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1. Introduction

Exogenously proportional solutions to Nash’s (1950) bargaining problem are already

known. The first - and most well - known member of this class is the Egalitarian solution,

recommended by Rawls (1971). This solution chooses the highest utility point with equal

coordinates in each bargaining problem, a subset of the n-dimensional euclidean space

representing the utility alternatives available to a society with n individuals. Charac-

terization of the Egalitarian solution was offered by Kalai (1977), who generalized this

solution to a class of exogenously proportional solutions.1 In this class, given a posi-

tive n-tuple p, the corresponding solution selects in each bargaining problem the highest

utility point proportional to p.

Although the Egalitarian solution has been well studied, other exogenously propor-

tional solutions have received less attention in the literature. Among a few studies, Roth

(1979) extended Kalai’s (1977) generalization to bargaining problems where utilities are

not restricted to be freely disposable. Peters (1986) offered alternative characterizations

of exogenously proportional solutions, focusing on ‘simultaneity of issues and additiv-

ity’ in bargaining games. Chun and Thomson (1987) further generalized exogenously

proportional solutions to the Directional solutions, focusing on ‘uncertain disagreement

points’ in bargaining games. Characterizations of the Directional solutions and, in par-

ticular, exogenously proportional solutions were proposed by Chun and Thomson (1987,

1990a, 1990b). Recently, Hougard and Tvede (2012) and Rachmilevitch (2012) extended

proportional solutions to bargaining games with nonconvex problems.

Among all exogenously proportional solutions, Egalitarian solution is the only solution

that satisfies the axiom of symmetry, requiring the equality of payoffs gained by all

individuals in the society when the bargaining problem is symmetric. The main question

that has motivated our study is whether there exist other bargaining solutions that have

some nature of proportionality and also satisfy symmetry. To seek such solutions, we

restrict ourselves, for notational simplicity, to 2-person bargaining problems, and we

define a notion of total payoff asymmetry to check whether the total area of a bargaining

problem is symmetric with respect to the two individuals in the society. Using this

notion, we introduce an axiom called total payoff symmetry, requiring that the solution

offers equal payoffs to both individuals when the total area of the bargaining problem is

symmetric. This new axiom, which is computationally easy to check, implies symmetry

axiom. Thus, to answer our main question, we attempt to find ‘nearly’ proportional

solutions that satisfy total payoff symmetry.

The class of solutions we propose select the outcome in each bargaining problem,

S, using a vector of proportionality, p, on (the weak Pareto frontier of) an endogenously

determined area, B. This area shrinks to the line segment of points with equal coordinates

only if the total area of the bargaining problem is symmetric. Since the area B, on which

1Kalai (1977) calls these solutions proportional solutions, whereas we call them exogenously propor-

tional solutions to highlight the distinction between Kalai’s solutions and ours.
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the solution lies, depends on S, the vector of proportionality p inherited by any solution

in the proposed class is endogenous to S. Thus, we call our solutions endogenously

proportional solutions. Formally, each endogenously proportional solution associates to a

given bargaining problem a vector of proportionality that is identical for any two distinct

problems with the same total payoff asymmetry.

We show that the class of endogenously proportional solutions are always nonempty

and independent of well-known solutions, involving the solutions by Nash (1950) and

Kalai and Smorodinksy (1975), and the Equal Area solution (Anbarci and Bigelow, 1994).

However, our solutions are contained by the class of Directional solutions. Our main

result is that the endogenously proportional solutions are characterized by weak Pareto

optimality, continuity, and two new conditions that depend on the total payoff asymmetry

of a given bargaining problem. Moreover, we show that the proposed class of solutions as

well as our characterization result can be trivially extended to the n-person bargaining

situations.

The paper is organized as follows: Section 2 introduces the basic structures. Section

3 presents the results and gives some discussion. Finally, Section 4 concludes.

2. Basic Structures

A 0-normalized 2−person bargaining problem for a society of individuals N = {1, 2} is

denoted by S, a non-empty subset of R2
+, representing von Neumann-Morgenstern utilities

attainable through the cooperative actions of the individuals in N .2 If the individuals

fail to agree on any point in S, then each of them receives zero utility (for notational

simplicity). Hence, the bargaining problems are 0-normalized. The bargaining problem

(simply, problem) S satisfies the following two conditions:

(a) S is convex and compact, and there exists x ∈ S such that x > 0.3

(b) S is comprehensive; i.e., if x ∈ S, y ∈ R2
+, and x ≥ y then y ∈ S (implying that

utility is freely disposable).

