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1. Introduction 

In recent years, crop yield growth rates have received renewed interest as society has been 

placing greater demands on the agricultural sector, making it not only a source of traditional food 

and fiber, but also a source of feedstocks for bioenergy and a possible way to sequester carbon to 

mitigate climate change (see IPCC, 2007). There is a driving force that these new demands share 

in common: attempt to reduce greenhouse gas (GHG) emissions. However, with the expansion of 

bioenergy production in recent years, crop prices worldwide have increased substantially, 

suggesting a tight supply and demand balance on the agricultural market. This in turn has raised 

concern of whether such policies would actually deliver the intended environmental benefits. 

This is because if new demands need to be met by converting forest into arable land (i.e. 

deforestation) they probably contribute to increase rather than reduction of GHG emissions and, 

as a result, undermine the policy objectives. Therefore, new policies that aim at expanding the 

role of agricultural sector in climate change mitigation need to be carefully assessed. There have 

been numerous studies on the potential future impacts of the emerging demands on the 

agricultural sector; but the results of these assessments vary widely depending on the modeling 

methods and the values of key parameters used. The rate at which yield per acre is expected to 

grow in the future is one of such key parameters, and future yield rates will play a critical role in 

determining how future demand will be met and, consequently, how serious the undesirable 

environmental consequences would be.  

Recent studies have expressed concerns over reductions in crop yield growth in the past 

several decades (Alston, et al., 2009; Villavicencio, 2010). Possible explanations for this trend 

include changes in societal investment patterns and climate or environmental change. However, 

the studies that investigate the reasons for change in yield growth rates in the past are based on a 

structural approach in which useful information uncorrelated to the selected independent 

variables may be left in the error term, and therefore models used in these studies may not be 

well suited for the purpose of forecasting. In fact, average crop yield growth rates of different 

periods are calculated as an evidence of yield growth reduction— for example, the average rate 

between the 1940s and 2000s is greater than that between the 1970s and 2000s; however, a more 

systematic way of use of the non-structural time series techniques in the investigation of crop 

yield growths is absent. In view of the importance of forecasts of crop yield growth in policy 

assessments, in this paper we propose to systematically investigate crop yield growth in the US 

for the past 70 years and develop the best possible estimates of likely future growth rates for 8 

key crops. Specifically, two questions are answered: What are the time trends of crop yield 

growths in the US? And, when did slowdowns in crop yield growth occur in the US?  

2. The Models 

There are two standard methods of estimating the time trend of crop yield growth: an approach 

based on the principal of moving averages and autocorrelation, and a classical model in which 

yield is regressed on time.  In this paper both approaches are used to establish the best estimate 

of the growth rates.  

The first approach used in our study is the autoregressive-moving-average (ARMA) 

approach, which is widely used in the field of macroeconomics (see early discussion in Diebold 
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(1998)). In this approach, the variable of interest is regressed on its past history:  
p q

t t i t i i t i
i 1 i 1

y c y    
 
      [1] 

where p is the order of the autoregressive part and q is the order of the moving average part of 

the model, both of which deal with how random shock at one period affects future periods. In 

equation (1), the variable yt has to be stationary, i.e. does not trend either upward or downward. 

If a variable is increasing or decreasing over time, as is true for the crop yields in our study, then 

the data need to be first differenced before the regression, yielding an autoregressive-integrated-

moving-average (ARIMA) model:  
p q

t t i t i i t i
i 1 i 1

y c y      
 
     . [2] 

Using the ARIMA model, the rate of change in y (i.e. Δy) is given by 
1

1
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 . For a series of data {yt}, if a structural change occurs at time t, then the 

process can no longer be modeled with one constant C.
1
 Instead, it needs to be modeled as: 

 
p q

t 1 2 t t i t i i t i
i 1 i 1

y c c DU y      
 
     

, 
[3]

 

where DUt  is the dummy variable representing the shift in the rate of change in y, tE( y )  , 

namely 1tDU  , if t>TB, 0 otherwise with TB denoting the occurrence of the change. If it is 

suspected that there is more than one break present in the data, then additional dummies can be 

added to model the shifts.  

