup> populous states                                          |

|              |        |            |         |          |         |          | ,            |          |          |         |                |            |          |            |               |         |         |
|--------------|--------|------------|---------|----------|---------|----------|--------------|----------|----------|---------|----------------|------------|----------|------------|---------------|---------|---------|
|              | US     | California | Texas   | New York | Florida | Illinois | Pennsylvania | Ohio     | Michigan | Georgia | North Carolina | New Jersey | Virginia | Washington | Massachusetts | Indiana | Arizona |
|              |        | CA         | TX      | NY       | FL      | IL       | PA           | OH       | MI       | GA      | NC             | NJ         | VA       | WA         | MA01          | IN      | AZ      |
| Mean         | 0.018  | 0.068      | -0.051  | 0.129    | -0.030  | -0.042   | 0.033        | -0.088   | -0.093   | -0.069  | -0.006         | 0.118      | 0.052    | 0.084      | 0.181         | -0.082  | -0.053  |
| Median       | 0.069  | 0.143      | 0.009   | 0.092    | 0.004   | 0.064    | 0.016        | -0.003   | 0.082    | 0.041   | 0.049          | 0.091      | 0.091    | 0.127      | 0.128         | -0.023  | 0.055   |
| Maximum      | 1.182  | 2.322      | 1.443   | 2.755    | 2.372   | 2.966    | 2.042        | 2.845    | 5.707    | 1.953   | 2.135          | 2.824      | 1.434    | 2.670      | 2.189         | 2.911   | 3.147   |
| Minimum      | -1.510 | -3.176     | -3.290  | -2.840   | -3.420  | -3.222   | -2.586       | -4.040   | -6.519   | -2.955  | -1.988         | -2.089     | -2.150   | -3.785     | -1.741        | -2.338  | -3.942  |
| Std. Dev.    | 0.476  | 0.966      | 0.517   | 0.800    | 0.907   | 0.663    | 0.575        | 0.557    | 0.896    | 0.582   | 0.473          | 0.735      | 0.638    | 0.785      | 0.754         | 0.510   | 0.956   |
| Skewness     | -0.710 | -0.759     | -1.137  | 0.005    | -0.752  | -1.220   | -0.449       | -1.327   | -0.448   | -1.164  | -0.287         | 0.101      | -0.412   | -0.796     | 0.126         | 0.135   | -0.341  |
| Kurtosis     | 3.609  | 3.884      | 7.639   | 4.175    | 5.083   | 8.377    | 5.186        | 13.201   | 18.080   | 6.334   | 5.876          | 2.873      | 3.253    | 6.811      | 2.598         | 10.317  | 5.194   |
|              |        |            |         |          |         |          |              |          |          |         |                |            |          |            |               |         |         |
| Jarque-Bera  | 39.412 | 50.957     | 440.369 | 22.777   | 108.880 | 575.235  | 92.113       | 1833.123 | 3765.562 | 272.746 | 141.911        | 0.936      | 12.255   | 281.404    | 3.708         | 884.503 | 87.113  |
| Probability  | 0.000  | 0.000      | 0.000   | 0.000    | 0.000   | 0.000    | 0.000        | 0.000    | 0.000    | 0.000   | 0.000          | 0.626      | 0.002    | 0.000      | 0.157         | 0.000   | 0.000   |
|              |        |            |         |          |         |          |              |          |          |         |                |            |          |            |               |         |         |
| Sum          | 7.249  | 27.114     | -20.126 | 51.005   | -11.897 | -16.661  | 13.262       | -34.731  | -36.761  | -27.294 | -2.248         | 46.847     | 20.421   | 33.242     | 71.787        | -32.532 | -21.002 |
| Sum Sq. Dev. | 89.441 | 368.931    | 105.546 | 252.639  | 325.031 | 173.547  | 130.407      | 122.686  | 317.109  | 133.696 | 88.290         | 213.275    | 160.631  | 243.644    | 224.645       | 102.538 | 361.132 |

*Notes:* This table lists the sample mean, median, maximum, minimum, sample SD, skewness, kurtosis, and the Jarque-Bera (*JB*) statistics for the monthly housing price returns of the  $16^{th}$  populous states in the US. The source of the state-level housing price indexes is Freddie Mac's Conventional Mortgage Home Price Index (CMHPI), and the analyzed period is 1978M1-2010M12.

# Table 2 Predictability tests: the GTTB predictor

| Horizon           | US CMHPI                 |       | CA           |       | TX           |       | NY             |       | FL          |        | L                      |       | PA          |                  | OH                       |       | MI                        |        | GA           |        | NC          |        | NJ                       |       | VA                    |       | WA          |        | MA                       |                    | N                      |      | AZ                     |         |
|-------------------|--------------------------|-------|--------------|-------|--------------|-------|----------------|-------|-------------|--------|------------------------|-------|-------------|------------------|--------------------------|-------|---------------------------|--------|--------------|--------|-------------|--------|--------------------------|-------|-----------------------|-------|-------------|--------|--------------------------|--------------------|------------------------|------|------------------------|---------|
| 1                 |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| In-sample         |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Slope coefficient | -0.08908352              |       | -0.079164325 |       | 0.004055675  |       | 0.02751        |       | 0.039458744 |        | 0.004055675            |       | 0.053347137 |                  | 0.06537339               |       | -0.018254814              |        | 0.022635343  |        | 0.036820947 |        | 0.064530657              |       | 0.055698776           |       | 0.068334561 |        | 0.032821979              |                    | 0.066566658            |      | 0.044461737            |         |
| t-statistic       | -5.4037525               | 1.0   | -5.4040178   | 1.0   | 0.50434172   | 0.295 | 2,220676 0,01  | 18    | 2,8196336   | 0.02   | 0.50454172             | 0,295 | 7.713078    | 0                | 8,1304110                | 0     | -1,5650713                | 0,91   | 2.5135922    | 0,04   | 5,1781734   | 0      | 5,8715842                | 0     | 5,8439115             | 0     | 5,8247511   | 0      | 2,8213397                | 0,01               | 92540680               | 0    | 3.0156253              | 0       |
| K-squared         | 0.009162728              |       | 0.00910900   |       | 0.006468095  |       | 0.012395       |       | 0.019828724 |        | 0.006468095            |       | 0.1514/546  |                  | 0.14398405               |       | 0.00519408/               | -      | 0.013822555  | -      | 0.063869963 |        | 0.080649068              |       | 0.0/9951298           |       | 0.079469482 |        | 0.019852.251             |                    | 0.1789198              |      | 0.022616092            |         |
| Theils II         | 10102531                 | 0.974 | 0.95685899   | 0     | 1 (187969)   | 1     | 0.070875       | 0     | 0.98773718  | 0.07   | 1 (1379697             | 1     | 0.93779176  | 0                | 0.94633276               | 0     | 1 0937684                 | 1      | 0 98843038   | 0.04   | 0.97527542  | 0      | 0.9406074                | 0     | 0.9518607             | 0     | 0 98857513  | 0.01   | 0 96958668               | 0                  | 0.03846533             | 0    | 0.98574163             | 0.01    |
| MSEF              | -3 9784381               | 0.924 | 18.164365    | 0     | -14 149015   | 1     | 8.196156       | 0     | 5.1285322   | 0.07   | -14 149015             | 1     | 27.02775    | 0                | 22.977607                | 0     | -12 129613                | 1      | 4.6387779    | 0.04   | 10.115056   | 0      | 25.667101                | 0     | 20.430213             | 0     | 4.601259    | 0.01   | 12.552548                | 0                  | 26.681341              | 0    | 5.7402747              | 0.01    |
| ENC-new           | 21,548589                | 0     | 13.601391    | 0     | -6.184525    |       | 4,553946       | 0.05  | 2,7141358   | 0.031  | -6.184525              |       | 16,909514   | 0                | 32,064801                | 0     | -3.0276147                | 0.999  | 3,104844     | 0,018  | 12,829187   | 0      | 17.078397                | 0     | 12,062282             | 0     | 10.064461   | 0      | 6,9261705                | 0.03               | 48,969654              | 0    | 3.2203713              | 0,018   |
| 1                 |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| In-sample         |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Slope coefficient | 0.079939915              |       | -0.15089622  |       | 0.006872929  |       | 0.05364        |       | 0.08161254  |        | 0.006872929            |       | 0.010618959 |                  | 0.012761806              |       | -0.037730078              |        | 0.048344051  |        | 0.072558264 |        | 0.012982316              |       | 0.01118053            |       | 0.013515271 |        | 0.062780601              |                    | 0.012833193            |      | 0.08801306             |         |
| t-statistic       | -3.0707250               | 0.998 | -2,9686065   | 1.0   | 0.23962798   | 0,396 | 1.017473 0.166 | 00    | 1,8828292   | 0,049  | 0.23962798             | 0,396 | 5,8443160   | 0                | 3,3103189                | 0     | -0.94354219               | 0,7910 | 1.9334539    | 0.043  | 2,2332114   | 0.02   | 3.532607                 | 0.02  | 3.4452164             | 0.02  | 2.5873952   | 0,06   | 19727764                 | 0.035              | 3,962,5727             | 0    | 2.3420779              | 0.014   |
| R-squared         | 0.086872485              |       | 0.066346696  |       | 0.005967699  |       | 0.013687       |       | 0.023429748 |        | 0.005967699            |       | 0.13918988  |                  | 0.16787458               |       | 0.007910205               |        | 0.022404022  |        | 0.07719102  |        | 0.087987558              |       | 0.089540287           |       | 0.086888294 |        | 0.019336121              |                    | 0,20236048             |      | 0.023498573            |         |
| Out-of-sample     |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Theil's U         | 1.0097817                | 0.682 | 0.96226862   | 0.01  | 1.0515925    | 0.998 | 0,978061       | 0.07  | 0.98636303  | 0.021  | 1.0515925              | 0.998 | 0,93512432  | 0                | 0.93314657               | 0     | 1.1046801                 | 0.999  | 0.98510747   | 0,021  | 0.96934701  | 0,03   | 0.93541428               | 0     | 0,94879467            | 0     | 0,98356662  | 0,01   | 0.97033893               | 0,02               | 0,92277324             | 0    | 0,98581121             | 0,02    |
| MSEF              | -3.7789056               | 0.682 | 15,67203     | 0.01  | -18/60261    | 0.998 | 8,891434       | 0.07  | 5,4570649   | 0.021  | -18,760261             | 0.998 | 28,138969   | 0                | 29.09072                 | 0     | -53,586139                | 0.999  | 5,970921     | 0.021  | 12,591939   | 0,03   | 28.003                   | 0.01  | 21.726652             | 0     | 6.6042521   | 0,01   | 12.165693                | 0,02               | 34,179207              | 0    | 5.6826643              | 0,02    |
| ENC-New           | 15,11/158                |       | 11,880081    | 0.10  | -8,1010027   | 0,999 | 4,884198       | 0,000 | 2,3833996   | 0074   | -8.201002/             | 0.999 | 1/401800    |                  | 38,20334                 |       | -3,3003972                | 0.993  | 3,9939/19    | 0,050  | 13,1433/0   | 0,01   | 18,40035/                | 0.01  | 12,828952             | 0.02  | 11,221068   | 0.04   | 0,00//304                | 0.019              | 01,20302               |      | 3,1502,39              | 0,001   |
| J<br>In.comole    |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           | -      |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        | -       |
| Slone coefficient | -0.11729459              |       | -0.21698533  |       | 0.007399812  |       | 0.07905        |       | 0.012434467 |        | 0.007399812            |       | 0.015764418 |                  | 0.018621776              |       | -0.057273819              | -      | 0 (075222199 | -      | 0.010640722 |        | 0 019350921              |       | 0.016724358           |       | 0.019605705 |        | 0.091238236              |                    | 0.018561648            |      | 0.013105208            | -       |
| t-statistic       | 2.9172970                | 0.994 | -2.4872874   | 0.987 | 0.19261262   | 0.427 | 1.087357 0.169 | 00    | 1,8598114   | 1,059  | 0.19261262             | 0.427 | 5,6091944   | 0                | 3,9704835                | 0     | -0.85987634               | 0.7190 | 2,2994372    | 0.026  | 2.4251665   | 0.019  | 3,4755708                | 0.02  | 3,2171873             | 0.01  | 2.7034494   | 0,01   | 1,8203010                | 0.045              | 4,2070854              | 0    | 2.1921751              | 0.03    |
| R-squared         | 0.099397461              |       | 0.062936793  |       | 0.003785766  |       | 0.01557        |       | 0.026099596 |        | 0.003785766            |       | 0.1423693   | Ċ                | 0.19981639               |       | 0.00981052                |        | 0.028749781  |        | 0.090917454 |        | 0.092999582              |       | 0.098072142           |       | 0.090646411 |        | 0.019071364              |                    | 0.23145756             | Ċ    | 0.024443664            |         |
| Out-of-sample     |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        | -       |
| Theil's U         | 1.0044339                | 0.308 | 0,96719845   | 0.08  | 1.0672649    | 0,999 | 0.976235       | 0.04  | 0.98612176  | 0.042  | 1,0672649              | 0.999 | 0,93358629  | 0                | 0.92350547               | 0     | 1.1129439                 | 0.998  | 0,98311349   | 0.021  | 0.96392604  | 0,04   | 0.93188983               | 0     | 0.94625               | 0     | 0,97958644  | 0.02   | 0,97133107               | 0,09               | 0,90191445             | 0    | 0,98589942             | 0.027   |
| MSE-F             | 1,7178014                | 0.308 | 13.450734    | 0.08  | -23,805363   | 0,999 | 9.609573       | 0.04  | 5.5273084   | 0.042  | -23,805363             | 0.999 | 28,730751   | 0                | 33.64182                 | 0     | 37,569799                 | 0.998  | 6,7563911    | 0,021  | 14,868463   | 0,04   | 29,546074                | 0     | 22,782422             | 0     | 8,2118757   | 0.02   | 11,68076                 | 0,09               | 44.719809              | 0    | 5.617764               | 0.027   |
| ENC-new           | 27.099649                | 0     | 10.374578    | 0,025 | -10.431396   | 1     | 5,231934       | 0.04  | 2.9167922   | 0.113  | -10.431396             | 1     | 17.599565   | 0.04             | 42,457728                | 0     | -3.8354456                | 0.953  | 4.550805     | 0.051  | 16.950928   | 0,05   | 19,22,7914               | 0.01  | 13.420497             | 0.08  | 11.680169   | 0,06   | 6.3635721                | 0.037              | 74.134652              | 0    | 3.0845207              | 0.101   |
| 5                 |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| In-sample         |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           | _      |              | _      |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Slope coefficient | -0.17906445              | 0.07/ | -0.33274357  | 0.07  | 0.010944254  | 0.01  | 0.012749       | 00    | 0.022065189 | 1050   | 0.010944254            | 0.01  | 0.026213939 | 0                | 0.029795476              | 0     | -0.097932954              | 0.7.40 | 0.013315632  | 0.010  | 0.017082393 | 0.00   | 0.050920575              | 0     | 0.027599913           | A A ( | 0.032331592 | A A/   | 0.014523021              | 0.00               | 0.029924647            |      | 0.022912892            | 0.011   |
| t-statistic       | -2,6020836               | 09/6  | -2,0388839   | 0,96  | 0.18093940   | 0,451 | 1.17/889 0.164 | 00    | 1.8/96/36 0 | 1,008  | 0.18093940             | 0,451 | 3,3140/9/   | U                | 4,10944,28               | U     | -0.79814689               | 0,7440 | 2,8135806    | 0.018  | 2,852,6020  | 0.08   | 3,4509540                | U     | 3,070118              | 0,06  | 3,209247    | 0,06   | 0.0195/0.09              | 0.08               | 4,5801/5/              | U    | 2.1698591              | 0.052   |
| K-squared         | 0,1066,23%6              |       | 0.000906233  |       | 0.004084/77  |       | 0.019222       |       | 0.002009112 |        | 0,004084777            |       | 0.13224282  |                  | 0.27021979               |       | 0,013311908               | -      | 0.0424144/4  | -      | 0.11044434  |        | 0.094900997              |       | 0.11042094            |       | 0.10/22457  |        | 0.01800248               |                    | 0,51848852             |      | 0.02936/921            | -       |
| Theile II         | 0.98637649               | 0.074 | 0.9762073    | 0.037 | 1 (183)(193) | 0.080 | 0.975613       | 0.048 | 0.98434068  | 0.061  | 1 0830930              | 0.989 | 0 9300294   | 0.02             | 0.0130967                | 0     | 1 1 1 5 8 7 8 7           | 0.997  | 0 97898825   | 0.0.48 | 0.9548987   | 0.08   | 0 93067139               | 0.01  | 0 04278308            | 0.09  | 0 97133679  | 0.03   | 0 97414687               | 0 (7) 9            | 0.86432577             | 0    | 0 98479564             | 0.050   |
| MSEF              | 5 3887361                | 0.074 | 9 57 51 905  | 0.037 | -28.477422   | 0.989 | 9 769446       | 0.048 | 61894991    | 0.061  | -18477472              | 0.989 | 30145773    | 0.02             | 38 079877                | 0     | -40 744101                | 0.992  | 8373516      | 0.048  | 18 661905   | 0.08   | 79 8497 88               | 0.01  | 24367041              | 0.09  | 11 558549   | 0.03   | 10 38089                 | 0.029              | 65346384               | 0    | 620773                 | 0.059   |
| ENC-new           | 26,951331                | 0,011 | 7.8613019    | 0.105 | 12,472104    | 0.997 | 5308266        | 0.109 | 3.2573889   | 0,173  | -12.472104             | 0.997 | 1825203     | 0.02             | 47.867273                | 0     | -4.4217289                | 0.893  | 5,562988     | 0,1    | 19,239447   | 0,09   | 18.867277                | 0.08  | 14203478              | 0,021 | 13,289935   | 0.03   | 56413452                 | 0.11               | 10.28136               | 0    | 3.3709042              | 0.15    |
| 10                |                          |       |              |       |              |       | ~~~~~          |       |             |        |                        |       |             | ~~~~~            |                          |       |                           |        | *****        | ****** |             |        |                          |       |                       |       |             | ****** |                          | ~~~~~              |                        |      |                        | ******* |
| In-sample         |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Slope coefficient | -0.37217803              |       | 0.48683794   |       | 0.067320641  |       | 0.019083       |       | 0.05061012  |        | 0,067320641            |       | 0.053299771 |                  | 0.057910407              |       | 0.23738146                |        | 0.027759999  |        | 0.034617146 |        | 0.058020313              |       | 0.056458558           |       | 0.069012149 |        | 0.022730619              |                    | 0.058544233            |      | 0.054885424            |         |
| t-statistic       | -2,3658691               | 0.954 | -1,2427613   | 0.866 | 0.55574051   | 0.302 | 0.954522 0.244 | 00    | 1.8401925 0 | ).076  | 0.55574051             | 0.302 | 4,1068054   | 0                | 3.6730779 0              | .03   | 0.94788216                | 0.7640 | 2.7747313    | 0.016  | 3,8989298   | 0.05   | 2,9708240                | 0.013 | 2,8352559             | 0.017 | 4,5823838   | 0      | 1,0175042                | 0.199              | 6,3550866              | 0    | 2,2321570              | 0.048   |
| R-squared         | 0.14004513               |       | 0.052288849  |       | 0.052061936  |       | 0.013726       |       | 0.048376656 |        | 0.052061936            |       | 0.18020822  |                  | 0.3650148                |       | 0.025338096               |        | 0.066678197  |        | 0.1886416   |        | 0.094859344              |       | 0.13877759            |       | 0.16754455  |        | 0.012171368              |                    | 0.47905511             |      | 0.050190668            |         |
| Out-of-sample     |                          |       |              |       | 1.001.010    |       |                |       |             |        | 1.001.01.0             |       |             | 0.04             |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Theifs U          | 0.96541177               | 0,05  | 1.000995     | 0.152 | 1.0614119    | 0.895 | 0995257        | 0.130 | 0.97943924  | 0,085  | 1,0814119              | 0.893 | 0.91585521  | 0.01             | 0,86122389               | 0.02  | 1.1390555                 | 0.942  | 0.96781284   | 0,059  | 0.92286163  | 0,012  | 0.92868606               | 0.02  | 0.93046165            | 0.018 | 0,94456095  | 0.03   | 0.99514279               | 0.142              | 0.77838687             | 0    | 0.9/621215             | 0.079   |
| MOE4              | 10./12400                | 0,024 | 10/2/200001  | 0.002 | -27.240897   | 0.895 | 1,400120       | 0.100 | 1,3 139803  | 0.197  | -21,240691<br>10,00040 | 0.895 | 30,133155   | 0.01             | 03,409303                | 0,01  | -40.094000                | 0.942  | 7720/059     | 0,039  | 32,/4184/   | 0.012  | 17.04412                 | 0.02  | 10,15050              | 0.018 | 22,/10185   | 0,03   | 1.6177042                | 0.142              | 1/2 7026               | U    | 9,2758114              | 0.079   |
| EIVC-IICW         | JU.01/300                | 0,024 | 1.0400040    | 0.273 | •12,02,002   | 0913  | 1.00/71.37     | 0,174 | 4,1010/72   | V.10/  | •12,02002              | 0,913 | 21.195397   | 0.03             | /1.9090/8                | 0,01  | -4.10LJ/74                | 0.057  | 1,1370200    | 0.120  | 20.2071J0   | 0,022  | 17,54413                 | 0.00  | 10,242414             | 0.03  | 20.245204   | 0.04   | 1,04/2708                | 0.201              | 103./320               |      | 4,7/J1000              | 0.172   |
| Is<br>In-same     |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           | -      |              | -      |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Slope coefficient | 0.54798489               |       | -0.54064412  |       | 0.012672886  |       | 0.019554       |       | 0.084663839 |        | 0.012672886            |       | 0.079225964 |                  | 0.082802572              |       | -0.42514903               |        | 0.042722553  |        | 0.049954577 |        | 0.078405143              |       | 0.085527877           |       | 0.10583958  |        | 0.021771338              |                    | 0.085711114            |      | 0.091267056            |         |
| t-statistic       | -2.1106955               | 0.924 | -0.78162253  | 0.734 | 0.66312779   | 0.307 | 0.556438 0.317 | 00    | 1.7531856 ( | 0.101  | 0.66312779             | 0.307 | 3,3316447   | 0,018            | 3.5268397 0              | .09   | -1.0392998                | 0.7700 | 2.4438969    | 0.032  | 3,4596223   | 0.08   | 2.4261412                | 0.051 | 2,5514956             | 0.035 | 4,7703253   | 0.02   | 0.56371776               | 0.313              | 6.4687598              | 0    | 2,116950               | 0.052   |
| R-squared         | 0.14081485               |       | 0.017791234  |       | 0.093114525  |       | 0.07128        |       | 0.065345024 |        | 0.093114525            |       | 0.19222317  |                  | 0.39581927               |       | 0.041673184               |        | 0.083253933  |        | 0,21488366  |        | 0.081584728              |       | 0.15798042            |       | 0,20847699  |        | 0.052130111              |                    | 0,57503906             |      | 0.069698591            |         |
| Out-of-sample     |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| Theil's U         | 0,95289017               | 0,066 | 1.0224317    | 0.287 | 1.0942587    | 0,835 | 1.019028       | 0,398 | 0.97376843  | 0,098  | 1,0942587              | 0.835 | 0.90840977  | 0.02             | 0.8261554                | 0.02  | 1.1552699                 | 0.912  | 0.9594724    | 0,056  | 0.89142812  | 0,014  | 0.93554929               | 0.037 | 0.9229382             | 0.036 | 0,91757723  | 0.03   | 1.0235716                | 0.447              | 0.72850172             | 0    | 0.96894765             | 0.068   |
| MSE-F             | 18,541922                | 0,066 | -7.9418065   | 0.287 | -30,169147   | 0.835 | -6.770346      | 0.398 | 9,9921791   | 0,098  | -30,169147             | 0.835 | 38,762188   | 0.02             | 85,11907                 | 0,02  | -45.885256                | 0.912  | 15,786147    | 0,056  | 47,291778   | 0,014  | 26,082527                | 0.037 | 31,835403             | 0.036 | 34,353097   | 0.03   | -8.3314846               | 0.447              | 161,818                | 0    | 11.917332              | 0.068   |
| ENC-new           | 28,286819                | 0.053 | -2,575275    | 0,49  | -13.32161    | 0943  | -2,699208      | 0,567 | 5,1863562   | 0238   | -13,32161              | 0,943 | 22,195852   | 0.06             | 85.499428                | 0,02  | -3,8616972                | 0,589  | 9.1637161    | 0,144  | 34.921674   | 0.03   | 14,905686                | 0,104 | 17,806557             | 0.097 | 26.692336   | 0.05   | -3,501962                | 0,601              | 203.38279              |      | 6.3283469              | 0,17    |
| 20<br>In comple   |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           | -      |              | -      |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        | -       |
| Slone coefficient | .0 70844764              |       | .0.48735091  |       | 0.000751861  |       | 0.013486       |       | 0 1205297   |        | 0.000751861            |       | 0 10535738  |                  | 0.10533444               |       | .0 53816539               | -      | 0.059835732  | -      | 0.066496136 |        | 0.092863203              |       | 0 11152086            |       | 0 14640456  |        | 0.01.4798595             |                    | 0 10945733             |      | 0 13141895             | -       |
| t-statistic       | 1 9749687                | 0.884 | -0.47280939  | 0.682 | 0.7803496    | 0325  | 0.267459.0.424 | 00    | 1.6798244   | 014    | 0.7803496 (            | 1325  | 2.9139071   | 0.03             | 3.489209 0.              | )11   | -0.99737177               | 07370  | 2.2235190    | 0.055  | 2,9584093   | 0.027  | 2.0066136                | 1.066 | 2.2905602             | 0.054 | 4.6860566   | 0.04   | 0.24699535               | 0.421              | 5,7419869              | 0    | 1.9984146              | 0.084   |
| R-squared         | 0.13713053               |       | 0.080655227  |       | 0.015525635  |       | 0.02015        |       | 0.079918102 |        | 0.015525635            |       | 0.20371571  |                  | 0.40343607               |       | 0.040263327               |        | 0.10156106   |        | 0.24012873  |        | 0.067766614              |       | 0.16317068            |       | 0.25214188  |        | 0.01321818               |                    | 0.58304107             |      | 0.089757284            |         |
| Out-of-sample     |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        | -       |