Let Σ0 denote the set of all bargaining problems. A problem S is said to be sym-

metric if (y1, y2) ∈ S implies (y2, y1) ∈ S. For a problem S, a point x ∈ S is said to

be weakly Pareto optimal if there exists no y ∈ S such that y > x. Let WPO(S)

denote the set of weakly Pareto optimal points in S. We denote the total payoff of

each X ⊂ R2
+ as TP (X) =

∫
x∈X dx. Note that TP (λX) = λ2TP (X) for all X ⊂ R2

+ and

λ > 0.

For each problem S, define the sets SL,β = {y ∈ S | βy1 < y2} and SR,β = {y ∈
S | βy1 > y2} for all β > 0. For each problem S, also define α(S) such that TP (SR,α(S)) =

TP (SL,1) if TP (SL,1) < TP (SR,1), TP (SL,α(S)) = TP (SR,1) if TP (SL,1) > TP (SR,1),

and α(S) = 1 if TP (SL,1) = TP (SR,1). Clearly, α(S) always exists and it is unique.

2R2
+ = {x ∈ R2 |xi ≥ 0 for all i} and R2

++ = {x ∈ R2 |xi > 0 for all i}.
3Given x and y in R2

+, x ≥ y means xi ≥ yi for all i and x > y means xi > yi for all i.
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We will call α(S) (a measure of) total payoff asymmetry of S with respect to

individuals 1 and 2. A problem S is said to satisfy total payoff symmetry if α(S) = 1.

For each problem S, define the set

B(S) =


SR,1\SR,α(S) if α(S) ∈ (0, 1),

S\(SL,1 ∪ SR,1) if α(S) = 1,

SL,1\SL,α(S) if α(S) > 1.
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Figure 1. Basic Sets.

(a) α(S) < 1. (b) α(S) = 1. (c) α(S) > 1.

Note that B(S) is always nonempty.

We will call B(S) the balancing subset of S, given the fact that it balances (the

total payoffs of) the sets SR,α(S) and SL,1 if α(S) ∈ (0, 1] and the sets SL,α(S) and SR,1 if

α(S) > 1.

Finally, a solution is a function µ : Σ0 → R2
+ such that µ(S) ∈ S for each S ∈ Σ0.

3. Results and Discussion

We say that a solution µ is endogenously proportional if there exists a continuous

function r : R++ → (0, 1] such that µ(S) = λ(S)p(S) for all S ∈ Σ0, where p(S) ∈ R2
++ is

such that p2(S)/p1(S) = 1− r(α(S)) + r(α(S))α(S) and λ(S) = max{t | tp(S) ∈ B(S)}.
We will denote by EP the class of solutions that are endogenously proportional.

Any solution µ in the class EP is called proportional since for any pair of prob-

lems S and T with the same total payoff asymmetry (i.e., α(S) = α(T )), we have

µ2(S)/µ1(S) = µ2(T )/µ1(T ). On the other hand, the proportionality of any solution

µ in EP is endogenous since it is not invariant to changes in the problem S that affect

α(S).

The class of solutions we propose joins the concept of proportionality with a view

of fairness. According to this view, “a fair division of the gains to cooperation is one

in which a particular balance of concessions is achieved” (Anbarci and Bugelow, 1994:
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p.134). The class of solutions EP selects the solution outcome inside the set B(S).

Here, the set B(S) can be viewed to be balancing the concessions of individuals 1 and 2,

which are respectively SR,α(S) and SL,1 if α(S) ∈ (0, 1] and SR,1 and SL,α(S) if α(S) > 1.

For instance, for any problem S with α(S) > 1, the concession set SR,1 of individual 1

contains from the viewpoint of him/her all favorable points in S with respect to B(S) in

the sense that for all s ∈ SR,1 and for all ŝ ∈ B(S) such that ŝ2 = s2, we have s1 > ŝ1.