Structural change is present in the data if the coefficient c2 in equation (3) is significantly 

different from zero. The traditional statistical test to test for the equivalence of two linear models 

(with versus without a break) is the Chow test, but it has been shown to be only applicable in the 

situation where the break date is exogenously known (see discussions in Hansen (2001)). A set 

of tests of structural change with unknown break date have been developed based on the ARIMA 

model. To test for a change in a crop yield growth rate when the break date is unknown, the 

procedure from Ben-David and Papell (1998) is used, which was originally developed to test for 

slowdowns in postwar GDP growth.  

The Ben-David and Papell testing procedure involves two steps. The first step is to test 

the null hypothesis that the series {yt} is an integrated process (or random walk) against the 

hypothesis that the series is trend stationary with a possible one-time break in the trend function 

which occurs at an unknown time. The test is performed with model (4):  

1
1

( ) , [ , ]?
k

t t t B t t j t j t
j

y DU t DT D T y C y t T T         

           

,

  [4] 

where yt is the logarithm of yield in our study, T denotes the sample size and TB denotes the 

                                                 

1
 Although tE( y ) is determined by C and φi together, φi’s represent the correlation between Δyt and Δyt-i. Ceteris 

paribus, a change in tE( y ) implies a change in C. In this case, the process needs to be modeled with two 

constants C and C’, and C corresponds to c1 and C’ corresponds to (c1+c2) in equation (3). 
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breakpoint year. Because estimations are only possible when both segments have enough 

observations, the interval of possible periods at which the change occurs is restricted and denoted 

by  T , T  . As in equation (3), DUt shifts the intercept such that, 1tDU   if t>TB, 0 otherwise.  

The variable DTt shifts the slope at time TB, where t BDT t T   if t>TB, 0 otherwise.  Finally, 

and 1)( tBTD  if t=TB+1, 0 otherwise. The number of lags, k, is determined with a data 

dependent method: start with an upper bound kmax of k; if the last lag included in the regression is 

significant, then use k= kmax otherwise reduce kmax by 1 and repeat. In this study, kmax is initially 

set at 5.  

The second step in the Ben-David and Papell approach is to test for a structural break 

with model (5): 

1
[ , ].,

k

t t t j t j t
j

y DU t DT C y t T T      

       

.
 [5] 

The hypothesis to be tested is H0: θ=γ=0, i.e. that there is no shift in the trend of yt (or structural 

break) in the data. Ben-David and Papell (1998) use the “SupFt” test statistic. This statistic is two 

times the maximum over all possible trend breaks of the standard F-statistics for testing θ=γ=0. 

The critical values are given in Vogelsang (1997). We also follow Bai and Perron (1998) to 

construct the SupF(l+1|l) test for the hypothesis of (l+1) breaks vs. l breaks. The SupF(l+1|l) is 

defined as: 

i ,

2
T T 1 l T 1 i 1 i l

1 i l 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆF ( l 1| l ) { S (T ,...,T ) min inf S (T ,...,T , ,T ...,T )} /
 

 
   

    [6] 

where  

i , i 1 i i 1 i i i 1
ˆ ˆ ˆ ˆ ˆ ˆ{ ;T (T T ) T (T T ) }            

 

and 
2̂ is a consistent estimate of the variance of error term. When l equals 0, this test is 

equivalent to the one used in Ben-David and Papell (1998). If a break is found to be statistically 

significant, we further test the hypothesis of 1 break vs. 2 breaks with model (7): 

 
k

t 1 t 2 t 1 t 2 t j t j t
j 1

y DU1 DU 2 t DT1 DT2 C y t [ T , T ],        

         

 [7] 

where DU1t  and DU2t  are the dummy variables to model an intercept shift at time T1B and T2B 

respectively, and DT1t  and DT1t  are the dummy variables to model a slope shift at time T1B and 

T2B respectively. 