| Theil's U         | 0,94882696               | 0.074 | 1.0425594    | 0.316 | 1.103027     | 0.793 | 1.05161        | 0.581 | 0.96952813  | 0.124  | 1.106027               | 0.793 | 0.9021305   | 0.04             | 0,80926513               | 0,08  | 1.1465626                 | 0.805  | 0.95011507   | 0.08   | 0,85403039  | 0.013  | 0,9460615                | 0.09  | 0,92138461            | 0.042 | 0,88628589  | 0,03   | 1.0579085                | 0.625              | 0,6836535              | 0    | 0.96153386             | 0.104   |
| MSE-F             | 19.71789                 | 0,074 | ·14.236032   | 0.316 | -31.692421   | 0,793 | -17.042607     | 0,581 | 11,364767   | 0.124  | -31,692421             | 0.793 | 40.716577   | 0.04             | 93,793047                | 0,08  | -42,598182                | 0,803  | 19.182145    | 0.08   | 66.046935   | 0,013  | 20,875491                | 0.09  | 31,670871             | 0.042 | 48,606483   | 0,03   | -18.953609               | 0.625              | 202.8447               | 0    | 14.526642              | 0.104   |
| ENC-new           | 23.760626                | 0.108 | 5.9794506    | 0.565 | -13,944994   | 0.911 | -7.043909      | 0.73  | 5.8490502   | 0.253  | ·13.944994             | 0.911 | 22,826348   | 0.1              | 88,329188                | 0,07  | -3.8592455                | 0.546  | 10.725385    | 0.178  | 43.819172   | 0,041  | 11.399511                | 0.178 | 17.354187             | 0.11  | 34.718607   | 0,05   | -8.1014972               | 0.775              | 232,43252              | 0    | 7.6206331              | 0.222   |
| 25                |                          |       |              |       |              |       |                |       |             |        |                        |       |             |                  |                          |       |                           |        |              |        |             |        |                          |       |                       |       |             |        |                          |                    |                        |      |                        |         |
| In-sample         | 0.0051 (40               |       | 01/3011      |       | 0.011717555  |       | 0.020/0        |       | 012111/00   |        | 0.011733444            |       | 0.19/030/3  | $\left  \right $ | A 11/10/20               |       | 0/104940*                 | -      | A.(711/2421  | -      | 0.01120-001 |        | 0.00230-0240             |       | 0 11 10 100           |       | A 100320/1  |        | 0.03202040               |                    | 0.1054554              |      | 01//2004               |         |
| supe coefficient  | -0.82/1448               | 1957  | -0.30/0911   | 0.614 | 0.019/7227   | 0.159 | -0.00009       | 00    | 0.1332/098  | n 140  | 0.00907227             | 0.159 | 0.12003963  | 0.042            | 0.12018072               | 014   | -0.019///9/               | 0.2040 | 1.0024472    | 0.000  | 0.0/4/9004  | 0.0.40 | 0.073/04/48              | 0.154 | 0.13423438            | 0.002 | 0.18030961  | 0.07   | -U.UJ/890848             | 0.40               | 0.12/4/01<br>5.1027330 | 0.02 | U.100/88/3             | 0.100   |
| Required          | •1./J17/10<br>0.1771302/ | 0L0.V | 10,0090001   | 0.014 | 0.72801331   | 0.20  | 61CU 61C610.0- | w     | 1.0139397   | u, 147 | 0.72801331             | v.20  | 10026270    | 0,040            | 0 3082/719<br>0 3082/719 | v14   | -0.711/04/0<br>0.02521902 | ULIVIU | 0.1001010    | 0.078  | 6.0347400   | 0.040  | 1,0039088<br>0,008865016 | 4.134 | 6.101/423<br>01636663 | 0.003 | 4,2304330   | UJI    | -v.v+o404139<br>6.17E.02 | v. <del>41</del> 7 | 0.50771545             | a,14 | 1,0000040<br>0 1000127 | v.107   |
| Out-of-sample     | 0.12213/01               |       | 0.02/11/0/J  |       | 0.020000     |       | 0.00107        |       | v,va/04112J |        | 000000000              |       | 0.17000077  | $\square$        | v.27004110               |       | 0.000010/0                | -      | 0.1001212    | -      | v.51/1111/  |        | 0.01000010               |       | 0.1024000             |       | 4.513000J1  |        | 0.0200                   |                    | 0,012/1000             |      | 0.1020130              |         |
| Theils II         | 0.95550759               | 0.112 | 1,0641638    | 0.355 | 1,1019118    | 0.693 | 1 098076       | 0.706 | 0,96806767  | 0139   | 1,1019118              | 0.693 | 0,90535747  | 0.05             | 0,82542601               | 0,025 | 11427579                  | 07%    | 0,95436761   | 0105   | 0,85094425  | 0,018  | 0,96764197               | 0.161 | 0.92419231            | 0.053 | 0,86707676  | 0.03   | 1.0972319                | 0.701              | 0.68618869             | 0    | 0,95831493             | 0 109   |
| MSE-F             | 16.486301                | 0.112 | -20.233152   | 0.355 | -30.52049    | 0,693 | -29.523296     | 0.706 | 11.603191   | 0.139  | -30.52049              | 0.693 | 38,059998   | 0.05             | 80.915845                | 0.025 | -40.523874                | 0.726  | 16.941242    | 0.105  | 65.915259   | 0,018  | 11.763743                | 0.161 | 29,544941             | 0.053 | 57.107626   | 0.03   | -29.302481               | 0.701              | 194,41679              | 0    | 15.377745              | 0.109   |
| ENC-new           | 16.568524                | 0.171 | -9.0136819   | 0.625 | -13.37071    | 0.851 | -11.72091      | 0.839 | 5.967852    | 0.246  | -13,37071              | 0.851 | 21,091837   | 0.12             | 78.487742                | 0.027 | -4,647714                 | 0.553  | 9,30832      | 0.197  | 40.659277   | 0.061  | 6,2373363                | 0.288 | 16.048766             | 0.143 | 39,317534   | 0,06   | -12,173581               | 0.832              | 215,63527              | 0    | 8.0643721              | 0.225   |

| Table 3 Predictability | tests: 1 | the federal | l fund | s rate | predictor |
|------------------------|----------|-------------|--------|--------|-----------|
|                        |          |             |        |        |           |

|                                                                                                                                                   | US CMPHI                                                                                                                                       |                                                             | CA                                                                                                                                    |                                                                      | TX                                                                                                                                        |                                                             | NY                                                                                                                     |                                                                      | FL                                                                                                           |                                           | L                                                                                                                              |                                                             | PA                                                                                                            |                                                                      | OH                                                                                                                                  |                                                                                        | MI                                                                                                                          |                                                                                    | GA                                                                                                                          |                                                                      | NC                                                                                                                                   |                                                                      | N                                                                                                                         |                                                                      | VA                                                                                                                     |                                                                      | WA                                                                                                                      |                                                                               | MA                                                                                                          |                                                             | IN                                                                                                                            |                                                                      | AZ                                                                                                                                      |                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1                                                                                                                                                 |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| In-sample                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Slope coefficient                                                                                                                                 | -0.020781218                                                                                                                                   |                                                             | -0.002177827                                                                                                                          |                                                                      | 40556750                                                                                                                                  |                                                             | -0.002177827                                                                                                           |                                                                      | -0.03908352                                                                                                  |                                           | 40556750                                                                                                                       |                                                             | -0.03908352                                                                                                   |                                                                      | -0.037649867                                                                                                                        |                                                                                        | 0.012846972                                                                                                                 |                                                                                    | -0.021849848                                                                                                                |                                                                      | -0.03205724                                                                                                                          |                                                                      | -0.021849848                                                                                                              |                                                                      | -0.05205724                                                                                                            |                                                                      | -0.02597074                                                                                                             |                                                                               | 0.004678983                                                                                                 |                                                             | -0.03908352                                                                                                                   |                                                                      | -0.006764131                                                                                                                            |                                                                              |
| t-statistic                                                                                                                                       | -3,3943910                                                                                                                                     | 1.0                                                         | -0,20873617                                                                                                                           | 0.597                                                                | 0.50434172                                                                                                                                | 0,295                                                       | -0.20873617                                                                                                            | 0.597                                                                | -5,4037525                                                                                                   | 1.0                                       | 0.50434172                                                                                                                     | 0.295                                                       | -5.4037525                                                                                                    | 1.0                                                                  | -5,3624347                                                                                                                          | 1.0                                                                                    | 1,6972393                                                                                                                   | 0,0470                                                                             | -2,2928506                                                                                                                  | 0.988                                                                | -3.9298058                                                                                                                           | 1.0                                                                  | -2.2928506                                                                                                                | 0,987                                                                | -3,9298058                                                                                                             | 1.0                                                                  | -2.5588233                                                                                                              | 0.986                                                                         | 0,47591011                                                                                                  | 0347                                                        | -5.4087525                                                                                                                    | 1.0                                                                  | -0.54213783                                                                                                                             | 0,671                                                                        |
| R-squared                                                                                                                                         | 0.028482736                                                                                                                                    |                                                             | 11085486                                                                                                                              |                                                                      | 64680929                                                                                                                                  |                                                             | 11085486                                                                                                               |                                                                      | 0.069162728                                                                                                  |                                           | 64680929                                                                                                                       |                                                             | 0.069162728                                                                                                   |                                                                      | 0.068180954                                                                                                                         |                                                                                        | 0.007276489                                                                                                                 |                                                                                    | 0.013200425                                                                                                                 |                                                                      | 0.037810318                                                                                                                          |                                                                      | 0.013200425                                                                                                               |                                                                      | 0.037810618                                                                                                            |                                                                      | 0.016387477                                                                                                             |                                                                               | 57597958                                                                                                    |                                                             | 0.069162728                                                                                                                   |                                                                      | 74731243                                                                                                                                |                                                                              |
| Out-of-sample                                                                                                                                     |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Theil's U                                                                                                                                         | 1.0055128                                                                                                                                      | 0.510                                                       | 1.0026582                                                                                                                             | 0.452                                                                | 1.0379692                                                                                                                                 | 1.00                                                        | 1.0026582                                                                                                              | 0.452                                                                | 1.0002531                                                                                                    | 0,940                                     | 1,0379692                                                                                                                      | 1.00                                                        | 1.0002531                                                                                                     | 0,936                                                                | 1,1980297                                                                                                                           | 1.000                                                                                  | 0,99710678                                                                                                                  | 0.072                                                                              | 0,99092424                                                                                                                  | 0.019                                                                | 0,9833888                                                                                                                            | 0,001                                                                | 0,99092424                                                                                                                | 0,008                                                                | 0,9833888                                                                                                              | 0,001                                                                | 1.0624182                                                                                                               | 1.000                                                                         | 1,0016591                                                                                                   | 0.314                                                       | 1,0102531                                                                                                                     | 0.929                                                                | 1.0072979                                                                                                                               | 0.861                                                                        |
| MSEF                                                                                                                                              | -1.376787                                                                                                                                      | 0,510                                                       | -1.0431699                                                                                                                            | 0.452                                                                | -14,149015                                                                                                                                | 1.000                                                       | ·1.0431699                                                                                                             | 0.452                                                                | -3.9784381                                                                                                   | 0,940                                     | -14,149015                                                                                                                     | 1,00                                                        | 3.9784381                                                                                                     | 0,936                                                                | -59,744094                                                                                                                          | 1.000                                                                                  | 1.1448968                                                                                                                   | 0.072                                                                              | 3.6251245                                                                                                                   | 0,009                                                                | 6.7115782                                                                                                                            | 0,001                                                                | 3,6251245                                                                                                                 | 0,008                                                                | 6,7115782                                                                                                              | 0,001                                                                | -22.461928                                                                                                              | 1.000                                                                         | -0.65207414                                                                                                 | 0,314                                                       | 3.9784381                                                                                                                     | 0.929                                                                | -2,844208                                                                                                                               | 0.861                                                                        |