Similarly, for any problem S with α(S) > 1, the concession set SL,α(S) of individual 2

contains for him/her all favorable points in S with respect to B(S) in the sense that for

all s ∈ SL,α(S) and for all ŝ ∈ B(S) such that ŝ1 = s1, we have s2 > ŝ2. These concessions

are balanced as the set SL,α(S) is constructed against the set SR,1 in such a way that

they contain the same number of alternatives, which we measure using the notion of area

(in Lebesgue measure) since the bargaining problem S is a continuum. However, the

concessions of individuals 1 and 2 are in general not totally exhaustive in S. So, the set

of weakly Pareto optimal points in the set B(S), over which the two individuals reach

a solution in EP after conceding mutually, is a continuum unless α(S) = 1. Over this

endogenously determined continuum, the bargaining outcome is solely determined by the

exogenously given function r corresponding to a particular solution in EP .

Regarding the existence of endogenously proportional solutions, we have the following

simple observation.

Remark 3. The class of solutions EP is non-empty.

To show that the above remark is true, we rewrite the set B(S) as

B(S) = {y ∈ S | y2 ∈ Z(y1, α(S))}

where

Z(y1, α(S)) =


[α(S)y1, y1) if α(S) ∈ (0, 1),

{y1} if α(S) = 1,

(y1, α(S)y1] if α(S) > 1.

Given the definition of endogenously proportional solutions and the fact that B(S) is

nonempty for all S, it is clear that EP is non-empty.

While the proportional solutions that we have described are novel to the bargaining

literature, exogenously proportional solutions are already known by the work of Kalai

(1977). A solution µ over Σ0 is exogenously proportional if there exists p ∈ R2
++

such that µ(S) = λ(S)p for each S ∈ Σ0, where λ(S) = max{t | tp ∈ S}. The distinction

between the class of solutions EP and Kalai’s (1977) exogenously proportional solutions

should be apparent, once we notice that for any exogenously determined factor of pro-

portionality p ∈ R2
++ such that p1 6= p2, we can always find a problem S ∈ Σ0 such that

the set B(S), over which the class of solutions EP is defined, excludes the exogenous

solution λ(S)p, where λ(S) = max{t | tp ∈ S}. For instance, for any S that is symmetric,
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the set B(S) boils down to {x ∈ S |x1 = x2}. Clearly, no exogenously proportional

solution other than the Egalitarian solution can produce a solution outcome in this set.

On the other hand, the Egalitarian solution is not inside the class EP either, since for

any bargaining problem S with α(S) 6= 1, the set {x ∈ S |x1 = x2}, where the Egalitar-

ian solution selects its outcome, has an empty intersection with the set B(S). (This is

because the range of the function r in the definition of EP excludes the point 0, which

would yield a vector of proportionality corresponding to the Egalitarian solution.)

Below, we will check whether our solutions are also independent of some well-known

solutions. A solution µ is said to be

(i) the Nash (1950) solution over Σ0 if for any S ∈ Σ0

µ(S) = arg max
x∈S

x1x2,

(ii) the Kalai-Smorodinsky (1975) solution over Σ0 if for any S ∈ Σ0

µ(S) = max{x ∈ S |x2/x1 = a2(S)/a1(S)}

where ai(S) = max{xi |x ∈ S} for all i ∈ N ,

(iii) the Equal Area solution over Σ0 (Anbarci and Bigelow, 1994) if for any S ∈ Σ0

µ(S) = max{x ∈ S |TP (SL(x)) = TP (SR(x))}

where SL(x) = {y ∈ S | y2 ≥ x2} and SR(x) = {y ∈ S | y1 ≥ x1}.

We denote the Nash, Kalai-Smorodinsky, and Equal Area solutions by N , KS, and

EA, respectively. We will show that none of these three solutions are endogenously

proportional. Consider the problems

S = convex hull {(0, 0), (0, 1), (1, 1), (2, 0)}, and

S ′ = convex hull {(0, 0), (0, 1), (
√

3, 1), (
√

3, 0)}.

Clearly, we have α1,2(S) = α1,2(S ′) = 1/3. Also, it is easy to check that N (S) = (1, 1),

KS(S) = (4/3, 2/3), KS(S ′) = (
√

3, 1), EA(S) = (5/4, 3/4), and EA(S ′) = (
√

3, 1).

