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1. Introduction

In the spatial model of majority voting, Davis, DeGroot, and Hinich (1972) assume
an odd number of voters have Euclidean preferences, and they show that if the majority
core (the set of alternatives that cannot be improved upon by any majority coalition of
voters) is nonempty, then the uniquely defined “core voter” is decisive: one alternative is
preferred to another by a majority of voters if and only if it is preferred by the core voter.
In the same spirit, Rothstein (1990,1991) defines the notion of order restricted preferences
and establishes conditions under which some voter is decisive in the above sense.1 Banks
and Duggan (2006) extend the former result to voting over lotteries: assuming voters have
expected utility preferences over lotteries with quadratic utilities, one lottery is preferred to
another by a majority of voters if and only if it is preferred by the core voter. In the context
of a one-dimensional model with quadratic utilities, Lemma A.1 of Cho and Duggan (2003)
shows that voter preferences over lotteries are order restricted, which implies the existence
of a decisive voter. In this note, I generalize the above conditions for existence of a voter
who is decisive over lotteries, relaxing the assumption of quadratic utility and allowing for
general voting rules. I do not impose structure on the set of alternatives, but rather on the
form of the parameterization of voter utility functions.

As discussed in Banks and Duggan (2006), the decisiveness result—though seemingly a
technical lemma in social choice—is useful in the analysis of dynamic models of bargain-
ing and elections, where voting plays an important role yet can significantly complicate the
analysis. Specifically, the existence of an individual who is decisive over lotteries allows a
voting game to be reduced to a decision problem of the decisive voter, improving analytical
tractability in theoretical work and facilitating closed form solutions in modeling applica-
tions. The framework of this note is static, whereas in dynamic voting applications, the
alternatives under consideration are typically sequences (or more generally, lotteries over
sequences) of outcomes over time. Nevertheless, the decisiveness result does apply to quite
general voting games in which the alternatives considered possess a temporal (as well as
stochastic) aspect.

To see how the existence of a voter who is decisive over lotteries is relevant to dynamic
voting games, suppose a majority vote is held to decide between two options: one is to
choose an alternative x, which is implemented in the current period and remains in place
in all future periods; the other is to reject x, in which case the current outcome is y and
future outcomes are uncertain. For simplicity, suppose that if y is chosen today, then in each
subsequent period, x is implemented with probability p (and remains in place thereafter),
and y is chosen with probability 1−p (and the same lottery is held in the subsequent period).
Assume that preferences over streams of outcomes for a voter i are given by per-period utility
ui and geometric discounting with a common discount factor δ ∈ [0, 1). After normalizing
by 1 − δ, the expected discounted utility to voter i from accepting x is simply ui(x). The

1See also Gans and Smart (1996) for analysis of a single-crossing condition that is equivalent to order
restriction.
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expected payoff from rejecting x is:

(1 − δ)ui(y) + δ









pui(x)+

(1 − p)



(1 − δ)ui(y) + δ





pui(x)+

(1 − p)
[

(1 − δ)ui(y) + δ
[

· · ·

Note that the terms multiplying ui(x) and ui(y), respectively, sum to

α =
δp

1 − δ + δp
and β =

1 − δ

1 − δ + δp
,

so the expected discounted utility for the voter is αui(x) + βui(y), which is mathematically
equivalent to the expected utility from the lottery with probability α on x and β = 1−α on
y. Thus, if some voter is decisive over lotteries, then a majority of voters will pass x if and
only if it is preferred by the decisive voter, and the voting game can be analyzed simply as
a decision problem of the decisive voter.

2. Majority Voting

Consider an odd number n of voters who have expected utility preferences over lotteries
on a set X of outcomes.2 Assume the preferences of each voter i are given by a von-Neumann-
Morgenstern representation of the form

Ui(x) = αiv(x) − c(x) + βi, (1)

where the functions v: X → ℜ and c: X → ℜ are common to all voters, and αi, βi ∈ ℜ are
parameters that may vary across voters. For simplicity, assume α1 < α2 < · · · < αn, and let
m = n+1

2
be the voter with the median parameter. Note that for all simple lotteries λ and

µ, the function δ:ℜ → ℜ defined by

δ(α) =

(

∑

x∈X

[αv(x) − c(x)]λ(x)

)

−

(

∑

x∈X

[αv(x) − c(x)]µ(x)

)

is either strictly increasing in α, strictly decreasing in α, or constant in α. This follows
directly from the fact that it is affine linear in α.