| ENC-new                                                                                                                                           | 16531453                                                                                                                                       | 0,002                                                       | 0,67393092                                                                                                                            | 0,176                                                                | -6.184525                                                                                                                                 | 1.00                                                        | 0.67393092                                                                                                             | 0.176                                                                | 21,548589                                                                                                    | 000                                       | -6,184525                                                                                                                      | 1.00                                                        | 21,548589                                                                                                     | 0.000                                                                | 5,6325496                                                                                                                           | 0,003                                                                                  | 1,9878999                                                                                                                   | 0.053                                                                              | 7,8298915                                                                                                                   | 0.002                                                                | 10,154303                                                                                                                            | 0,00                                                                 | 7,8298915                                                                                                                 | 0,001                                                                | 10,154303                                                                                                              | 0,00                                                                 | 1.1705308                                                                                                               | 0.118                                                                         | 0.82038018                                                                                                  | 0.162                                                       | 21,548589                                                                                                                     | 0,00                                                                 | 1,1928435                                                                                                                               | 0.110                                                                        |
| 2                                                                                                                                                 |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| In-sample                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Slope coefficient                                                                                                                                 | -0.043616358                                                                                                                                   |                                                             | -0.004161859                                                                                                                          |                                                                      | 68729288                                                                                                                                  |                                                             | 0.004161859                                                                                                            |                                                                      | 0.079939915                                                                                                  |                                           | 0.000687293                                                                                                                    |                                                             | 0.079939915                                                                                                   |                                                                      | -0.074088635                                                                                                                        |                                                                                        | 0.024719565                                                                                                                 |                                                                                    | 0.045781029                                                                                                                 |                                                                      | -0.069986661                                                                                                                         |                                                                      | -0.045781029                                                                                                              |                                                                      | -0.065986661                                                                                                           |                                                                      | -0.057066001                                                                                                            |                                                                               | 0.010983941                                                                                                 |                                                             | -0,079939915                                                                                                                  |                                                                      | -0.017112363                                                                                                                            |                                                                              |
| t-statistic                                                                                                                                       | -1,7238310                                                                                                                                     | 0.994                                                       | -0.11042211                                                                                                                           | 0,547                                                                | 0,23962798                                                                                                                                | 0,396                                                       | -0.11042211                                                                                                            | 0,547                                                                | -3.0707250                                                                                                   | 0,999                                     | 0,23962798                                                                                                                     | 0.3%                                                        | -3.0707250                                                                                                    | 1,995                                                                | -2.4779208                                                                                                                          | 0,995                                                                                  | 0,88877590                                                                                                                  | 0.213                                                                              | -1.4020695                                                                                                                  | 0.891                                                                | -2.1332458                                                                                                                           | 0,964                                                                | -1.4020695                                                                                                                | 0.878                                                                | -2,1332458                                                                                                             | 0,964                                                                | -1,2029984                                                                                                              | 0.831                                                                         | 0.33361045                                                                                                  | 0372                                                        | -3.0707250                                                                                                                    | 0,997                                                                | -0,33097419                                                                                                                             | 0,591                                                                        |
| R-squared                                                                                                                                         | 0.033350949                                                                                                                                    |                                                             | 11700719                                                                                                                              |                                                                      | 59676988                                                                                                                                  |                                                             | 11700719                                                                                                               |                                                                      | 0,086872485                                                                                                  |                                           | 59676988                                                                                                                       |                                                             | 0.086872485                                                                                                   |                                                                      | 0.080358071                                                                                                                         |                                                                                        | 0.008319309                                                                                                                 |                                                                                    | 0.015540095                                                                                                                 |                                                                      | 0.044300509                                                                                                                          | _                                                                    | 0.01.5540095                                                                                                              |                                                                      | 0.044300509                                                                                                            | _                                                                    | 0.022489                                                                                                                |                                                                               | 84062152                                                                                                    |                                                             | 0.086872485                                                                                                                   |                                                                      | 0.001261633                                                                                                                             |                                                                              |
| Out-of-sample                                                                                                                                     | 1.000.00                                                                                                                                       |                                                             | 1 4144 1/1                                                                                                                            |                                                                      |                                                                                                                                           |                                                             | 1.0000021                                                                                                              |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             | 1.0008018                                                                                                     |                                                                      | 140000                                                                                                                              | 1.000                                                                                  |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      | 1.000110                                                                                                                | 1.000                                                                         |                                                                                                             |                                                             |                                                                                                                               | 4.03                                                                 |                                                                                                                                         |                                                                              |
| Iner's U                                                                                                                                          | 1.00268                                                                                                                                        | 0.425                                                       | 1,00/5/64                                                                                                                             | 0,571                                                                | 10,010920                                                                                                                                 | 0.998                                                       | 1.00/5/64                                                                                                              | 0.571                                                                | 1.0097817                                                                                                    | 0.700                                     | 1.0010920                                                                                                                      | 0.998                                                       | 1.009/01/                                                                                                     | 0.726                                                                | 1.2139962                                                                                                                           | 1.000                                                                                  | 1.5001                                                                                                                      | 0.189                                                                              | 0.99313174                                                                                                                  | 0,054                                                                | 0.98414249                                                                                                                           | 0,018                                                                | 0,99313174                                                                                                                | 0,063                                                                | 0,98414249                                                                                                             | 0,018                                                                | 1.070019                                                                                                                | 1.000                                                                         | 1.0005501                                                                                                   | 0.470                                                       | 1,009/81/                                                                                                                     | 0.692                                                                | 1.0012551                                                                                                                               | 0.776                                                                        |
| MQEP<br>ENG                                                                                                                                       | -2.0488094                                                                                                                                     | 0.423                                                       | -2,8098101                                                                                                                            | 0,2/1                                                                | -18,700201                                                                                                                                | 0.998                                                       | -2,8398707                                                                                                             | 0.201                                                                | -3,1789000                                                                                                   | 0.700                                     | -18,/00/001<br>0.0010620                                                                                                       | 0.998                                                       | -3,1189000                                                                                                    | 0.720                                                                | -03,490372                                                                                                                          | 1.000                                                                                  | -0.1391218/                                                                                                                 | 0.189                                                                              | 2.720353                                                                                                                    | 0,054                                                                | 6,36/1906                                                                                                                            | 0,018                                                                | 2.120353                                                                                                                  | 0,003                                                                | 6.36/1906                                                                                                              | 0,018                                                                | -249/1900                                                                                                               | 1.000                                                                         | -2,014,1449                                                                                                 | 0.4/0                                                       | -5.//89000                                                                                                                    | 0.092                                                                | 4.3310209                                                                                                                               | 0.770                                                                        |
| ENC-DEW                                                                                                                                           | 12910183                                                                                                                                       | UJI1)                                                       | •0.17573019                                                                                                                           | 90.0                                                                 | -8,1311011                                                                                                                                | 0.999                                                       | •0.17570319                                                                                                            | 96,0                                                                 | 1511/158                                                                                                     | 1,000                                     | -8,2510527                                                                                                                     | 0,999                                                       | 13,11/138                                                                                                     | 0.000                                                                | /,0001040                                                                                                                           | 0,010                                                                                  | 1,440,000                                                                                                                   | 0.17)                                                                              | /./\0/31                                                                                                                    | 0.02                                                                 | 10.404//0                                                                                                                            | WII                                                                  |                                                                                                                           | 0,013                                                                | 10,404776                                                                                                              | WII                                                                  | 1,1491/1                                                                                                                | 0.194                                                                         | 80, C90810,0                                                                                                | 0,94)                                                       | 15,11/158                                                                                                                     | 0,000                                                                | 0.000/0010                                                                                                                              | 0.202                                                                        |
| )<br>Ie comelo                                                                                                                                    |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      | -                                                                    |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               | -                                                                    |                                                                                                                                         |                                                                              |
| III-sampic<br>Slona coafficiant                                                                                                                   | .nnsalanns                                                                                                                                     |                                                             | 0.001204054                                                                                                                           |                                                                      | 73000117                                                                                                                                  |                                                             | .0.001306056                                                                                                           |                                                                      | .0 11770./50                                                                                                 |                                           | 73008117                                                                                                                       |                                                             | .0 11770/50                                                                                                   |                                                                      | .0 1/602073                                                                                                                         |                                                                                        | 0.024582507                                                                                                                 |                                                                                    | .0.040159751                                                                                                                |                                                                      | .0.1617                                                                                                                              |                                                                      | .0.040158751                                                                                                              |                                                                      | .0.1617                                                                                                                | -                                                                    | 0.082100575                                                                                                             |                                                                               | 0.020480035                                                                                                 |                                                             | .0 11770/50                                                                                                                   | -                                                                    | .0 (10/10070/                                                                                                                           |                                                                              |