Obviously, the Nash solution is not endogenously proportional, since there exists no

r : R++ → (0, 1] such that N 2(S)/N 1(S) = 1 − r(1/3) + (1/3)r(1/3). We should

notice that of the remaining two solutions to be checked, the Kalai-Smorodinsky so-

lution is endogenously proportional in an obvious sense, which is different from the

sense defined in our paper. On the other side, the Equal Area solution always select

inside the intersection of pairwise balanced sets of a given bargaining problem, since

this solution totally balances the concessions of individuals. Interestingly, a recent char-

acterization of the Kalai-Smorodinsky solution by Anbarci (1998) shows that even the
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Kalai-Smorodinsky solution can be formulated using the area notion in balancing the

concessions of individuals for a particular type of bargaining problems.4 Now, to check

whether KS ∈ EP , suppose that there exists a function r : R++ → (0, 1] such that

KS2(S)/KS1(S) = 1/2 = 1−r(1/3)+(1/3)r(1/3), implying r(1/3) = 3/4. We must also

have KS2(S ′)/KS1(S ′) = 1/
√

3 = 1−r(1/3)+(1/3)r(1/3), implying r(1/3) = (3−
√

3)/2,

a contradiction. Thus, the Kalai-Smorodinsky solution is not endogenously proportional.

Finally, to check whether EA ∈ EP , suppose that there exists a function r : R++ → (0, 1]

such that EA2(S)/EA1(S) = 3/5 = 1 − r(1/3) + (1/3)r(1/3), implying r(1/3) = 3/5.

We must also have EA2(S ′)/EA1(S ′) = 1/
√

3 = 1 − r(1/3) + (1/3)r(1/3), implying

r(1/3) = (3−
√

3)/2, a contradiction. Therefore, the Equal Area solution is not endoge-

nously proportional.

We can finally check that our solutions lie inside the class of Directional solutions, to

which Chun and Thomson (1990) further generalized exogenously proportional solutions.

To see this, consider a class of 2-person problems Σ, where each problem involves a

bargaining set S ⊂ R2 satisfying the usual feasibility assumptions and a disagreement

point d in S, where the individuals end up if they fail to agree on a point in S. If for a

given solution µ there exists a continuous function p from the set of feasible bargaining

sets to the 2-dimensional simplex ∆2 such that for all (S, d) ∈ Σ, µ(S, d) = d+λ(S)p(S),

where λ(S) = max{t | d+tp(S) ∈ S}, then µ is called the Directional solution relative

to p.

To make a comparison with the Directional solutions, we will extend the class of

solutions EP from Σ0 to Σ. Note that to each problem (S, d) ∈ Σ corresponds a

unique problem in Σ0: the individually rational set of points in S with respect to d,

i.e., IR(S, d) = {x ∈ S − d |x ≥ 0}. So, given any µ ∈ EP , we can define a solution

on Σ, ϕ ≡ ϕ(µ), by ϕ(S, d) = d + µ(IR(S, d)). Clearly, the solution ϕ is a Directional

solution since the solution µ is endogenously proportional.5 Thus, one can safely claim

that each endogenously proportional solution is essentially a Directional solution, with

the nonessential difference arising from the normalization d ≡ 0 in our model.

The above observation leads us to note an important advantage of endogenously pro-

portional solutions as a subfamily of Directional solutions over the Kalai-Smorodinsky

solution, as already addressed in the work of Chun and Thomson (1987). This work char-

acterizes Directional solutions, and a subfamily of them, namely exogenously proportional

4 A new axiom, called Balanced Focal Point, introduced by Anbarci (1998) for an alternative

characterization of the Kalai-Smorodinsky solution over the domain Σ0 requires that if S ∈ Σ0

and S = convex hull{(0, 0), (0, λb), (a, b), (λa, 0)}, where λ ∈ [1, 2], then µ(S) = (a, b). For each

such S and for each λ ∈ (1, 2], the sets S1(λ) = convex hull{(0, 0), (a, b), (λa, 0)} and S2(λ) =

convex hull{(0, 0), (a, b), (0, λb)} can be considered to be the concessions individuals 1 and 2 respec-

tively need to make in order to achieve µ(S) = (a, b). These concessions are balanced in the Lebesgue

measure, as TP (S1(λ)) = TP (S2(λ)) = (λ− 1)ab/2.
5To see that this result directly follows from the definitions of the two classes of solutions, we should

note that without loss of generality we can restrict p(S) to lie in the 2-dimensional simplex ∆2 as in the

definition of the Directional solutions.
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solutions (or weighted Egalitarian solutions), using a new axiom called Disagreement