From this it follows that the median voter, m, is decisive over lotteries, in the sense that
for all λ and µ, a majority of voters strictly prefer λ to µ if and only if voter m strictly
prefers λ to µ. Indeed, let λ and µ be any lotteries, and first assume that a majority of
voters strictly prefer λ to µ, so that for a majority of voters i, we have

∑

x∈X

Ui(x)λ(x) >
∑

x∈X

Ui(x)µ(x),

2The set X may be infinite, but for the sake of simplicity we consider only simple lotteries, which have
finite support. All results continue to hold with X replaced by an abstract measure space and summation
replaced by integration with respect to arbitrary probability measures.
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or equivalently, δ(αi) > 0. If this does not hold for the median voter m, then there exist
voters i and j with αi < αm < αj such that δ(αi) > 0 and δ(αj) > 0. But since δ(αi) > 0
and δ(αm) ≤ 0, it must be that δ is strictly decreasing, but then δ(αj) < 0, a contradiction.
Therefore, δ(αm) > 0, as desired. Conversely, assume that the median strictly prefers λ to
µ, so δ(αm) > 0. If δ is strictly increasing, then we have δ(αi) > 0 for all i with αm < αi; if
δ is constant, then we have δ(αi) > 0 for all i; and if δ is strictly decreasing, then we have
δ(αi) > 0 for all i with αi < αm. In all cases, a majority of voters strictly prefer λ to µ.
Thus, we have established:

Proposition 1 Assume voter preferences have the form in (1). Then the median voter
is decisive over lotteries.

A special case is the one-dimensional spatial model with quadratic utilities, where X = ℜ
and each voter i has a von Neumann-Morgenstern representation ui(x) = −(x̂i − x)2. Note
that ui(x) = −x̂2

i + 2x̂ix − x2, so we can set αi = 2x̂i, v(x) = x, c(x) = x2, and βi = −x̂2
i

to obtain a special case of the above framework. For another possibility, let X = ℜ++ and
assume the preferences of voter i are given by the function αi ln(x) − x2

n
, as might be the

case if x is the level of a public good, and the cost of public good is quadratic and divided
equally among voters. Of course, we set v(x) = ln(x) and c(x) = x2/n to obtain this model
as a special case.

In the multidimensional spatial model, where X ⊆ ℜd, and with quadratic utility, voter
i’s ideal point is a vector x̂ = (x̂i

1, . . . , x̂
i
d). To extend the analysis to this model, we need to

allow for multidimensional parameters. The preferences of voter i are now given by

Ui(x) = αi · v(x) − c(x) + βi, (2)

where the functions v: X → ℜd and c: X → ℜ are common to all voters, and αi =
(αi

1, . . . , α
i
d) ∈ ℜd and βi ∈ ℜ are parameters that may vary across voters. With mul-

tidimensional parameters, we assume the condition α-symmetry, which means that voters
other than n are paired {1, 2}, {3, 4}, . . . , {n − 2, n − 1} so that the parameter of voter n
belongs to the convex hull of the parameters in each pair, i.e., for all j = 1, . . . , n−2

2
, we have

αn ∈ co{α2j−1, α2j}. Assuming that n is the unique voter for which this condition holds, we
refer to n as the median voter in all directions.

Proposition 2 Assume voter preferences have the form in (2) and α-symmetry holds.
Then the median voter in all directions is decisive over lotteries.

To prove the proposition, consider any λ and µ. For each voter pair, indexed j =
1, . . . , n−2

2
, define the function δj: [0, 1] → ℜ by

δj(θ) =
∑

x∈X

[(θα2j−1 + (1 − θ)α2j) · v(x) − c(x)][λ(x) − µ(x)].

Assume that a majority of voters strictly prefer λ to µ, and suppose this is not true of the
median in all directions. Since a majority of voters strictly prefer λ to µ, there exists j such
that both voters 2j − 1 and 2j strictly prefer λ to µ, which implies δj(0) > 0 and δj(1) > 0.
By α-symmetry, there exists θ ∈ [0, 1] such that αn = θα2j−1 + (1 − θ)α2j. Then δj(θ) > 0,
which implies that the median in all directions pefers λ, a contradiction. Conversely, assume
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the median in all direction strictly prefers λ to µ. If this is not true for n−1

2
other voters, then

there exists j such that voters 2j − 1 and 2j weakly prefer µ to λ, which implies δj(0) ≤ 0
and δj(1) ≤ 0, but then α-symmetry implies, as above, that the median in all directions
weakly prefers µ, a contradiction.

In the multidimensional spatial model, Plott’s (1967) theorem implies that at a majority
core alternative (if one exists), one voter must have a zero gradient, and the gradients of
the other voters’ utility functions must satisfy a strong radial symmetry condition. For the
special case of quadratic utility, this reduces to the condition that the core alternative is the
ideal point of one voter (the median in all directions, say n) and that the other voters can
be paired so that the core alternative belongs to the convex hull of ideal points of each pair
of voters. That is, the ideal points of the voters satisfy α-symmetry.