| totstotio                                                                                                                                         | -1.5140170                                                                                                                                     | 0.906                                                       | 0.0076070700<br>0076070760                                                                                                            | 0511                                                                 | 0.10361363                                                                                                                                | 0,077                                                       | 10.004.07.07.00<br>.0 ((7.607.07.00                                                                                    | 0.524                                                                | , 1 0171070                                                                                                  | 0.001                                     | 0 10761767                                                                                                                     | 0477                                                        | ,) () () () () ()                                                                                             | 1990                                                                 | 2 1/73 10/20                                                                                                                        | 0.083                                                                                  | 0.12468064                                                                                                                  | 0.149                                                                              | 1,00010001                                                                                                                  | 0.854                                                                | -0.1017                                                                                                                              | 0.960                                                                | 10,00,100,01                                                                                                              | 0.921                                                                | -0.1017                                                                                                                | 0.960                                                                | -0.00010073                                                                                                             | 0.905                                                                         | 0.0270662.00                                                                                                | 0.414                                                       | ,) 0177070                                                                                                                    | 0.902                                                                | 10,000230174                                                                                                                            | 0.568                                                                        |
| Required                                                                                                                                          | 0.085028157                                                                                                                                    | 0,00                                                        | 681F43                                                                                                                                | 0,024                                                                | 37857660                                                                                                                                  | 0,727                                                       | 6.81F./B                                                                                                               | 0,024                                                                | 0.099397461                                                                                                  | 0,4                                       | 37857660                                                                                                                       | 0,727                                                       | 0.099397461                                                                                                   | 1,770                                                                | 0.091444002                                                                                                                         | 1,760                                                                                  | 0.09400300                                                                                                                  | 0,210                                                                              | 0.016780776                                                                                                                 | 0.000                                                                | 0.0495981.01                                                                                                                         | 0,00                                                                 | 0.016780726                                                                                                               | V,001                                                                | 0.049593101                                                                                                            | 0,00                                                                 | 0.025857224                                                                                                             | 0,00                                                                          | 0.001358657                                                                                                 | 0.410                                                       | 0.099897461                                                                                                                   | 1,772                                                                | 0.001815729                                                                                                                             | 0,00                                                                         |
| Out-of-same                                                                                                                                       | 0.000 120001                                                                                                                                   |                                                             |                                                                                                                                       |                                                                      | 5.00100                                                                                                                                   |                                                             | ~.mL/W                                                                                                                 |                                                                      | v.a//2/1701                                                                                                  |                                           | 57007000                                                                                                                       |                                                             |                                                                                                               |                                                                      | 9.971 I TWL                                                                                                                         |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      | *******                                                                                                                              |                                                                      | 0.020100120                                                                                                               |                                                                      |                                                                                                                        |                                                                      | T                                                                                                                       |                                                                               | 0.001000001                                                                                                 |                                                             | v.v//v//TVI                                                                                                                   |                                                                      |                                                                                                                                         |                                                                              |
| Theils II                                                                                                                                         | 1.0060513                                                                                                                                      | 0 372                                                       | 1 0128409                                                                                                                             | 0.667                                                                | 1.0672649                                                                                                                                 | 0.000                                                       | 1 0128409                                                                                                              | 0.667                                                                | 1 (044339                                                                                                    | 0311                                      | 1.0673649                                                                                                                      | 0.999                                                       | 1 0044339                                                                                                     | 0313                                                                 | 12175108                                                                                                                            | 1000                                                                                   | 1 00.4583                                                                                                                   | 0325                                                                               | 0.99606341                                                                                                                  | 0.095                                                                | 0.98430356                                                                                                                           | 0.030                                                                | 0 99606341                                                                                                                | 0.091                                                                | 0 98430356                                                                                                             | 0.030                                                                | 1 0713625                                                                                                               | 0.998                                                                         | 1 0097187                                                                                                   | 0.518                                                       | 1 0044339                                                                                                                     | 0311                                                                 | 1.0145403                                                                                                                               | 0.693                                                                        |
| MSEF                                                                                                                                              | -23387572                                                                                                                                      | 0.372                                                       | 49131007                                                                                                                              | 0.667                                                                | -23 805363                                                                                                                                | 0.999                                                       | 49131007                                                                                                               | 0.667                                                                | -1.7178014                                                                                                   | 0311                                      | -23 805363                                                                                                                     | 0.999                                                       | -1.7178014                                                                                                    | 0.313                                                                | -63 450577                                                                                                                          | 1.000                                                                                  | -1.7751542                                                                                                                  | 0325                                                                               | 1 5443844                                                                                                                   | 0.095                                                                | 6,2688203                                                                                                                            | 0,030                                                                | 1,5443844                                                                                                                 | 0,091                                                                | 6.2688203                                                                                                              | 0.030                                                                | -25112395                                                                                                               | 0.998                                                                         | -3 7357515                                                                                                  | 0.518                                                       | -1.7178014                                                                                                                    | 0311                                                                 | -55493805                                                                                                                               | 0.693                                                                        |
| ENC-new                                                                                                                                           | 12521321                                                                                                                                       | 0,049                                                       | -1,2046664                                                                                                                            | 0.642                                                                | -10.431396                                                                                                                                | 1.00                                                        | -1,2046664                                                                                                             | 0.642                                                                | 27,099649                                                                                                    | 0,002                                     | -10.431396                                                                                                                     | 1.00                                                        | 27,099649                                                                                                     | 0.002                                                                | 8,0401592                                                                                                                           | 0,036                                                                                  | 0.73390464                                                                                                                  | 0.261                                                                              | 7,1592032                                                                                                                   | 0.043                                                                | 10,467734                                                                                                                            | 0.025                                                                | 7,1592032                                                                                                                 | 0,040                                                                | 10.467734                                                                                                              | 0.025                                                                | 1,558788                                                                                                                | 0.234                                                                         | -0.93568869                                                                                                 | 0.555                                                       | 27,099649                                                                                                                     | 0,001                                                                | 0.13637628                                                                                                                              | 0373                                                                         |
| 5                                                                                                                                                 |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| In-sample                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Slope coefficient                                                                                                                                 | -0.11275007                                                                                                                                    |                                                             | -0.001061294                                                                                                                          |                                                                      | 0.001094425                                                                                                                               |                                                             | -0.001061294                                                                                                           |                                                                      | -0.17906445                                                                                                  |                                           | 0.001094425                                                                                                                    |                                                             | -0.17906445                                                                                                   |                                                                      | -0.15950868                                                                                                                         |                                                                                        | 0.037457732                                                                                                                 |                                                                                    | -0.11273617                                                                                                                 |                                                                      | -0.17248214                                                                                                                          |                                                                      | -0.11273617                                                                                                               |                                                                      | -0.17248214                                                                                                            |                                                                      | -0.14595985                                                                                                             |                                                                               | 0.041592393                                                                                                 |                                                             | -0.17906445                                                                                                                   |                                                                      | -0.067642383                                                                                                                            |                                                                              |
| t-statistic                                                                                                                                       | -1.4087390                                                                                                                                     | 0,873                                                       | -0.010557830                                                                                                                          | 0.524                                                                | 0.18695940                                                                                                                                | 0.431                                                       | -0.010557830                                                                                                           | 0,524                                                                | -2.6025836                                                                                                   | 0,980                                     | 0.18695940                                                                                                                     | 0.431                                                       | -2.6025836                                                                                                    | ),984                                                                | -2.2680694                                                                                                                          | 0.982                                                                                  | 0.48871784                                                                                                                  | 0.354                                                                              | -1.1175063                                                                                                                  | 0.837                                                                | -1,8547243                                                                                                                           | 0.935                                                                | -1.1175063                                                                                                                | 0.811                                                                | -1.8547243                                                                                                             | 0.935                                                                | -1.1124657                                                                                                              | 0,781                                                                         | 0.39443959                                                                                                  | 0,405                                                       | -2.6025836                                                                                                                    | 0,980                                                                | -0.39766517                                                                                                                             | 0,587                                                                        |
