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1. Introduction 
 
The importance of allowing for structural breaks in unit root tests is now well documented in the 
literature.  Whereas Perron (1989) assumed that the break point was known a priori, or 
exogenously given, the subsequent literature has allowed for the break to be determined from the 
data.  We refer to such tests as endogenous break unit root tests. 
  An important issue in many earlier endogenous break unit root tests is that they omit the 
possibility of a unit root with break.  However, if a break occurs in the presence of a unit root 
then two undesirable outcomes can occur.  First, in the presence of a break these earlier tests 
exhibit “spurious rejections” that increase with the magnitude of the break; see, for example, the 
discussion in Nunes, Newbold, and Kuan (1997), Lee and Strazicich (2001), and Byrne and 
Perman (2007).  As a result, researchers may incorrectly conclude that a time series is stationary 
with break, or “trend-break stationary,” when in fact the series is nonstationary with break.  It is 
important to note that this nuisance parameter problem is restricted to the endogenous break unit 
root tests and does not occur in exogenous break unit root tests.  For example, the asymptotic 
distribution of Perron’s (1989) exogenous break unit root test does not depend on the magnitude 
of the break, even when the break occurs in the presence of a unit root. 
  A second consequence of utilizing many earlier endogenous break unit root tests is that 
the break point is incorrectly determined.  As shown in Lee and Strazicich (2001), these earlier 
tests tend to identify the break one period prior to the true break where bias in estimating the 
persistence parameter is maximized and spurious rejections are the greatest.  Moreover, this 
problem occurs under both the null and alternative hypotheses.1  In the present paper, we utilize 
the theoretical findings in Lee and Strazicich (2003) and develop an endogenous one-break unit 
root test that is free of the above problems.  Similar to the two-break minimum LM unit root test, 
the one-break test is free of bias and spurious rejections under the null and alternative 
hypotheses.  Moreover, it is important to note that there can be many situations where a one 
break test is preferred since including unnecessary breaks can lead to loss of power.2 
 The remainder of the paper is organized as follows.  In Section 2, we discuss properties 
of the minimum LM unit root test in the presence of a structural break.  Section 3 describes the 
asymptotic properties of the one-break LM unit root test and derives invariance results.  Section 
4 provides simulations to examine finite sample properties of size and power.  We summarize 
and conclude in Section 5. 

                                                 
1 The problem of bias and spurious rejections in endogenous break unit root tests is not restricted to 
behavior under the null.  In the presence of a break, the null distribution shifts leftward.  As a result, the 
null hypothesis is rejected too often even when the alternative is true unless size-corrected critical values 
are adopted.  Thus, while many earlier endogenous break unit root tests can appear more powerful, this 
outcome is often simply a reflection of the size distortions under the null. 
2 It would be helpful to note that the present paper complements the work of Hassler and Rodrigues 
(2004) who considered seasonal unit root tests with structural breaks.  They note that the LM type 
seasonal unit root tests are asymptotically robust to seasonal mean shifts of finite magnitude and can 
overcome the problems of size distortions and power reduction found in other types of seasonal unit root 
tests when structural breaks are present.  Nunes and Rodrigues (2011) also considered LM type tests for 
seasonal unit roots in the presence of a break in trend under the null and alternative hypotheses. 
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2.  Testing procedures 
 
Consider the following data generating process (DGP) based on the unobserved components 
model: 
 
  yt = δ'Zt + Xt ,   Xt = βXt-1 + εt  ,      (1) 
 
where Zt contains exogenous variables.  The unit root null hypothesis is described by β = 1.  If Zt 
= [1, t]', then the DGP is the same as that shown in the no break LM unit root test of Schmidt 
and Phillips (1992, hereafter SP).  We consider two models of structural change.  “Model A” is 
known as the “crash” model, and allows for a one-time change in intercept under the alternative 
hypothesis.  Model A can be described by Zt = [1, t, Dt]', where Dt = 1 for t ≥ TB+1 and zero 
otherwise, TB is the time period of the structural break, and δ' = (δ1, δ2, δ3).