Point Concavity. According to this axiom, if there is uncertainty in the disagreement

point d̃ such that it may take two distinct values d1 and d2 under some probability

distribution function and if this uncertainty will be resolved tomorrow, then solving the

bargaining problem today taking the disagreement point as the expected value of d̃ under

the given probability distribution function will be preferred by all individuals to waiting

until tomorrow and solving the bargaining problem with the realized value of d̃.6 As

already addressed by Chun and Thomson (1987), the Kalai-Smorodinksy solution, which

is endogenously proportional in an alternative sense, does not satisfy the axiom of Dis-

agreement Point Concavity, unlike the Directional solutions, which contain endogenously

proportional solutions we propose.

Below, we present four axioms to characterize our solutions.

Weak Pareto Optimality (WPO): µ(S) ∈ WPO(S).

Continuity (CON): If {Sk} converges in the Hausdorff topology to S, then {µ(Sk)}
converges to µ(S).

Balancedness (BAL): µ(S) ∈ B(S).

Invariance of Payoffs under Constant Total Payoff Asymmetry (IP): If S, T are

such that α(S) = α(T ), then µ2(S)/µ1(S) = µ2(T )/µ1(T ).

The first two axioms are well known. The third axiom, BAL, requires that the vector

of proportionality corresponding to any solution depends on the balancing subset of the

bargaining problem. Finally, IP requires that if the total payoff asymmetry is the same

in two distinct problems, then the utility of individual 2 relative to individual 1 must also

be the same in these problems. Below, we will show that WPO and IP together imply the

well known homogeneity axiom. We will use this result in proving our characterization

theorem.

Homogeneity (HOM). µ(cS) = cµ(S) for all c > 0.

Lemma 1. A solution satisfies HOM if it satisfies WPO and IP.

Proof. Let a solution µ satisfy WPO and IP. Pick any S and c > 0. By WPO, µ(S) ∈
WPO(S) and µ(cS) ∈ WPO(cS). It follows that cµ(S) ∈ WPO(cS) since cWPO(S) =

WPO(cS). Clearly, α(cS) = α(S). Then, by IP, µ2(cS)/µ1(cS) = µ2(S)/µ1(S). Suppose

µ1(cS) > cµ1(S); then µ(cS) > cµ(S), contradicting cµ(S) ∈ WPO(cS). On the other

6For our domain Σ, this axiom by Chun and Thomson (1987) is formally stated as follows: For all

(S1, d1), (S2, d2) ∈ Σ and for all α ∈ [0, 1], if S1 = S2 ≡ S, then F (S, αd1 + (1 − α)d2) ≥ αF (S, d1) +

(1− α)F (S, d2).
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hand, µ1(cS) < cµ1(S) would imply µ(cS) < cµ(S), contradicting µ(cS) ∈ WPO(cS).

So, we must have µ1(cS) = cµ1(S), implying µ(cS) = cµ(S). �

Theorem 1. A solution on Σ0 satisfies WPO, CON, BAL, and IP if and only if it is

endogenously proportional.

Proof. Obviously, any solution in the class EP satisfies all four axioms. Conversely,

let µ be a solution satisfying WPO, CON, BAL, and IP. Pick φ ∈ R++. Consider the

problem D(φ) = {y ∈ R2
+ | y1 ≤ 1 and y2 ≤

√
φ}. We have α(D(φ)) = φ, since

TP (DL,1(φ)) =
φ

2
= TP (DR,φ(φ)) if φ ∈ (0, 1], and

TP (DL,φ(φ)) =
1

2
= TP (DR,1(φ)) if φ > 1.

By BAL, we have µ(D(φ)) ∈ B(D(φ)), implying

µ2(D(φ))

µ1(D(φ))
∈


[φ, 1) if φ ∈ (0, 1),

{1} if φ = 1,

(1, φ] if φ > 1.

Let

r(φ) =
1

φ− 1

(
µ2(D(φ))

µ1(D(φ))
− 1

)
if φ 6= 1. Clearly, r(φ) ∈ (0, 1] for all φ ∈ R++\{1}. Let r(1) = limφ→1 r(φ). (Note

that µ2(D(φ))/µ1(D(φ)) is continuous in φ, since µ satisfies CON; hence the above limit

exists.) Thus, we have constructed a continuous function r : R++ → (0, 1].