| R-squared                                                                                                                                         | 0.039342137                                                                                                                                    |                                                             | 1,86E-02                                                                                                                              |                                                                      | 40084777                                                                                                                                  |                                                             | 1.86E-02                                                                                                               |                                                                      | 0.10662396                                                                                                   |                                           | 40084777                                                                                                                       |                                                             | 0.10662396                                                                                                    |                                                                      | 0.10817755                                                                                                                          |                                                                                        | 0.004688409                                                                                                                 |                                                                                    | 0.017623075                                                                                                                 |                                                                      | 0.0602387%                                                                                                                           |                                                                      | 0.017623075                                                                                                               |                                                                      | 0.060238796                                                                                                            |                                                                      | 0.030525023                                                                                                             |                                                                               | 0.002119805                                                                                                 |                                                             | 0.10662396                                                                                                                    |                                                                      | 0.003599572                                                                                                                             |                                                                              |
| Out-of-sample                                                                                                                                     |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Theil's U                                                                                                                                         | 1.0066324                                                                                                                                      | 0.299                                                       | 1.0248855                                                                                                                             | 0.721                                                                | 1,0830934                                                                                                                                 | 0.989                                                       | 1,0248855                                                                                                              | 0.721                                                                | 0,98632649                                                                                                   | 065                                       | 1.0830934                                                                                                                      | 0.989                                                       | 0,98632649                                                                                                    | 0.054                                                                | 1,2092492                                                                                                                           | 1.000                                                                                  | 1.0163119                                                                                                                   | 0.521                                                                              | 1,0019205                                                                                                                   | 0.172                                                                | 0,98400352                                                                                                                           | 0.063                                                                | 1,0019205                                                                                                                 | 0.196                                                                | 0,98400352                                                                                                             | 0.063                                                                | 1.0633977                                                                                                               | 0.955                                                                         | 1,0177024                                                                                                   | 0.556                                                       | 0.98632649                                                                                                                    | 0.061                                                                | 1.0196814                                                                                                                               | 0.602                                                                        |
| MSEF                                                                                                                                              | -2.5348615                                                                                                                                     | 0.299                                                       | 9,258763                                                                                                                              | 0.721                                                                | -18,477422                                                                                                                                | 0.989                                                       | -9.258763                                                                                                              | 0.721                                                                | 5,3882361                                                                                                    | 0.65                                      | -28,477422                                                                                                                     | 0,989                                                       | 5,3882361                                                                                                     | 0.054                                                                | -61.01466                                                                                                                           | 1.000                                                                                  | -6.1456006                                                                                                                  | 0.521                                                                              | -0,73917916                                                                                                                 | 0.172                                                                | 6,3260264                                                                                                                            | 0.063                                                                | -0.73917916                                                                                                               | 0,196                                                                | 6,3260264                                                                                                              | 0.063                                                                | -22.326573                                                                                                              | 0.955                                                                         | 6.6558708                                                                                                   | 0,556                                                       | 5,3882361                                                                                                                     | 0.061                                                                | -7.3784776                                                                                                                              | 0,602                                                                        |
| ENC-new                                                                                                                                           | 6,6771954                                                                                                                                      | 0,096                                                       | -3.4003712                                                                                                                            | 0.823                                                                | -12.472104                                                                                                                                | 0.997                                                       | -3,4005712                                                                                                             | 0.823                                                                | 26.951331                                                                                                    | 1016                                      | -12.472104                                                                                                                     | 0,997                                                       | 26,951331                                                                                                     | 0.003                                                                | 9,0414698                                                                                                                           | 0,057                                                                                  | -0.6711647                                                                                                                  | 0.437                                                                              | 5,3983281                                                                                                                   | 0.110                                                                | 10.544682                                                                                                                            | 0,056                                                                | 5,3983281                                                                                                                 | 0.109                                                                | 10,544682                                                                                                              | 0,056                                                                | 1,891872                                                                                                                | 0.231                                                                         | -2,47685                                                                                                    | 0.705                                                       | 26,951331                                                                                                                     | 0.003                                                                | -1.1363723                                                                                                                              | 0525                                                                         |
| 10                                                                                                                                                |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| In-sample                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Slope coefficient                                                                                                                                 | -0,275500.44                                                                                                                                   |                                                             | 0.037707661                                                                                                                           |                                                                      | 0.006732064                                                                                                                               |                                                             | 0.037707661                                                                                                            |                                                                      | -0.37217803                                                                                                  |                                           | 0.006732064                                                                                                                    |                                                             | -0.37217803                                                                                                   |                                                                      | -0.34533157                                                                                                                         |                                                                                        | 0.018364937                                                                                                                 |                                                                                    | 0,24607439                                                                                                                  |                                                                      | -0.40839857                                                                                                                          |                                                                      | 0,24607439                                                                                                                |                                                                      | -0.40839857                                                                                                            |                                                                      | -0.36568381                                                                                                             |                                                                               | 0.070613487                                                                                                 |                                                             | -0.37217808                                                                                                                   | -0.268                                                               | -0.067642383                                                                                                                            |                                                                              |
| t-statistic                                                                                                                                       | -1.5201826                                                                                                                                     | 0.881                                                       | 0.18291865                                                                                                                            | 0.450                                                                | 0.55574051                                                                                                                                | 0.302                                                       | 0.18291865                                                                                                             | 0.450                                                                | -2.3658691                                                                                                   | 0.956                                     | 0.55574051                                                                                                                     | 0302                                                        | -2.3658691                                                                                                    | ),958                                                                | -2.3138140                                                                                                                          | 0,957                                                                                  | 0.11795206                                                                                                                  | 0.445                                                                              | -1.0141729                                                                                                                  | 0.786                                                                | -1.9359819                                                                                                                           | 0.934                                                                | -1.0141729                                                                                                                | 0,759                                                                | -1.9359819                                                                                                             | 0.954                                                                | -1.3130090                                                                                                              | 0.812                                                                         | 0.26540615                                                                                                  | 0.427                                                       | -2.3658691                                                                                                                    | 0.954                                                                | -0.67838979                                                                                                                             | 0.690                                                                        |
| R-squared                                                                                                                                         | 0.0653774                                                                                                                                      |                                                             | 72709514                                                                                                                              |                                                                      | 0.005206194                                                                                                                               |                                                             | 72769514                                                                                                               |                                                                      | 0.14004513                                                                                                   |                                           | 0.005206194                                                                                                                    |                                                             | 0.14004513                                                                                                    |                                                                      | 0.17624865                                                                                                                          |                                                                                        | 39625967                                                                                                                    |                                                                                    | 0.023169081                                                                                                                 |                                                                      | 0.098601652                                                                                                                          | _                                                                    | 0.023169081                                                                                                               |                                                                      | 0.098601652                                                                                                            | _                                                                    | 0.063877317                                                                                                             |                                                                               | 0.001581451                                                                                                 |                                                             | 0.14004513                                                                                                                    | 0,016                                                                | 0.003599572                                                                                                                             |                                                                              |
| Out-of-sample                                                                                                                                     | 1.0011/01                                                                                                                                      | A 101                                                       | 14/30503                                                                                                                              | 0.504                                                                | 1.001.0110                                                                                                                                | 0.001                                                       | 1.0(30303                                                                                                              | 4504                                                                 | AA/241198                                                                                                    | 4.074                                     | 1.001.0110                                                                                                                     | 4.002                                                       |                                                                                                               |                                                                      | 1.0100050                                                                                                                           | 0.002                                                                                  | 1.00077/0                                                                                                                   | 6.407                                                                              | 10111404                                                                                                                    | 0.000                                                                |                                                                                                                                      | 88//                                                                 | 1.01104.04                                                                                                                | 4.111                                                                |                                                                                                                        | AA//                                                                 | 1 APPROAD                                                                                                               | 0.510                                                                         | 1 (01/000                                                                                                   | 0.540                                                       | AA/7/1119                                                                                                                     | 0.0/0                                                                | 1.00/02//                                                                                                                               | 6.404                                                                        |