The ARIMA method is favored over the classic method in which the variable in 

investigation or a variant of its transformation is regressed on the time variable, because it allows 

for, in addition to a deterministic time trend, a stochastic time trend (Stock and Watson, 1988). 

However, this method maintains a linear form,
2
 implying that the assumption that the series is 

growing linearly or exponentially all the time has to be maintained. It does not, therefore, allow 

for the possibility of a switch from an exponential process to a linear process or vice versa. 

However, whether the variable being considered is growing linearly or exponentially is not 

always clear—in some cases, the data may be fitted equally well in both specifications. It may 

                                                 

2
 Extension to nonlinear models has also been developed but requires large data set and is mostly applicable with 

financial data (Diebold, 1998). 
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not make much difference, especially for short-term or intermediate-term forecasts (e.g., for the 

next 10 years), which is usually the case for macroeconomic studies. However, in climate change 

mitigation policy studies, forecast of key parameters for several decades are oftentimes necessary, 

so results are likely to be quite sensitive to whether the growth rate is linear or exponential. In 

the ARIMA model, we assume the crop yields are growing exponentially. We now turn to the 

classical time trend method, which admits greater flexibility in the choice of functional forms. 

In the classical method, the variable of interest is regressed on the time variable: 

t ty a bt    , [8] 

where yt is the original value or logarithm
3
 of the variable at time period t and b gives the rate of 

change of yt over time. To allow for potential structural change, the crop yield data are separated 

into two or more segments and regressed on time trend functions.
4
 In general, no restrictions are 

imposed on whether each trend is linear or exponential or on whether the segments connect with 

each other. Assuming two segments, eight distinct specifications are possible as listed in Table 1. 

For models with structural change, the optimal breakpoint year is found by searching over all 

possible break point specifications, excluding the first and last few time periods.  We first 

calculate for each specification the sum of squared errors (SSE) after converting all values to the 

same units.
5
 Based on the mean of squared error (MSE), the set of candidate models is narrowed 

down from 8 to 3. Then hold-out validation is carried out by excluding the last 10 observations 

and evaluating the out-of-sample predictions of the estimated model. The final model from the 

set in Table 1 is chosen as the one with the smallest sum of squared out-of-sample prediction 

errors. 

 

                                                 

3
 The model estimated using a log transformation leads to a constant percentage rate of growth while the linear 

model yields a constant growth rate in yield per acre.  Other transformations such as the Box-Cox transformation, 

are also possible. However, models estimated using a Box-Cox transformation resulted in only minor improvements 

in goodness of fit.  Moreover, since the purpose of this analysis is to aid in the predicting of future yield growth rates, 

the Box-Cox results are not reported since this model is used in estimation but rarely in forecasting. 

4
 Multiple l breaks can be modeled by further separating the data into (l+1) segments. As noted below, we also 

reject the hypothesis that more than one structural break has occurred over the period.  For ease of exposition, 

therefore, we present here only the case of a single break. 

5
 To compare regressions using the original data and those using their logarithm, SSE is calculated based on the 

original scale of the data. For regressions implemented with logarithms of the data, fitted values are converted into 

their inverses using the exponential function before residuals are computed.  
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Table 1: Time Trend Models with Breakpoint at Year i 
Unrestricted models: trend lines may not be continuous

 Model 1 

(Exponential + Linear-unrestricted) 
1 1

22

log( ) , 1940, ,
, 1, ,2009

t t

t t

y a b t t i
y a b tt i

     
       

Model 2 

(Exponential + Exponential-unrestricted) 
1 1

22

log( ) , 1940, ,
log( ) , 1, ,2009

t t

t t

y a b t t i
y a b t t i




     
        

Model 3 

(Linear + Exponential-unrestricted) 
1 1

22

, 1940, ,
log( ) , 1, ,2009

t t

t t

y a b t t i
y a b t t i




     
       