Agent 1

Agent 2

45°

D(1/4)

α(S)

0

1/4

0 11/2

1/2

p(S) = μ(D(1/4))

S

μ(S) = λ(S)p(S)

●

V(S)

●

Figure 2. Sketch of the Proof for α(S) = 1/4.
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Now pick a problem S. Let p(S) = µ(D(α(S)). By construction, p2(S)/p1(S) =

1 − r(α(S)) + r(α(S))α(S). Let λ(S) = max{t | tp(S) ∈ B(S)}. Clearly, λ(S)p(S) ∈
WPO(S) since µ satisfies WPO. Consider the problem V (S) = λ(S)D(α(S)). If α(S) ∈
(0, 1],

TP (VL,1(S)) = [λ(S)]2TP (DL,1(α(S))) = [λ(S)]2TP (DR,α(S)(α(S)))

= TP (VR,α(S)(S)).

On the other hand, if α(S) > 1,

TP (VR,1(S)) = [λ(S)]2TP (DR,1(α(S))) = [λ(S)]2TP (DL,α(S)(α(S)))

= TP (VL,α(S)(S)).

Thus, α(V (S)) = α(D(α(S))) = α(S). Also, µ(V (S)) = λ(S)µ(D(α(S))) = λ(S)p(S),

since µ satisfies HOM by Lemma 1. By IP, µ2(S)/µ1(S) = µ2(V (S))/µ1(V (S)), since

α(V (S)) = α(S). Moreover, µ(V (S)) ∈ WPO(V (S)), since µ satisfies WPO. Then,

µ1(V (S)) = µ1(S), for otherwise we would have either µ(V (S)) > µ(S) contradicting

µ(S) ∈ WPO(S) or µ(V (S)) < µ(S) contradicting µ(V (S)) = λ(S)p(S) ∈ WPO(S).

Therefore, µ(S) = µ(V (S)) = λ(S)p(S). �

The axioms WPO and CON are also satisfied by exogenously proportional solutions,

as already shown by Kalai (1977). Besides, these solutions satisfy IP as well, since by def-

inition the vector of proportionality of any exogenously proportional solution is invariant

to changes in the bargaining problem. Thus, endogenously and exogenously proportional

solutions are only distinguished, in our characterization, by the balancedness axiom. It

should be evident from the definition of endogenously proportional solutions that any pos-

sible alternative characterization of the class EP may constantly depend on the axiom

BAL. This dependence is similar to the appearance of the strong individual rationality

(SIR) axiom in three alternative characterizations of exogenously proportional solutions

offered by Kalai (1977).7 The axiom SIR requires that for each problem the solution

should assign a positive utility to each individual.8 The need for SIR by exogenously

proportional solutions is obvious as these solutions restrict the vector of proportionality

to strictly positive pairs of real numbers. On the other hand, SIR is not strong enough

to account for the demanding restrictions our solutions put on the vector of proportion-

ality corresponding to each problem. The restrictions put by any solution in EP require,

for each problem, the exact knowledge of the total payoff asymmetry, hence the direct

reflection of these restrictions onto an axiom like BAL seems to be inevitable.

7Kalai (1977) shows that exogenously proportional solutions are characterized by WPO, HOM, SIR

together with monotonicity or step-by-step negotiations or a collection of three axioms involving inde-

pendence of irrelevant alternatives, individual monotonicity and continuity.
8Note that WPO and BAL together imply SIR. Therefore any solution in the class EP trivially

satisfies SIR.
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The separation of endogenously and exogenously proportional solutions with regard

to the balancedness axiom implies that the two classes of solutions also differ with respect

to their relation to a basic axiom in the bargaining literature, called symmetry.

Symmetry. If S is symmetric, then µ1(S) = µ2(S).

While symmetry is satisfied by no exogenously proportional solution except for the

Egalitarian solution, it is satisfied by every endogenously proportional solution. The

reason is that this axiom is implied by BAL, because if S is symmetric, then α(S) = 1

and B(S) = {y ∈ S | y1 = y2}. In fact, endogenously proportional solutions satisfy a

stronger form of symmetry, as well.

Total Payoff Symmetry. If S is total payoff symmetric, then µ1(S) = µ2(S).