| Iner's U                                                                                                                                          | 1.0011681                                                                                                                                      | 0.181                                                       | 1,0639/93                                                                                                                             | 0.794                                                                | 1.0814119                                                                                                                                 | 0,895                                                       | 1,0539/95                                                                                                              | 0.794                                                                | 0,91041177                                                                                                   | 0.039                                     | 1.0614119                                                                                                                      | 0.895                                                       | 0.96041177                                                                                                    | 0,055                                                                | 1.0458978                                                                                                                           | 0.995                                                                                  | 1.0287768                                                                                                                   | 0.485                                                                              | 1.0115494                                                                                                                   | 0.295                                                                | 03/49/06/                                                                                                                            | UJJ66                                                                | 1.0113494                                                                                                                 | 0,515                                                                | 0.9/49/06/                                                                                                             | UJUbb                                                                | 1.039990                                                                                                                | 0.712                                                                         | 1.0516288                                                                                                   | 0,540                                                       | 0.96041177                                                                                                                    | 0.040                                                                | 1.0265046                                                                                                                               | 0.484                                                                        |
| NUC                                                                                                                                               | 9 2019656                                                                                                                                      | 0.155                                                       | 0.129/21                                                                                                                              | 0.021                                                                | ·21.240691                                                                                                                                | 0.075                                                       | 0.129/21                                                                                                               | 0.794                                                                | 13,/12433                                                                                                    | 0.037                                     | 12/002/2                                                                                                                       | 0.095                                                       | 13,/12433                                                                                                     | 0.030                                                                | -00.490.007                                                                                                                         | 0.990                                                                                  | -10.370338                                                                                                                  | 0.460                                                                              | -4.1730001<br>2.00/0764                                                                                                     | 0.225                                                                | 7,//05283<br>13.150201                                                                                                               | 0,000                                                                | 4.1938081                                                                                                                 | 0.010                                                                | 9,7765283                                                                                                              | 0,000                                                                | -18//0111<br>5 29(72)0                                                                                                  | 0.712                                                                         | 11,011118                                                                                                   | 0,340                                                       | 10,/12400                                                                                                                     | 0.025                                                                | -9,000110                                                                                                                               | 0.464                                                                        |
| ENC-IICW                                                                                                                                          | 0.00100.00                                                                                                                                     | 0.133                                                       | •7,200001                                                                                                                             | 0,701                                                                | •12,002,002                                                                                                                               | 0313                                                        | •7.230001                                                                                                              | 0,701                                                                | J0101/300                                                                                                    | 100.04                                    | •12,002,002                                                                                                                    | 0,713                                                       | JU.01/300                                                                                                     | 0,000                                                                | 10.00000                                                                                                                            | 0.002                                                                                  | •121002/0                                                                                                                   | V,JIJ                                                                              | 3,0040704                                                                                                                   | 0,601                                                                | IJ.1/7671                                                                                                                            | 0,070                                                                | J.WAM/04                                                                                                                  | 0,230                                                                | 13,177471                                                                                                              | 0,070                                                                | J.J00/J02                                                                                                               | 0,170                                                                         | -4.0.7701                                                                                                   | V,122                                                       | JU.01/300                                                                                                                     | 0,143                                                                | •1,0042127                                                                                                                              | 0.407                                                                        |
| 13<br>In.comole                                                                                                                                   |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               | -                                                                    |                                                                                                                                         |                                                                              |
| Slone coefficient                                                                                                                                 | -0.45675349                                                                                                                                    |                                                             | 0.06827545                                                                                                                            |                                                                      | 0.012672886                                                                                                                               |                                                             | 0.06877545                                                                                                             |                                                                      | -0 54798489                                                                                                  |                                           | 0.012672886                                                                                                                    |                                                             | 0 54798489                                                                                                    |                                                                      | -0.48100748                                                                                                                         |                                                                                        | -0.053091867                                                                                                                |                                                                                    | -0 37019611                                                                                                                 |                                                                      | -0.66128928                                                                                                                          | -                                                                    | -0 37019611                                                                                                               |                                                                      | -0.66128928                                                                                                            | -                                                                    | -0 68394359                                                                                                             |                                                                               | 016061796                                                                                                   |                                                             | -0 54798489                                                                                                                   | -05%                                                                 | -0.067642383                                                                                                                            |                                                                              |
| t-statistic                                                                                                                                       | -1 5455788                                                                                                                                     | 0.868                                                       | 0 18748477                                                                                                                            | 0.434                                                                | 0.66312779                                                                                                                                | 0307                                                        | 0 18748477                                                                                                             | 0.434                                                                | -2.1106955                                                                                                   | 0931                                      | 0.66312279                                                                                                                     | 0 307                                                       | -2 1106955                                                                                                    | 1 978                                                                | .7.7466840                                                                                                                          | 0946                                                                                   | -0.21776870                                                                                                                 | 0.563                                                                              | -0.88677774                                                                                                                 | 0722                                                                 | -1 8851543                                                                                                                           | 0914                                                                 | -0.88677224                                                                                                               | 0.737                                                                | -1.8851543                                                                                                             | 0 914                                                                | -1 5818655                                                                                                              | 0.854                                                                         | 035344087                                                                                                   | 0391                                                        | -21106955                                                                                                                     | 0.970                                                                | -0.85813184                                                                                                                             | 0716                                                                         |
| R-souared                                                                                                                                         | 0.0840909                                                                                                                                      |                                                             | 0.001143743                                                                                                                           |                                                                      | 0.009311453                                                                                                                               |                                                             | 0.001143743                                                                                                            | 0,101                                                                | 0.14081485                                                                                                   |                                           | 0.009311453                                                                                                                    |                                                             | 0.14081485                                                                                                    |                                                                      | 0.1758035                                                                                                                           | 6,710                                                                                  | 0.001692236                                                                                                                 | 0.000                                                                              | 0.023958562                                                                                                                 |                                                                      | 0.12430409                                                                                                                           |                                                                      | 0.023938562                                                                                                               |                                                                      | 0.12430409                                                                                                             |                                                                      | 0.11458218                                                                                                              |                                                                               | 0.003734403                                                                                                 |                                                             | 0.14081485                                                                                                                    | 0.064                                                                | 0.003599572                                                                                                                             |                                                                              |
| Out-of-sample                                                                                                                                     |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Theil's U                                                                                                                                         | 0.99522523                                                                                                                                     | 0.167                                                       | 1.0916441                                                                                                                             | 0.759                                                                | 1.0942587                                                                                                                                 | 0,835                                                       | 1.0916441                                                                                                              | 0.759                                                                | 0.95289017                                                                                                   | 0.054                                     | 1.0942587                                                                                                                      | 0.835                                                       | 0.95289017                                                                                                    | 0.049                                                                | 1.1994639                                                                                                                           | 0.935                                                                                  | 1.0353546                                                                                                                   | 0.458                                                                              | 1,0200915                                                                                                                   | 0.356                                                                | 0.97046581                                                                                                                           | 0,096                                                                | 1.0200915                                                                                                                 | 0.353                                                                | 0.97046581                                                                                                             | 0,096                                                                | 1.058763                                                                                                                | 0.452                                                                         | 1.0521983                                                                                                   | 0,589                                                       | 0.95289017                                                                                                                    | 0,058                                                                | 1.0258536                                                                                                                               | 0.381                                                                        |
| MSE-F                                                                                                                                             | 1.7601615                                                                                                                                      | 0.167                                                       | -29.436158                                                                                                                            | 0.759                                                                | -30.169147                                                                                                                                | 0.835                                                       | -29.436158                                                                                                             | 0.759                                                                | 18,541922                                                                                                    | 0.054                                     | -30,169147                                                                                                                     | 0.835                                                       | 18,541922                                                                                                     | 0.049                                                                | -55.806063                                                                                                                          | 0.935                                                                                  | -12.284526                                                                                                                  | 0.458                                                                              | -7.1376747                                                                                                                  | 0.356                                                                | 11,307967                                                                                                                            | 0,096                                                                | -7.1376747                                                                                                                | 0.353                                                                | 11,307967                                                                                                              | 0,096                                                                | ·12.456449                                                                                                              | 0.452                                                                         | -17.706451                                                                                                  | 0,589                                                       | 18,541922                                                                                                                     | 0,058                                                                | -9.1077271                                                                                                                              | 0.381                                                                        |