Model 4 

(Linear + Linear-unrestricted) 
1 1

22

, 1940, ,
, 1, ,2009

t t

t t

y a b t t i
y a b t t i




     
        

Restricted models: continuity of trend lines is imposed

 Model 5 

(Exponential + Linear-restricted) 

1 1

22

1 1 2 2

log( ) , 1940, ,
, 1, ,2009

s.t.  exp( ( 1)) ( 1)

t t

t t

i i

y a b t t i
y a b t t i

a b t a b t




     
      
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Model 6 

(Exponential + Exponential-restricted) 

1 1

22

1 1 2 2

log( ) , 1940, ,
log( ) , 1, ,2009
s.t.  exp( ( 1)) exp( ( 1))

t t

t t

i i

y a b t t i
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a b t a b t
t

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     

  
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Model 7 

(Linear + Exponential-restricted) 

1 1

22

1 1 2 2

, 1940, ,
log( ) , 1, ,2009
s.t.  ( 1) exp( ( 1))

t t

t t

i i
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

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      
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Model 8 

(Linear + Linear-restricted) 

1 1

22

1 1 2 2

, 1940, ,
, 1, ,2009

s.t.  ( 1) ( 1)

t t

t t

i i

y a b t t i
y a b t t i

a b t a b t




     
      

      
  

 

3. Data and Results 

This study focuses on the national level US average yields per acre for eight major field crops: 

corn, soybean, wheat, cotton, sorghum, oats, barley and hay. Their yield data for the years 1940-

2009 are collected from the Quick Stats data set developed by the National Agricultural Statistics 

Service of US Department of Agriculture. This amounts to a sample size of 70 for each series. 

The data are plotted in Figure 1.  
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Figure1: National Average of Yield of 8 major US crops of 1940-2009 

 

We first present the results of test with one unknown structural break in crop yield 

growth in Table 2. A statistically significant break in the yield growth rates is found for all crops 

but soybean, most in the late 1960s or early 1970s. With the break years, the pre-break and post-

break growth rates of crop yield per acre based on the ARIMA model are also estimated. For six 

out of the seven crops a structural break is found with estimated growth rates after the break 50% 

or less than the growth rates before the break. The yield growth rate for hay drops to almost zero 

after 1982.  

In Table 3 we further test the null hypothesis of one break vs. the alternative hypothesis 

of a second break.  For all of the crops investigated, we find that the null hypothesis cannot be 

rejected at the 90% confidence level.   
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Table 2: Test with One Unknown Break SupFt Date in Crop Yield 

Crop SupFt Break Year of SupFt
 

Initial 

Intercept 

μ 

Intercept 

Shift 

θ- γ*TB 

Initial Slope 

τ 

Slope 

Shift 

γ 

Growth 

 Rate  

Pre-Break 

Growth 

 Rate  

Post-Break 

Soybean 5.90 No -- -- -- -- -- 1.26% 1.26% 

Corn 28.49 Yes 1974 -88.76 53.90 0.047 -0.027 3.95% 1.69% 

Cotton 14.81 Yes 1966 -54.32 39.17 0.030 -0.020 4.39% 1.44% 

Wheat 16.23 Yes 1973 -38.36 27.21 0.021 -0.014 2.82% 0.94% 

Sorghum 15.92 Yes 1967 -75.41 70.51 0.039 -0.035 6.57% 0.58% 

Barley 12.16 Yes 1962 -0.137 0.90 0.008 -0.0004 1.29% 1.22% 

Oats 20.36 Yes 1973 -44.49 33.41 0.020 -0.013 2.0% 0.70% 

Hay 20.94 Yes 1982 -22.67 21.77 0.012 -0.011 1.73% 0.09% 

Critical values at the 90%, 95% and 99% level are 11.25, 13.29 and 17.51 respectively. 