3  “Model C” allows 
for a shift in intercept and change in trend slope under the alternative hypothesis and can be 
described by Zt = [1, t, Dt, DTt]', where DTt

 = t - TB for t ≥ TB + 1, and zero otherwise. 
 According to the LM (score) principle, unit root test statistics are obtained from the 
following regression: 
 

  ∆yt = δ’∆Zt + φS∼t-1 + ut  ,        (2) 
 

where S∼t = yt - xψ∼   - Ztδ
∼, t=2,..,T; δ∼ are the coefficients in the regression of ∆yt on ∆Zt; and ψ∼x is 

the restricted MLE of ψx (≡ ψ + X0) given by y1 - Z1δ
∼.  Note that the testing regression (2) 

involves ∆Zt instead of Zt.  Therefore, ∆Zt is described by [1, Bt]′ in Model A and [1, Bt, Dt]′ in 
Model C, where Bt = ∆Dt and Dt = ∆DTt.  Thus, Bt and Dt correspond to a change in intercept and 
trend under the alternative, and to a one period jump and (permanent) change in drift under the 
null hypothesis, respectively.  The unit root null hypothesis is described by φ = 0 and the LM 
unit root test statistic is given by: 
 

  τ∼ = statistic testing the null hypothesis, φ = 0.     (3) 
 
The location of the break (TB) is determined by searching all possible break points to find the 
minimum (i.e., the most negative) unit root test statistic as follows: 
 

  Inf τ∼(λ∼) = Inf
 λ

 τ∼(λ), where λ =  TB/T and λ ∈ [0,1].       (4) 

 

                                                 
3 When Zt = [1, t, DTt*]', the model becomes the “changing growth” Model B, where DTt* = t for t 
≥ TB+1 and zero otherwise.  Model B will not be examined here as most economic time series can be 
adequately described by Model A or C (see, for example, Table VII in Perron, 1989). 
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To correct for autocorrelated errors, we include augmented terms ∆S∼t-j, j = 1,..., k in (2) as in the 
standard ADF test.  We utilize a general to specific procedure to determine the optimal number 
of k augmented terms.4 
 

3.  Asymptotic and invariance properties 
 
To examine the asymptotic distribution of the minimum LM unit root test, we define V(r) as a 
standard Brownian bridge over the interval [0, 1], and V_(r) as the demeaned Brownian bridge 
(see SP, equation (23)).  The asymptotic distribution of the minimum LM unit root test in Model 
A is described as follows.5 
 
Theorem 1.  Assume that (i) the data are generated according to (1) with Zt = (1, t, Dt)', (ii) the 
innovations εt satisfy the regularity conditions of Phillips and Perron (1988, p. 336), and (iii) 
TB/T → λ  as T → ∞.  Then, under the null hypothesis that β = 1, 
 

  Inf τ∼(λ∼) → Inf
 λ

 [-
 1 
 2 ⌡⌠0

1 V_(r)2]-1/2   .       (5) 

 
Proof in Appendix. 6 
 An important implication of Theorem 1 is that the asymptotic distribution in Model A 
does not depend on the size (δ) or location (λ =  TB/T) of the break under the null.  As a result, in 
the presence of a break under the null it is not necessary to simulate new critical values in 
empirical applications since critical values are invariant to the break.  This outcome follows from 
the invariance properties in the exogenous one-break LM unit root test of Amsler and Lee (1995) 
and is due to the method of de-trending in the LM test.  As a result, the one-break minimum LM 
unit root test is free of the spurious rejections found in the earlier ADF-type endogenous break 
unit root tests.  For example, in these earlier tests the asymptotic null distribution in Model A 
depends on the location of the break (λ) through the projection residual W(λ, r) of a Brownian 
motion projected onto the subspace generated by [1, r, d(λ,r)], where d(λ,r) = 1 if r > λ and 0 
otherwise.  To make these tests more practical, the authors typically omit Bt under the null and 
assume d = 0 in (6a) and α2 = 0 in (6b) as follows: 
 

                                                 
4 We determine k by following the general to specific procedure suggested in Perron (1989).  We begin 
with a maximum number of lagged first-differenced terms k = 8 and examine the last term to see if it is 
significantly different from zero at the 10% level (critical value in an asymptotic normal distribution is 
1.645).  If insignificant, the maximum lagged term is dropped and the model re-estimated with k = 7 
terms.  The procedure is repeated until either the maximum term is found or k = 0, at which point the 
procedure stops.  This technique has been shown to perform well as compared to other data-dependent 
procedures to select the number of augmented terms in unit root tests (Ng and Perron, 1995). 
5  Throughout the paper, the symbol “→” denotes weak convergence of the associated probability 
measure. 
6 See Lee and Strazicich (2003) for a proof of Model C in the context of two breaks in level and trend.  
The proof is similar for the Model C version of the one break minimum LM unit test and is omitted here 
to conserve space. 
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Null    yt = µ0 + dBt + yt-1 + vt      (6a) 
 