Total payoff symmetry implies symmetry, since every bargaining problem is total

payoff symmetric if it is symmetric. But, the converse is not true. To see this, consider

S = convex hull {(0, 0), (0, 3/2), (1/2, 3/2), (1, 1), (7/4, 0)}. Clearly, S is not symmetric,

but it is total payoff symmetric since TP (SL,1) = TP (SR,1) = 7/8 and α(S) = 1.

When we eliminate the axiom IP from our list of characterizing axioms, we can further

generalize our solutions to a family that we call total payoff balancing class of solutions .

Obviously, each bargaining solution satisfying WPO and CON can be extended to be

a member of this general class of solutions, restricting the solution outcome on each

problem S to the set B(S).

Finally, we will show that our solutions can be extended to the n-person case as follows:

Consider a society of individuals N = {1, 2, . . . , n}. Let Σn
0 denote the n-person extension

of the set of 2-person bargaining problems Σ0. For each problem S ∈ Σn
0 and distinct

individuals i and j, define the sets Si,jL,β = {y ∈ S | βyi < yj} and Si,jR,β = {y ∈ S | βyi >
yj} for each β > 0. For each problem S ∈ Σn

0 and distinct individuals i and j, also define

αi,j(S) such that TP (Si,j
R,αi,j(S)

) = TP (Si,jL,1) if TP (Si,jL,1) < TP (Si,jR,1), TP (Si,j
L,αi,j(S)

) =

TP (Si,jR,1) if TP (Si,jL,1) > TP (Si,jR,1), and αi,j(S) = 1 if TP (Si,jL,1) = TP (Si,jR,1). Clearly,

αi,j(S) always exists and it is unique. Moreover, since Si,jL,β = Sj,iR,1/β and Si,jR,β = Sj,iL,1/β,

we have αi,j(S) = 1/αj,i(S) for all i, j ∈ N .

We will call αi,j(S) (a measure of) pairwise total payoff asymmetry of S with respect

to individuals i and j. A problem S is said to satisfy pairwise total payoff symmetry

with respect to individuals i and j if αi,j(S) = 1. Furthermore, S is said to satisfy total

payoff symmetry if it satisfies pairwise total payoff symmetry with respect to each pair

of individuals in the society.

For each problem S and distinct individuals i and j, define the following set, called

the pairwise balancing subset of S with respect to individuals i and j:

Bi,j(S) =


Si,jR,1\S

i,j
R,αi,j(S)

if αi,j(S) ∈ (0, 1),

S\(Si,jL,1 ∪ S
i,j
R,1) if αi,j(S) = 1,

Si,jL,1\S
i,j
L,αi,j(S)

if αi,j(S) > 1.
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Note that Bi,j(S) is always nonempty. Moreover, one can easily check that Bi,j(S) =

Bj,i(S).

Now, for each problem S and individual i, define αi(S) = (αi,j(S))j 6=i. We say

that over the domain Σn
0 , a solution µ is endogenously proportional relative to

individual i if there exists a continuous function ri,j : Rn−1
++ → (0, 1] for all j 6= i such

that µ(S) = λ(S)p(S) for all S ∈ Σn
0 , where p(S) ∈ Rn

++ is such that pj(S)/pi(S) =

1− ri,j(αi(S)) + ri,j(αi(S))αi,j(S) for all j 6= i and λ(S) = max{t | tp(S) ∈ ∩j 6=iBi,j(S)}.
We will denote by EPi the class of solutions that are endogenously proportional

relative to individual i. Clearly, the class EPi is nonempty for all i. One can naturally

ask whether ∩ni=1EPi is non-empty, too. Unfortunately, we do not know the answer when

n > 2 and leave it to future work.9 When n = 2, we can easily show that the answer is

‘yes’. Indeed, we have EP1(S) = EP2(S) for all S ∈ Σ2
0. (This is why at the beginning

of this section we have defined endogenously proportional solutions in the 2-person case

only relative to individual 1.) To see this, pick any µ ∈ EP1 and let r1,2 : R++ → (0, 1]

be the function that generates µ. Pick any S ∈ Σn
0 . We have α1(S) = α1,2(S), thus

r1,2(α1(S)) = r1,2(α1,2(S)) and µ2(S)/µ1(S) = 1 − r1,2(α1,2(S)) + r1,2(α1,2(S))α1,2(S).