 

Table 3: Test with Two Unknown Breaks vs. One Unknown Break SupF(2|1) in Crop Yield 

Crop SupFt Year of 1st Break Year of 2nd Break 

Corn 9.32 1974 1957 

Cotton 5.07 1966 1980 

Wheat 4.59 1973 1956 

Sorghum 5.28 1967 1956 

Barley 0.64 1962 1983 

Oats 6.87 1973 1956 

Hay 3.19 1982 1966 

Critical values at the 90%, 95% and 99% level are 12.79, 14.50 and 17.98 respectively. 

 

Estimation results of the classical method are presented in Table 4. Generally, crop yield 

growths can be modeled well with exponential process. With the exception of barley, the 

estimated break dates are within four years of the ones estimated using the ARIMA method; all 

but two break dates are within two years. Yield growth rate estimates are different because 

autocorrelation is taken into account in the ARIMA method but not in the classical method. 

However, differences in post-break yield growth rate estimations are qualitatively quite small.  

Table 4: Result Summary of Estimated Crop Yield Growth Rates 

 

Exponential 

growth,  

no breakpoint 

Model 2 

Exponential+Exponential_unrestricted 

with breakpoint 

Model 6 

Exponential+Exponential_restricted 

with breakpoint 

Crop Soybeans Corn Cotton Wheat Sorghum Barley Oats Hay 

Yield Growth 

Rate Before 

breakpoint 

1.28% 3.67% 3.4% 2.3% 5% 2% 1.8% 1.6% 

Break Year  1973 1965 1972 1966 1979 1969 1984 

Yield Growth 

Rate after 

breakpoint 

 1.75% 1.5% 0.9% 0.5% 1.0% 0.65% 0.07% 
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Although the Exponential+Exponential model has been identified as the best model for 

most of crops in the validation stage, it should be noted that when the whole series of data is used 

for estimation, the Exponential+Linear model performs just as well and gives the same break 

date estimation for corn, wheat, sorghum, oats and hay. In Table 5, yield growth forecasts using 

both methods are presented for these crops. As differences in forecasts resulting from the two 

models increase with time, crop yield gains will be much smaller in the far future were they 

growing linearly. Figure 2 shows the difference in corn yield forecast in 2035 between the 

exponential model and the linear model. They may well have opposite implications in terms of 

the environmental impacts of the bioenergy and climate change mitigation policies. Hence, we 

recommend that long term policy assessments include the linear growth case as a pessimistic 

scenario.  

Table 5 Annual Yield Growth Forecasts (Exponential Growth vs. Linear Growth) 
 Corn Soybean Wheat Sorghum Oats Hay 

Exponential Growth 1.75% 1.28% 0.9% 0.5% 0.65% 0.07% 

Linear Growth 2.02 bushel/acre 0.36 bushel/acre 0.37 bushel/acre 0.20 CWT/acre 0.35 bushel/acre 0.003 ton/acre 

Figure 2 Corn Yield Forecast to 2035(green line and red line denote forecasting based on the 

exponential and linear model respectively) 

 

 

4. Conclusion 

This paper has examined the yield growth trend of 8 major US crops using both the ARIMA 

method and the classical method. We found that all but soybean have experienced slowdowns 

during the period of late 1960s to early 1980s. The reductions in crop yield growth rates are 

statistically significant—most of the post-break growth rates are found to be lower than the pre-

break growth rates by 50% or more. In particular, the annual growth rate for corn, the most 

important crop in the nation, has fallen from 3.67% to 1.75%.   

Yield growth rate estimates obtained using the two different methods do not differ greatly, 

especially the post-break rates. Furthermore, a linear growth model fits the post-break data 

equally well for some of the crops. In view of the tight supply demand balance of the agricultural 

market, we believe that long-term policy assessments would benefit from the inclusion of an 

optimistic scenario using the estimated exponential growth rates and a more pessimistic scenario 

in which the linear crop yield growth rates are used. 
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