Testing Regression  yt = α0 + α1t + α2Bt + α3Dt + βyt-1 +∑ 𝑐𝑗𝑘

𝑗=1 ∆yt-j + et  .  (6b) 
 
For example, the Zivot and Andrews (1992, ZA hereafter) minimum one-break unit root test 
statistic depends on the magnitude of the break under the null and exhibits spurious rejections 
that increase as the break size increases.  Thus, while the ZA test is valid if d = 0, the test can 
lead to incorrect inference when d ≠ 0.  Lee and Strazicich (2001) investigate this issue further, 
and find that regardless of whether Bt is included or excluded in the ZA test regression spurious 
rejections remain.  The problem is that these ADF-type endogenous break unit root tests tend to 
select the break point incorrectly at TB-1, where bias in estimating β, the coefficient that tests for 
a unit root, and spurious rejections are the greatest. 7 
 While accuracy of estimating the break point with the minimum LM unit root test does 
not matter under the null, it does matter when the alternative is true.  Namely, as Perron (1989) 
initially showed, failure to allow for an existing structural break leads to a bias in unit root tests 
that makes it more difficult to reject a false null hypothesis.  If the magnitude of the break is 
large, the minimum LM unit root test estimates the break point fairly well.  When the magnitude 
of the break is small, the break point cannot be accurately estimated, but the test does not suffer a 
significant loss of power in this case as this is similar to having no break.8 
 

4.  Simulation results 
 
This section provides critical values and simulation results for the one-break minimum LM unit 
root test.  To perform our simulations, we generate pseudo-iid N(0,1) random numbers using the 
Gauss (version 11.0) RNDNS procedure, where the DGP has the form described in equation (1).  
Initial values of y0 and ε0 are assumed to be zero and σε

2 is assumed to equal 1.  All simulations 
are performed using 5,000 replications with T = 100 and a break at TB = 50.  Critical values for 
Models A and C are provided in Table 1.  Since critical values for Model C depend (somewhat) 
on the location of the break, we provide critical values for a variety of break locations.  Critical 
values at additional break points can be interpolated. 
 
 
 
 
 
 

                                                 
7 In an alternative approach, Harvey, Leybourne, and Newbold (2001) suggest modifying the one-break 

ADF-type endogenous unit root test by moving the break point forward one period to T̂B * = 1 + T̂B , 

where T̂B * is the revised break point and T̂B is the estimated break. 
8 Asymptotic properties for the one-break minimum LM unit root test are similar for Model C, except that 
the test statistic is no longer invariant to the location of a break under the null.  However, simulation 
results show that even though the minimum LM test for Model C is not invariant to the location of a 
break under the null, it is nearly so and remains free of spurious rejections.  See Lee and Strazicich (2003) 
for discussion of the asymptotic properties of Model C in the context of two breaks in level and trend. 
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Table 1.  Critical Values of the One-Break Minimum LM Unit Root Test 
 

Model A 
1% 5% 10% 

-4.239 -3.566 -3.211 
 

Model C 
λ 1% 5% 10% 
.1 -5.11 -4.50 -4.21 
.2 -5.07 -4.47 -4.20 
.3 -5.15 -4.45 -4.18 
.4 –5.05 -4.50 -4.18 
.5 -5.11 -4.51 -4.17 

Note:  All critical values were derived in samples of size T = 100.  Critical values in 
Model C (intercept and trend break) depend (somewhat) on the location of the break (λ = 
TB/T) and are symmetric around λ and (1-λ).  Model C critical values at additional break 
locations can be interpolated. 

 
  Properties of size and power, and accuracy of estimating the break, are examined in Table 
2 for Model A.9  Simulations are first performed for the case where the unit root null hypothesis 
is true (β = 1), and then where the alternative is true (β = 0.8).  The size (frequency of rejections 
under the null) and power (frequency of rejections under the alternative) properties of the test are 
evaluated at the 5% significance level in each case.10 
 

Table 2.  Rejection Rates and Frequency of Estimated Break Points 
 

 
Test 

 
δ3 

 
5% 
Rej. 