Using the fact α2(S) = α2,1(S) = 1/α1,2(S), it is easy to check that µ1(S)/µ2(S) =

1− r2,1(α2,1(S)) + r2,1(α2,1(S))α2,1(S) if

r2,1(α2,1(S)) =
r1,2(α1,2(S))α1,2(S)

1− r1,2(α1,2(S)) + r1,2(α1,2(S))α1,2(S)
.

Since r2,1(α2,1(S)) ∈ (0, 1], we have µ ∈ EP2.

Now, consider the following extensions of the axioms BAL and IP to the n-person

case.

Balancedness Relative to Individual i (BAL-i): µ(S) ∈ ∩j 6=iBi,j(S).

Invariance of Payoffs Relative to Individual i under Constant Pairwise Total

Payoff Asymmetry (IP-i): If S, T are such that αi,j(S) = αi,j(T ) for some i and j 6= i,

then µj(S)/µi(S) = µj(T )/µi(T ).

One can easily check that a solution on Σn
0 satisfies WPO, CON, BAL−i, and IP−i

if and only if it is in EPi.

4. Conclusions

In this paper, we have introduced a class of endogenously proportional solutions. These

solutions are characterized by weak Pareto optimality, continuity and two new axioms

that depend on the total payoff asymmetry of a given problem.

9The future work may also study an interesting conjecture proposed by an anonymous reviewer of

this paper stating that if ∩i∈IEPi 6= ∅ for every subset I ⊂ {1, 2, . . . , n} that satisfies |I| = n− 1, then

∩ni=1EPi 6= ∅.
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Endogenously proportional solutions satisfy a stronger form of the symmetry axiom,

while exogenously proportional solutions, except for the Egalitarian solution, fail to sat-

isfy symmetry. Definitely, for non-Egalitarian members of the Kalai’s (1977) class of

solutions this is not a deficiency per se, since in environments where the players may

not have the same bargaining power, asking for symmetry would be unreasonable. On

the other hand, in environments where the bargaining problem is known to intrinsically

contain the bargaining power of the players, it would be natural to focus on solutions that

choose symmetric outcomes in symmetric problems. The solutions we propose may en-

able players in such environments to use proportional solutions without dispensing with

symmetry. However, one difficult problem that was already addressed by Kalai (1977)

for exogenously proportional solutions is what the vector of proportionality should be.

For the case of each endogenously proportional solution, this problem boils down to how

the weight function r, which determines the direction of the solution inside the set B(S)

for any problem S, should be constructed.

Endogenously proportional solutions, like the Equal Area solution, depend on the area

(in Lebesgue measure) of each element inside the solution-relevant partition of a bargain-

ing problem S. Naturally, the area-dependent bargaining solutions have the advantage of

depending on the geometry of the whole of S, and thus they are sensitive to every possible

change, however small, in the feasible alternatives over which individuals will bargain.

But, since the area of any subset of S can only be calculated using the products of von

Neumann-Morgenstern utility numbers of individuals, the area-dependent solutions are

subject to the same criticism as was directed towards the Nash solution by Rubinstein,

Srafa and Thomson (1992, p. 1972) on the basis that “the meaning of a product of two

von Neumann-Morgenstern utility is not clear”. As a remedy to the problem in the case

of the Nash solution, Rubinstein, Srafa and Thomson (1992) replaced the geometric bar-

gaining setup in the Nash’s original bargaining problem, which was endowed with cardinal

utility numbers, with a setup involving only alternatives and ordinal preferences. The

new language in this alternative setup not only provided a straightforward interpretation

of the ordinal extension of the Nash solution as well as the ordinal translations of the

Nash’s characterizing axioms but also allowed the extension of the Nash solution to a class

of non-expected utility preferences. Using this ordinal framework, Anbarci and Bigelow

(1994) showed that the Equal Area solution can be extended to domains where preference

orderings cannot be represented by von Neumann-Morgenstern utility functions. Future

research can use this new framework to generalize endogenously proportional solutions,

as well.

Finally, we believe that new bargaining solutions can be derived from the already

known solutions in the literature, restricting the outcome chosen by any proposed solu-

tion to lie in the intersection of the pairwise balancing subsets of the bargaining problem

relative to a given individual. This procedure can be especially useful for finding sym-

metric extensions of solutions that fail to satisfy symmetry.
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