| ENC-new                                                                                                                                           | 8,9586295                                                                                                                                      | 0.165                                                       | -12,5344                                                                                                                              | 0.915                                                                | -13.32161                                                                                                                                 | 0.943                                                       | -12.5344                                                                                                               | 0,915                                                                | 28,286819                                                                                                    | 0.55                                      | -13.32161                                                                                                                      | 0.943                                                       | 28,286819                                                                                                     | 0.044                                                                | 19241071                                                                                                                            | 0,098                                                                                  | -2.3783989                                                                                                                  | 0.519                                                                              | 0.26317746                                                                                                                  | 0.389                                                                | 13.447836                                                                                                                            | 0.141                                                                | 0.26317746                                                                                                                | 0.390                                                                | 13.447836                                                                                                              | 0,141                                                                | 11.885902                                                                                                               | 0.127                                                                         | -7.8192523                                                                                                  | 0,797                                                       | 28,286819                                                                                                                     | 0,065                                                                | 1,1179876                                                                                                                               | 0,439                                                                        |
| 20                                                                                                                                                |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| In-sample                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      |                                                                                                                                           |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Slope coefficient                                                                                                                                 | -0.64015525                                                                                                                                    |                                                             | 0.12308137                                                                                                                            |                                                                      | 0.020751861                                                                                                                               |                                                             | 0.12308137                                                                                                             |                                                                      | 0.70844764                                                                                                   |                                           | 0.020751861                                                                                                                    |                                                             | 0.70844764                                                                                                    |                                                                      | -0.61069996                                                                                                                         |                                                                                        | -0.14546887                                                                                                                 |                                                                                    | -0.48535017                                                                                                                 |                                                                      | 0.87008899                                                                                                                           |                                                                      | -0.48535017                                                                                                               |                                                                      | 0.87016899                                                                                                             |                                                                      | -1.0282656                                                                                                              |                                                                               | 0,29772775                                                                                                  |                                                             | -0.70844764                                                                                                                   |                                                                      | -0.89606413                                                                                                                             |                                                                              |
| t-statistic                                                                                                                                       | -1.5818121                                                                                                                                     | 0.841                                                       | 0,22907964                                                                                                                            | 0.451                                                                | 0.78003496                                                                                                                                | 0.325                                                       | 0.22907964                                                                                                             | 0.451                                                                | 1,9249687                                                                                                    | 0.887                                     | 0.78003496                                                                                                                     | 0325                                                        | 1,9249687                                                                                                     | ),894                                                                | 2,1456795                                                                                                                           | 0,933                                                                                  | -0,47572                                                                                                                    | 0.645                                                                              | -0.81452995                                                                                                                 | 0,699                                                                | -1,7359363                                                                                                                           | 0.896                                                                | -0.81452995                                                                                                               | 0.684                                                                | -1,7359363                                                                                                             | 0.8%                                                                 | -1,9272273                                                                                                              | 0.890                                                                         | 0.45849572                                                                                                  | 0350                                                        | -1.9249687                                                                                                                    | 0.898                                                                | -1,0105099 (                                                                                                                            | ).722                                                                        |
| R-squared                                                                                                                                         |                                                                                                                                                |                                                             |                                                                                                                                       |                                                                      | 0.015535(35                                                                                                                               |                                                             | 0.002141044                                                                                                            |                                                                      | 0.13713053                                                                                                   |                                           | 0.015525685                                                                                                                    |                                                             | 0.13713053                                                                                                    |                                                                      | 0.17299906                                                                                                                          |                                                                                        | 0.007657731                                                                                                                 |                                                                                    | 0.023615262                                                                                                                 |                                                                      | 0.12671008                                                                                                                           |                                                                      | 0.023615262                                                                                                               |                                                                      | 0.12671008                                                                                                             |                                                                      | 0,15867206                                                                                                              |                                                                               | 0.007311012                                                                                                 |                                                             | 0.13713053                                                                                                                    |                                                                      | 0.053233601                                                                                                                             |                                                                              |
| Out-of-sample                                                                                                                                     | 0.0959443                                                                                                                                      |                                                             | 0.002141044                                                                                                                           |                                                                      | 0.000020000                                                                                                                               |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               |                                                                      |                                                                                                                                     |                                                                                        |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
|                                                                                                                                                   | 0.0959443                                                                                                                                      |                                                             | 0.002141044                                                                                                                           |                                                                      | 0,00,00,000                                                                                                                               |                                                             |                                                                                                                        |                                                                      |                                                                                                              |                                           |                                                                                                                                |                                                             |                                                                                                               | _                                                                    |                                                                                                                                     | _                                                                                      |                                                                                                                             |                                                                                    |                                                                                                                             |                                                                      |                                                                                                                                      |                                                                      |                                                                                                                           |                                                                      |                                                                                                                        |                                                                      |                                                                                                                         |                                                                               |                                                                                                             |                                                             |                                                                                                                               |                                                                      |                                                                                                                                         |                                                                              |
| Theil's U                                                                                                                                         | 0.0959443                                                                                                                                      | 0.158                                                       | 0.002141044                                                                                                                           | 0.739                                                                | 1.1080027                                                                                                                                 | 0.793                                                       | 1.1159536                                                                                                              | 0,739                                                                | 0.94882696                                                                                                   | 0.089                                     | 1.1050027                                                                                                                      | 0.793                                                       | 0.94882696                                                                                                    | 0.081                                                                | 1.1773749                                                                                                                           | 0.856                                                                                  | 1.0500953                                                                                                                   | 0.354                                                                              | 1,0266172                                                                                                                   | 0.344                                                                | 0.97561548                                                                                                                           | 0.127                                                                | 1.0266172                                                                                                                 | 0.354                                                                | 0.97561548                                                                                                             | 0.127                                                                | 0.99838374                                                                                                              | 0.202                                                                         | 1.0722161                                                                                                   | 0.609                                                       | 0.94882696                                                                                                                    | 0.073                                                                | 1.0182683                                                                                                                               | 0315                                                                         |
| Theils U<br>MSE-F                                                                                                                                 | 0.0959443                                                                                                                                      | 0.158                                                       | 0.002141044                                                                                                                           | 0.739<br>0.739                                                       | 1.1080027<br>-31.692421                                                                                                                   | 0.793                                                       | 1.1159536                                                                                                              | 0.739<br>0.739                                                       | 0.94882696                                                                                                   | 0.089                                     | 1.1080027<br>-31.692421                                                                                                        | 0.793                                                       | 0.94882696                                                                                                    | 0.081                                                                | 1.1773749<br>-49.592481                                                                                                             | 0.856                                                                                  | 1.0500953                                                                                                                   | 0.354<br>0.354                                                                     | 1.0266172<br>-9.1103775                                                                                                     | 0.344<br>0.344                                                       | 0.97561548<br>9.0090568                                                                                                              | 0.127                                                                | 1.0266172<br>-9.1103775                                                                                                   | 0.354<br>0.354                                                       | 0.97561548<br>9.0090568                                                                                                | 0.127<br>0.127                                                       | 0.99838374                                                                                                              | 0.202<br>0.202                                                                | 1.0722161<br>-23.169926                                                                                     | 0.609<br>0.609                                              | 0.94882696<br>19.71789                                                                                                        | 0.073                                                                | 1.0182683<br>-6.3295571                                                                                                                 | 0315<br>0315                                                                 |
| Theils U<br>MSE-F<br>ENC-new                                                                                                                      | 0.0959443<br>0.98942269<br>3.8261194<br>8.9490195                                                                                              | 0.158<br>0.158<br>0.217                                     | 0.002141044<br>1.1159536<br>-35.068581<br>-14.770897                                                                                  | 0.739<br>0.739<br>0.892                                              | 1.1030027<br>-31.692421<br>-13.944994                                                                                                     | 0.793<br>0.793<br>0.911                                     | 1.1159536<br>-35.068581<br>-14.770897                                                                                  | 0.739<br>0.739<br>0.892                                              | 0.94882696<br>19.71789<br>23.760626                                                                          | 0.089<br>0.089<br>0.123                   | 1.1080027<br>-31 <i>6</i> 92421<br>-13.944994                                                                                  | 0.793<br>0.793<br>0.911                                     | 0.94882696<br>19.71789<br>23.760626                                                                           | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>-49.592481<br>18.778986                                                                                                | 0.856<br>0.856<br>0.124                                                                | 1.0300953<br>-10.248969<br>-1.2132114                                                                                       | 0.354<br>0.354<br>0.400                                                            | 1.0266172<br>-9.1103775<br>-1.952674                                                                                        | 0.344<br>0.344<br>0.457                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                                 | 0.127<br>0.127<br>0.199                                              | 1.0266172<br>-9.1103775<br>-1.952674                                                                                      | 0.354<br>0.354<br>0.445                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                   | 0.127<br>0.127<br>0.199                                              | 0.99838374<br>0.5767852<br>19.594143                                                                                    | 0.202<br>0.202<br>0.133                                                       | 1.0722161<br>-23.169926<br>-9.9782772                                                                       | 0.609<br>0.609<br>0.780                                     | 0.94882696<br>19.71789<br>23.760626                                                                                           | 0.073<br>0.073<br>0.097                                              | 1.0182683<br>-6.3295571<br>0.099546079                                                                                                  | 0315<br>0315<br>038                                                          |