 
Emp. 
Crit. 

Frequency of Estimated Break Points in the Range 
TB-5 ~ 
TB -2 

TB-1 TB TB+1 TB+2 ~ 
TB+5 

TB± 10 TB± 30 

(a) Size Under the Null (β = 1) 
LM 0 .057 -3.62 .048 .015 .013 .010 .054 .259 .721 

 4 .046 -3.53 .020 .006 .325 .005 .019 .446 .809 
 6 .050 -3.56 .023 .013 .401 .009 .022 .519 .832 
 8 .049 -3.56 .035 .019 .448 .018 .035 .598 .861 
 10 .039 -3.48 .051 .031 .480 .029 .046 .682 .877 

(b) Power Under the Alternative (β = 0.8) 
LM 0 .710 -5.20 .057 .012 .014 .015 .062 .305 .745 

 4 .581 -4.91 .040 .026 .553 .027 .048 .746 .907 
 6 .537 -4.70 .041 .028 .737 .028 .047 .908 .962 
 8 .492 -4.64 .041 .018 .834 .017 .036 .967 .982 
 10 .454 -4.63 .026 .014 .898 .013 .024 .985 .991 

    Note:  All simulations were performed for Model A in samples of size T = 100. 

                                                 
9 To conserve space, size and power properties are reported only for Model A.  For detailed simulations of 
Model C in a two-break framework please see Lee and Strazicich (2003). 
10 Copies of the computer code to run the minimum LM unit root test for Model A and Model C are 
available on the web site http://www.cba.ua.edu/~jlee/gauss/. 
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 The size property simulation results are reported in Table 2 (a).  For example, with no 
break under the null (δ3 = 0), column 3 indicates a 5.7% rejection rate, which is close to the 
nominal size of 5%.  In the presence of a unit root with break (i.e., δ3 ≠ 0), the LM unit root test 
statistic is relatively stable with approximately correct size across all break magnitudes.  
Desirable size properties can also be observed when examining the 5% empirical critical values 
in column 4, where the critical values are mostly invariant to the magnitude of a break under the 
null.  Overall, we see that the one-break minimum LM unit root test has approximately the 
correct size and is free of spurious rejections in the presence of a unit root with break.  This is 
true even for a relatively large break size of δ3 = 10. 
 The power property simulation results are reported in Table 2 (b).  For the case of no 
break, δ3 = 0, we see that the power to reject the null when the alternative is true is relatively 
high at 71%.  As the magnitude of the break increases, the power of the test decreases (from 58% 
when δ3 = 4 to 45% when δ3 = 10), but remains relatively strong. 
 We next examine the accuracy of estimating the break point.  Frequency of estimating the 
break point at different locations is shown in columns 5-11 in Table 2 (a) and (b).  Setting the 
break at TB = 50 in the DGP, the frequency of estimating the break at TB – 5 to TB – 2, TB – 1, TB, 
TB + 1, TB + 2 to TB + 5, TB ± 10, and TB ± 30 is reported for different magnitudes of the break 
term, δ3.  As the magnitude of a break under the null increases, the frequency of estimating the 
break point correctly at TB increases (becoming 48% at δ3 = 10).  Under the alternative, the story 
is similar, only more pronounced.  As the size of the break increases, the minimum LM unit root 
test estimates the break point accurately with increasing frequency (90% at δ3 = 10).  These 
results make a sharp contrast when compared with the earlier endogenous one-break unit root 
tests that tend to estimate the break point incorrectly where bias and spurious rejections are the 
greatest; see Lee and Strazicich (2001). 
 

5. Conclusion 
 
This paper formally considers a minimum LM unit root test that endogenously determines one 
structural break in level and trend.  Properties of the test were described and critical values 
presented.  The one-break minimum LM unit root test tends to estimate the break point correctly 
and is free of spurious rejections.  By combining the one-break LM unit root test presented here 
with the two-break LM unit root test in Lee and Strazicich (2003), researchers can more 
accurately consider the correct number of breaks in unit root tests. 
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Appendix 
 
Proof of Theorem 1 
 
We employ the functional limit theory used in Phillips and Perron (1988) and utilize the results 
of Zivot and Andrews (1992, ZA hereafter) on continuity of the composite functional. First, we 
consider the following regression: 
 

  ∆yt  = δ(λ)'∆Zt(λ) + φ(λ) S∼t-1(λ) + et  , t = 2,..,T  ,   (A.1) 

where S∼t(λ) = ∑j=2

t εj - (δ∼(λ)' - δ(λ)')(Zt(λ)- Z1(λ)), and the vector Zt(λ) includes deterministic 

terms such that Zt(λ) = [1, t, Dt]′.  Let St = ∑j=2

t εj and [rT] be the integer part of rT, for r ∈ [0,1].  

Following a procedure similar to ZA, we let P∆Ζ(λ) = ∆zT(λ)[∆zT(λ)′∆zT(λ)]-1∆zT(λ), and M∆Ζ(λ) 
= I - P∆Ζ(λ), where ∆zT(λ) = (∆z1,T(λ),..,∆zT,T(λ))′.  Pre-multiplying (A.1) by M∆Ζ(λ), we obtain: 
 

  M∆Ζ(λ)∆Y = φ(λ) M∆Ζ(λ)S∼1(λ) + M∆Ζ(λ) e  ,     (A.2) 
 

where ∆Y = (∆y2,.., ∆yT)′, S∼1(λ) = (S∼1(λ),..,S∼T-1(λ))′ and e = (e2,..,eT)′.  Then, the Inf τ∼(λ∼) statistic 
can be written as: 

 Inf τ∼(λ∼) = Inf
 λ

  [T-2S∼1(λ)′ M∆Ζ(λ) S∼1(λ)]-1/2[T-1S∼1(λ)′ M∆Ζ(λ) e] / sT(λ)  ,  (A.3) 

where sT(λ) is the corresponding standard error of the regression.  We then obtain: 

 T-2S∼1(λ)′ M∆Ζ(λ) S∼1(λ) = σ2
⌡⌠0

1[ST(r) - P∆Ζ(λ) ST(r)]2 dr  ,     (A.4) 

 T-1S∼1(λ)′ M∆Ζ(λ) e = σ2
⌡⌠0

1ST(r)dST(r) - σ2
⌡⌠0

1P∆Ζ(λ) ST(r)dST(r)  .   (A.5) 

 The effect of applying M∆Ζ(λ) or P∆Ζ(λ) to the above expressions is twofold; one is to 
demean the process, and the other is to de-trend the structural dummy effect.  We can establish 
the result that the effect of de-trending the structural break in the minimum LM unit root test 
vanishes asymptotically.  To see this, we note that: 

 ⌡⌠0
1∆zT (λ,s)∆zT (λ,s)′ds = 



 1  0 

 0  0   .       (A.6) 

This is so because the term Bt in ∆Zt is asymptotically negligible, whereas ∆Zt = [1, Bt]′.  Then, it 
is clear that: 
 ⌡⌠0

1[ST(r) - P∆Ζ(λ) ST(r)]2 dr = σ2
⌡⌠0

1V_T(r)2 dr  ,      (A.7) 

where V_T(r) is the demeaned Brownian bridge, V_T(r) = VT(r) – ⌡⌠0
1VT(r)dr.  Therefore, using the 

results in Schmidt and Phillips (1992, p. 286) and (A.7), we can establish the limiting 
distribution of the minimum LM unit root test.  In particular, the test does not depend on λ.  The 
remaining procedure of the proof is to show continuity of a composite function.  We simply 

follow ZA and express the Inf τ∼(λ∼) t-statistic as: 
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 Inf τ∼(λ∼) = g[ST(r), V_T(r), ⌡⌠0
1ST(r)dST(r), ⌡⌠0

1P∆Ζ(λ) ST(r)dST(r), s2] + op(1)  ,  (A.8) 

where g = h*[h[H1(•), H2(•), sT(λ)]], with h*(m) = Inf m(•) for any real function m(•), and h[m1, 
m2, m3] = m1

-1/2m2/m3.  The functionals H1 and H2 are defined by (A.4) and (A.5).  Continuity of 
h* and h is proved in ZA.  The case with Zt(λ) = [1, t, Dt, tDt]′ can be similarly considered while 
the expression for V_T(r) is changed accordingly as shown in Lee and Strazicich (2003). 
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