| Theils U<br>MSEF<br>ENC-new<br>25                                                                                                                 | 0.0959443                                                                                                                                      | 0.158<br>0.158<br>0.217                                     | 0.002141044                                                                                                                           | 0.739<br>0.739<br>0.892                                              | 0.00.302.0033<br>1.1031027<br>-31.692421<br>-13.944994                                                                                    | 0.793<br>0.793<br>0.911                                     | 1.1159536<br>-35.068581<br>-14.770897                                                                                  | 0.739<br>0.739<br>0.892                                              | 0.94882696<br>19.71789<br>23.760626                                                                          | 0.089<br>0.089<br>0.123                   | 1.1050027<br>-31.692421<br>-13.944994                                                                                          | 0.793<br>0.793<br>0.911                                     | 0.94882696<br>19.71789<br>23.760636                                                                           | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>-49.592481<br>18.778986                                                                                                | 0.856<br>0.856<br>0.124                                                                | 1.0510953<br>-10.248969<br>-1.2132114                                                                                       | 0.354<br>0.354<br>0.400                                                            | 1.0266172<br>-9.1103775<br>-1.952674                                                                                        | 0.344<br>0.344<br>0.457                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                                 | 0.127<br>0.127<br>0.199                                              | 1.0266172<br>-9.1103775<br>-1.952674                                                                                      | 0.354<br>0.354<br>0.445                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                   | 0.127<br>0.127<br>0.199                                              | 0.99838374<br>0.5767852<br>19.594143                                                                                    | 0.202<br>0.202<br>0.133                                                       | 1.0722161<br>-23.169926<br>-9.9782772                                                                       | 0.609<br>0.609<br>0.790                                     | 0.94882696<br>19.71789<br>23.760626                                                                                           | 0.073<br>0.073<br>0.097                                              | 1.0182683<br>-6.3295571<br>0.099546079                                                                                                  | 0315<br>0315<br>038                                                          |
| Theils U<br>MSEF<br>ENC-new<br>25<br>In-sample                                                                                                    | 0.0959443                                                                                                                                      | 0.158<br>0.158<br>0.217                                     | 0.002141044                                                                                                                           | 0.739<br>0.739<br>0.892                                              | 0.00.332.3033<br>1.1030027<br>-31.692421<br>-13.944994                                                                                    | 0.793<br>0.793<br>0.911                                     | 1.1159536<br>-35.068581<br>-14.770897                                                                                  | 0.739<br>0.739<br>0.892                                              | 0.94882696<br>19.71789<br>23.760626                                                                          | 0.089<br>0.089<br>0.123                   | 1.1080027<br>-31.692421<br>-13.944994                                                                                          | 0.793<br>0.793<br>0.911                                     | 0.94882696<br>19.71789<br>23.760636                                                                           | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>-49.592481<br>18.778986                                                                                                | 0.856<br>0.856<br>0.124                                                                | 1.0300953<br>-10.248969<br>-1.2132114                                                                                       | 0.354<br>0.354<br>0.400                                                            | 1.0266172<br>-9.1103775<br>-1.952674                                                                                        | 0.344<br>0.344<br>0.457                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                                 | 0.127<br>0.127<br>0.199                                              | 1.0266172<br>-9.1103775<br>-1.952674                                                                                      | 0.354<br>0.354<br>0.445                                              | 0.97561548<br>9.0090568<br>10.205682                                                                                   | 0.127<br>0.127<br>0.199                                              | 0.99838374<br>0.5767852<br>19.594143                                                                                    | 0.202<br>0.202<br>0.133                                                       | 1.0722160<br>-23.169926<br>-9.9782772                                                                       | 0.609<br>0.609<br>0.780                                     | 0.94882696<br>19.71789<br>23.760626                                                                                           | 0,073<br>0,073<br>0,097                                              | 1.0182683<br>-6.3295571<br>0.099546079                                                                                                  | 0315<br>0315<br>0388                                                         |
| Theils U<br>MSEF<br>ENC-new<br>25<br>In-sample<br>Slope coefficient                                                                               | 0.0959443<br>0.98942269<br>3.8261194<br>8.9490195<br>                                                                                          | 0.158<br>0.158<br>0.217                                     | 0.002141044 1.1159536 -35.068581 -14.770897 0.29294879 0.41846244                                                                     | 0.739<br>0.739<br>0.892                                              | 0.081733772<br>0.0897327                                                                                                                  | 0.793<br>0.793<br>0.911                                     | 1.1159536<br>-35.068581<br>-14.770897<br>0.29294879                                                                    | 0.739<br>0.739<br>0.892                                              | 0.94882696<br>19.71789<br>23.760626<br>-0.8271448                                                            | 0.089<br>0.089<br>0.123                   | 1.1080027<br>-31.692421<br>-13.944994<br>                                                                                      | 0.793<br>0.793<br>0.911                                     | 0.94882696<br>19.71789<br>23.760626<br>-0.8271448                                                             | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>49.592481<br>18.778986<br>40.6997069                                                                                   | 0.856<br>0.856<br>0.124                                                                | 1.0300953<br>-10.248969<br>-1.2132114<br>-0.22667626                                                                        | 0.354<br>0.354<br>0.400                                                            | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>0.65056012                                                           | 0.344<br>0.344<br>0.457                                              | 0.97561548<br>9.0090568<br>10.205682<br>-1.0529303<br>1.054402                                                                       | 0.127<br>0.127<br>0.199                                              | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>0.65066012                                                         | 0.354<br>0.354<br>0.445                                              | 0.97561548<br>9.0090568<br>10.205682<br>-1.0529303<br>1.6054402                                                        | 0.127<br>0.127<br>0.199                                              | 0.99838374<br>0.5767852<br>19.594143<br>-1.3512329<br>1.3512329                                                         | 0.202<br>0.202<br>0.133                                                       | 1.0722160<br>-23.169926<br>-9.9782772<br>0.49921292                                                         | 0.609<br>0.609<br>0.780                                     | 0.94882696<br>19.71789<br>23.760626<br>-0.8271448                                                                             | 0.013<br>0.013<br>0.097                                              | 1.0182683<br>-6.3295571<br>0.099546079<br>-1.2834386                                                                                    | 0315<br>0315<br>0388                                                         |
| Theils U<br>MSEF<br>ENC-new<br>25<br>In-sample<br>Slope coefficient<br>t-statistic<br>R-construct                                                 | 0.0559443<br>0.98942269<br>3.8361194<br>8.9490195<br>                                                                                          | 0.158<br>0.158<br>0.217<br>0.850                            | 0.002141044<br>1.1159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.019774091                                       | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.081732722<br>0.081733772<br>0.081733772                                                                                                 | 0.793<br>0.793<br>0.911<br>0.258                            | 1.1159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.017774291                                       | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.946820696<br>19.71789<br>23.766626<br>-<br>0.8271448<br>-1.7519716<br>0.12712024                           | 0.089<br>0.089<br>0.123<br>0.844          | 1.1080027<br>-31.692421<br>-13.94494<br>0.031733772<br>0.92807337                                                              | 0.793<br>0.793<br>0.911<br>0.258                            | 0.94882696<br>19.71789<br>23.760626<br>-0.8271448<br>-1.7519716<br>0.12013924                                 | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>-49.592481<br>18.778986<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.856<br>0.856<br>0.124<br>0.893                                                       | 1.0300953<br>-10.243969<br>-1.2132114<br>-0.22667626<br>-0.64042106                                                         | 0.354<br>0.354<br>0.400<br>0.637                                                   | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>-0.65956012<br>-0.01401042                                           | 0.344<br>0.344<br>0.457<br>0.665                                     | 0.97561548<br>9.0091568<br>10.205682<br>-1.0529308<br>-1.0054493<br>0.12054493                                                       | 0.127<br>0.127<br>0.199<br>0.854                                     | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>-0.65956012<br>0.06401042                                          | 0.354<br>0.354<br>0.445<br>0.662                                     | 097561548<br>90090568<br>10205682<br>-1.0529303<br>-1.6054493<br>0.12087460                                            | 0.127<br>0.127<br>0.199<br>0.854                                     | 0.99838374<br>0.5767852<br>19.594143<br>-1.3512329<br>-2.3547582<br>0.1986744                                           | 0.202<br>0.202<br>0.133<br>0.904                                              | 1.0722161<br>-23.169926<br>-9.9782772<br>0.9782772<br>0.49921292<br>0.59850839<br>0.013365307               | 0.609<br>0.609<br>0.780<br>0.344                            | 0.94882696<br>19.71789<br>23.760626<br>-0.8271448<br>-1.7519716<br>0.12913024                                                 | 0,073<br>0,073<br>0,097<br>0,097                                     | 1.0182683<br>-6.3295571<br>0.099546079<br>-1.2834386<br>-1.1846285<br>0.0714541072                                                      | 0315<br>0315<br>0388                                                         |
| Theils U<br>MSEF<br>ENC-new<br>25<br>In-sample<br>Slope coefficient<br>t-statistic<br>R-squared<br>Out-af-course                                  | 0.0959443<br>0.98942269<br>3.8361194<br>8.9490195<br>                                                                                          | 0.158<br>0.158<br>0.217<br>0.850                            | 0.002141044<br>111159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831                                       | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.0813123633<br>1.1030027<br>-31.692421<br>-13.944994<br>0.081733772<br>0.92807337<br>0.025335333                                         | 0.793<br>0.793<br>0.911<br>0.911                            | 1.1159536<br>-35.068581<br>-14.710897<br>0.29294879<br>0.41810204<br>0.007776831                                       | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.94882696<br>19.71789<br>23.766626<br>-<br>-0.8271448<br>-1.7519716<br>0.12213934                           | 0.089<br>0.089<br>0.123<br>0.844          | 1.1080027<br>-31.692421<br>-13.944994<br>0.031733772<br>0.92807337<br>0.025335333                                              | 0.793<br>0.793<br>0.911<br>0.258                            | 0.94882696<br>19.7.1789<br>23.760636<br>-<br>-<br>-0.8271448<br>-1.7519716<br>0.12213934                      | 0.081<br>0.081<br>0.119                                              | 1.1773749<br>-49.592481<br>18.778986<br>-<br>-<br>-<br>0.6997069<br>-<br>1.9836101<br>0.15316367                                    | 0.856<br>0.856<br>0.124<br>0.893                                                       | 1.0300953<br>-10.248969<br>-1.2132114<br>-0.22667626<br>-0.64042106<br>0.012369168                                          | 0.354<br>0.354<br>0.400<br>0.637                                                   | 1.0260172<br>-9.1103775<br>-1.952674<br>-0.50627975<br>-0.55956012<br>0.016941943                                           | 0.344<br>0.344<br>0.457<br>0.665                                     | 0.97561548<br>9.0091568<br>10.205682<br>-1.0529303<br>-1.6054493<br>0.12287469                                                       | 0.127<br>0.127<br>0.199<br>0.854                                     | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50627975<br>-0.65956012<br>0.016941943                                         | 0.354<br>0.354<br>0.445<br>0.662                                     | 0.97561548<br>9.0090568<br>10.205682<br>-1.0529303<br>-1.6054493<br>0.12287469                                         | 0.127<br>0.127<br>0.199<br>0.854                                     | 0.99838374<br>0.5767852<br>19.594143<br>-1.3512329<br>-2.3547582<br>0.1886204                                           | 0.202<br>0.202<br>0.133<br>0.904                                              | 1.0722160<br>-23.169926<br>-9.9782772<br>0.49921292<br>0.59850839<br>0.013265297                            | 0.609<br>0.609<br>0.780                                     | 0.94882696<br>19.71789<br>23.760626<br>-<br>-<br>0.8271448<br>-1.7519716<br>0.12213934                                        | 0.073<br>0.073<br>0.097<br>0.097                                     | 1.0182683<br>-6.3295571<br>0.099546079<br>-1.2834386<br>-1.1846285<br>0.074241923                                                       | 0315<br>0315<br>0388<br>0388                                                 |
| Theils U<br>MSE-F<br>ENC-new<br>25<br>In-sample<br>Slope coefficient<br>t-statistic<br>R-squared<br>Out-of-sample<br>Theils 11                    | 0.0959443<br>0.98942269<br>3.8361194<br>8.9490195<br>                                                                                          | 0.158<br>0.158<br>0.217<br>0.850                            | 0.002141044<br>1.1159536<br>-35.068581<br>-14.7700897<br>0.29294879<br>0.41810034<br>0.007776831<br>1.163441                          | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.0817323633<br>1.1030027<br>-31.092421<br>-13.944994<br>0.081733772<br>0.92807337<br>0.025335333<br>1.1019018                            | 0.793 0.793 0.793 0.911 0.258 0.603                         | 1.1159536<br>-35.068381<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831<br>1.163401                           | 0.739<br>0.739<br>0.892<br>0.406                                     | 0.94882696<br>19.71789<br>23.766626<br>-<br>0.8271448<br>-1.7519716<br>0.12213934<br>0.95550750              | 0.089 0.123 0.844 0.144                   | 1.1080027<br>-31.692421<br>-13.944994<br>0.031733772<br>0.92807337<br>0.025335333<br>1.1010118                                 | 0.793<br>0.793<br>0.911<br>0.258                            | 0.9.4882.696<br>19.71789<br>23.760005<br>                                                                     | 0.081<br>0.081<br>0.119<br>0.861                                     | 1.1773749<br>-49.592481<br>18.778986<br>-0.6997069<br>-1.9836101<br>0.15316367<br>-1.1645121                                        | 0.856<br>0.856<br>0.124<br>0.893                                                       | 1.0310953<br>-10.248969<br>-1.2132114<br>-0.22667626<br>-0.64042106<br>0.012369168                                          | 0.354<br>0.354<br>0.400<br>0.637                                                   | 1.0260172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>-0.50956012<br>0.016941943<br>1.01364777                             | 0.344<br>0.344<br>0.457<br>0.665                                     | 0.97561548<br>9.0091568<br>10.205682<br>                                                                                             | 0.127 0.127 0.199 0.854 0.854 0.1,00                                 | 1.0260172<br>-9.1103775<br>-1.952674<br>-0.506207975<br>-0.65956012<br>0.016941943<br>1.0436077                           | 0.354<br>0.354<br>0.445<br>0.662                                     | 0.97561548<br>9.009568<br>10.205682<br>-1.0529303<br>-1.6054493<br>0.1287469                                           | 0.127<br>0.127<br>0.199<br>0.854                                     | 0.99888374<br>0.5767852<br>19.594143<br>-<br>1.3512329<br>-2.3547582<br>0.1886204<br>0.95077775                         | 0.202<br>0.202<br>0.133<br>0.904                                              | 1.0722161<br>-23.169926<br>-9.9782772<br>                                                                   | 0.609<br>0.609<br>0.780<br>0.344                            | 0.94882696<br>19.71789<br>23.760626<br>                                                                                       | 0.073 0.073 0.097 0.097 0.852 0.852 0.105                            | 1.0183683<br>-6.3295571<br>0.099546079<br>-1.2834386<br>-1.1846285<br>0.074241923<br>1.01424091                                         | 0315<br>0315<br>0388                                                         |
| Theils U<br>MSE-F<br>ENC-new<br>25<br>In-sample<br>Slope coefficient<br>t-statistic<br>R-squared<br>Out-of-sample<br>Theils U<br>MSE-F            | 0.0959443<br>0.9894269<br>3.8261194<br>8.9490195<br>-<br>0.79444624<br>-1.5792336<br>0.09711739<br>0.98640418<br>4.8018566                     | 0.158<br>0.158<br>0.217<br>0.850<br>0.850<br>0.182<br>0.182 | 0.002141044<br>1.1159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831<br>1.163941<br>-45.301985             | 0.739<br>0.739<br>0.892<br>0.406<br>0.406                            | 0.003523633<br>1.1030027<br>-31.692421<br>-13.944994<br>0.081733772<br>0.92807337<br>0.025335333<br>1.1019118<br>-30.50149                | 0.793 0.793 0.793 0.793 0.911 0.258 0.693 0.693 0.693       | 1.1159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831<br>1.163941<br>-45.301985             | 0,739 0,739 0,892 0,406 0,406 0,787 0,787                            | 0.94882696<br>19.71789<br>23.766626<br>-<br>0.8271448<br>-1.7519716<br>0.12213934<br>0.95550759<br>16.486301 | 0.089<br>0.123<br>0.123<br>0.844<br>0.144 | 1.1080027<br>-31.692421<br>-13.944994<br>0.081733772<br>0.92807337<br>0.025335333<br>-<br>1.1019118<br>-30.55049               | 0.793<br>0.793<br>0.911<br>0.258<br>0.693<br>0.693          | 0.94882696<br>19.71789<br>23.760626<br>-<br>-0.8271448<br>-1.7519716<br>0.12213934<br>0.95550759<br>16.486701 | 0.081 0.081 0.119 0.120 0.120 0.170                                  | 1.1773749<br>-49.592481<br>18.778986<br>                                                                                            | 0.856<br>0.856<br>0.124<br>0.893<br>0.893<br>0.770<br>0.770                            | 1.0300953<br>-10.248969<br>-1.2132114<br>-0.22667626<br>-0.64042106<br>0.012369168<br>-1.021196<br>-7.107057                | 0.354<br>0.354<br>0.400<br>0.637<br>0.637<br>0.301<br>0.301                        | 1.0260172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>-0.65956012<br>-0.016941943<br>-1.0436022<br>-1.4154045              | 0.344 0.344 0.457 0.665 0.390 0.390                                  | 0.97561548<br>9.0091568<br>10.205682<br>-<br>1.0529305<br>-1.0524930<br>0.12287469<br>0.98284608<br>6.0915453                        | 0.127<br>0.127<br>0.199<br>0.854<br>0.854<br>0.149<br>0.149          | 1.0266172<br>-9.1103775<br>-1.952674<br>-0.50627975<br>-0.65956012<br>0.01.6941943<br>-1.0456022<br>-1.4154045            | 0.354<br>0.354<br>0.445<br>0.662<br>0.662<br>0.432<br>0.432          | 0,97561548<br>9,0095688<br>10,205682<br>-1,0529303<br>-1,6054493<br>0,12287469<br>0,98284608<br>6,0915453              | 0.127<br>0.127<br>0.199<br>0.854<br>0.854<br>0.149<br>0.149          | 0.99888374<br>0.5767852<br>19.594143<br>-<br>-<br>1.3512339<br>-<br>2.3547582<br>0.1886204<br>-<br>0.95022225<br>18.691 | 0.202<br>0.202<br>0.133<br>0.904<br>0.904<br>0.097<br>0.097                   | 1.0722160<br>-23.169926<br>-9.9782772<br>0.49921292<br>0.59850839<br>0.013265297<br>1.0932673<br>-28.258397 | 0.609<br>0.609<br>0.780<br>0.380<br>0.344<br>0.616          | 0.94882696<br>19.71789<br>23.760626<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.073<br>0.073<br>0.097<br>0.097<br>0.852<br>0.852<br>0.105<br>0.105 | 1.002083<br>-45329571<br>0.099546079<br>-1.2054986<br>-1.2054986<br>0.074241923<br>1.0054801<br>-1.806587                               | 0315<br>0315<br>0388<br>0388<br>0388<br>0388<br>0388<br>0251<br>0251         |
| Theils U<br>MSE-F<br>ENC-new<br>25<br>In-sample<br>Slope coefficient<br>t-statistic<br>R-squared<br>Out-of-sample<br>Theils U<br>MSE-F<br>ENC-new | 0.0959443<br>0.98942269<br>3.8361194<br>8.9490195<br>-<br>-<br>-0.79444624<br>-1.5792336<br>0.09711739<br>0.98640418<br>4.8018566<br>7.6158288 | 0.158 0.158 0.158 0.217 0.850 0.182 0.182 0.277             | 0.002141044<br>1.1159536<br>-35.068381<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831<br>1.165941<br>-45.301985<br>-17.4993 | 0.739<br>0.739<br>0.892<br>0.406<br>0.406<br>0.787<br>0.787<br>0.903 | 0.081723633<br>1.103/0027<br>-31.692421<br>-13.944994<br>0.081733772<br>0.92807337<br>0.025335333<br>1.1019118<br>-30.50349<br>-13.370071 | 0.793 0.793 0.793 0.911 0.911 0.258 0.693 0.693 0.693 0.851 | 1.1159536<br>-35.068581<br>-14.770897<br>0.29294879<br>0.41810204<br>0.007776831<br>1.163941<br>-45.301985<br>-17.4993 | 0,739<br>0,739<br>0,892<br>0,406<br>0,406<br>0,787<br>0,787<br>0,903 | 0.94880696<br>19.71789<br>23.766656<br>                                                                      | 0.09 0.09 0.12 0.84 0.14 0.14 0.14        | 1.1090027<br>-31,692421<br>-13,944994<br>0.031733772<br>0.92807337<br>0.025335333<br>-<br>1.1019118<br>-30,52049<br>-13,370071 | 0.793<br>0.793<br>0.911<br>0.258<br>0.693<br>0.693<br>0.693 | 0.94882696<br>19.71789<br>23.760605<br>                                                                       | 0,181<br>0,181<br>0,119<br>0,119<br>0,861<br>0,120<br>0,120<br>0,120 | 1.1773749<br>49.592481<br>18.778586<br>40.6997069<br>-1.9836101<br>0.15516367<br>1.1645121<br>-45.4272<br>14.790377                 | 0.856<br>0.856<br>0.124<br>0.893<br>0.893<br>0.893<br>0.770<br>0.770<br>0.770<br>0.207 | 1.0300953<br>-10.248969<br>-1.2132114<br>-0.22667626<br>-0.64042106<br>0.012369168<br>-0.012196<br>-7.107057<br>-0.36652106 | 0354<br>0354<br>0400<br>0400<br>0.687<br>0.687<br>0.687<br>0.301<br>0.301<br>0.436 | 1.026172<br>-9.1103775<br>-1.952674<br>-0.50827975<br>-0.65956012<br>-0.016941943<br>-1.0436022<br>-14.154045<br>-5.9589869 | 0.344<br>0.344<br>0.457<br>0.665<br>0.665<br>0.390<br>0.390<br>0.601 | 0.97561548<br>9.0091668<br>10.205682<br>-<br>-<br>1.0529305<br>-1.0154933<br>0.12287469<br>-<br>0.98294608<br>6.0915453<br>6.8538871 | 0.127<br>0.127<br>0.199<br>0.854<br>0.149<br>0.149<br>0.149<br>0.278 | 1.036072<br>9.1103775<br>-1.952674<br>-0.50627975<br>-0.65956012<br>-0.06941943<br>-1.0456022<br>-1.4154045<br>-5.9589899 | 0354<br>0354<br>0445<br>0445<br>0452<br>0452<br>0452<br>0452<br>0452 | 0.97561548<br>9.0090568<br>10.205682<br>-1.0529303<br>-1.6054493<br>0.12287469<br>0.98284608<br>6.0915453<br>6.8538871 | 0.127<br>0.127<br>0.199<br>0.854<br>0.854<br>0.149<br>0.149<br>0.278 | 0.99888374<br>0.5767852<br>19.594143<br>-1.3512339<br>2.3547582<br>0.1886204<br>0.95022225<br>18.691<br>27.067448       | 0.202<br>0.202<br>0.133<br>0.994<br>0.994<br>0.097<br>0.097<br>0.097<br>0.116 | 1.0722160<br>-23.169926<br>-9.9782772<br>                                                                   | 0.609<br>0.609<br>0.780<br>0.344<br>0.616<br>0.616<br>0.784 | 0.94882696<br>19.11789<br>23.760626<br>                                                                                       | 0,073<br>0,073<br>0,097<br>0,097<br>0,097<br>0,097<br>0,097          | 1.0182683<br>-4.3295711<br>0.099544079<br>-<br>-<br>1.2834386<br>-1.1846285<br>0.074241923<br>-<br>1.0054801<br>-1.8806582<br>1.8504167 | 0315<br>0315<br>0388<br>0388<br>0388<br>0388<br>0251<br>0251<br>0251<br>0357 |

*Notes*: The coefficients, *t*-statistics, and  $R^2$  are generated by the OLS method for various horizons. Theil's *U* refers to the ratio of the root-mean-squared forecast errors for the unrestricted and restricted out-of-sample forecasts. The *MSE-F* statistic tests the null hypothesis that the MSE for the unrestricted out-of-sample forecast is smaller than the MSE for the restricted out-of-sample forecast. The *ENC-NEW* statistics tests the null hypothesis that restricted out-of-sample forecasts encompass the unrestricted out-of-sample l forecasts. The numbers follow the reported statistics are the standard deviations. The **bold statistics indicate the significant forecastability.**