3. General Voting Rules

We first extend the analysis in Proposition 1 to more general voting rules and, in so
doing, establishes a result on order restriction of voter preferences. We say voter preferences
over lotteries are order restricted if for all lotteries λ and µ, and for all voters i, j, and k
with αi ≤ αj ≤ αk, if

sign

(

∑

x∈X

Ui(x)[λ(x) − µ(x)]

)

= sign

(

∑

x∈X

Uk(x)[λ(x) − µ(x)]

)

then

sign

(

∑

x∈X

Uj(x)[λ(x) − µ(x)]

)

= sign

(

∑

x∈X

Uk(x)[λ(x) − µ(x)]

)

.

That is, if two voters have the same preference over two lotteries, then all voters “between”
them agree as well. We have shown in the argument for Proposition 1 that under (1), the
difference in expected utility is monotonic in α, which delivers the following result:

Proposition 3 Assume voter preferences have the form in (1). Then voter preferences
over lotteries are order restricted.

The preceding proposition does not explicitly establish a decisiveness result, but it con-
tains the antecedents of one. Generalizing majority rule, let N denote the set of all voters
and C ⊆ N a coalition of voters, and assume the voting rule is given by a collection W of
winning coalitions satisfying: (i) if C ∈ W and C ′ ⊇ C, then C ′ ∈ W, and (ii) if C, C ′ ∈ W,
then C∩C ′ 6= ∅. The voting rule is strong if for all coalitions C, either C ∈ W or N \C ∈ W.
Majority rule, e.g., can be represented by a strong voting rule when n is odd by specifying
that W consist of all majority coalitions. When W is strong, it is known that there exists a
unique parameter value α such that

{i | αi ≥ α} ∈ W and {i | αi ≤ α} ∈ W,

and that α = αi for some voter i. Assuming this is true for just one voter, we refer to i as
the core voter. Extending earlier terminology, we say voter i is decisive over lotteries if for
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all λ and µ,

∑

x∈X

Ui(x)λ(x) >
∑

x∈X

Ui(x)µ(x)

holds if and only if there is some C ∈ W such that

for all j ∈ C,
∑

x∈X

Uj(x)λ(x) >
∑

x∈X

Uj(x)µ(x).

Standard arguments (which are omitted) yield the following:

Corollary Assume voter preferences have the form in (1). If the voting rule is strong,
then the core voter is decisive over lotteries.

Next, we extend Proposition 2 to allow for a general voting rule W, as above. We say
generalized α-symmetry holds if αn belongs to the convex hull of parameters of members
of all winning coalitions, i.e., for all C ∈ W, we have αn ∈ co{αj | j ∈ C}. Assuming
n is the unique voter for which this condition holds, we refer to voter n is the core voter.

This is consistent with the usage of this term for the special case of the one-dimensional
parameterization.

Proposition 4 Assume voter preferences have the form in (2) and generalized α-
symmetry holds. If the voting rule is strong, then the core voter is decisive over lotteries.

Consider any λ and µ. Suppose the core voter n strictly prefers λ to µ, but there is no
coalition C ∈ W all of whose members share this preference. Then because W is strong, the
coalition

C =

{

j |
∑

x∈X

Uj(x)λ(x) ≤
∑

x∈X

Uj(x)µ(x)

}

is decisive. For all j ∈ C, we have

∑

x∈X

αj · v(x)[λ(x) − µ(x)] ≤
∑

x∈X

c(x)[µ(x) − λ(x)],

and as in the proof of Proposition 3, the right-hand side of the above inequality is constant
in βj. Because C is winning, generalized α-symmetry implies αi ∈ co{αj | j ∈ C}, and we
conclude that

∑

x∈X

αn · v(x)[λ(x) − µ(x)] ≤
∑

x∈X

c(x)[µ(x) − λ(x)],

contradicting the strict preference of the core voter. Conversely, if all members of a winning
coalition C strictly prefer λ to µ, then we have

∑

x∈X

αj · v(x)[λ(x) − µ(x)] >
∑

x∈X

c(x)[µ(x) − λ(x)]

for all j ∈ C, and generalized α-symmetry implies that the core voter shares this strict
preference.
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4. Discussion

Because Proposition 3 and its corollary (and the extension in Proposition 4) provide
sufficient conditions, it is natural to consider the possibility of weaker preference restrictions
under which the decisiveness result might hold. Banks and Duggan (2006) give a one-
dimensional example in which voter utilities are a concave, decreasing function of distance
from their ideal points, but no voter is decisive over lotteries, so sufficient conditions for a
decisive voter must involve restrictions on the curvature of utilities. Note that the key step
in the sufficiency argument of Propositions 1 and 3 is that the difference in the expected
utility from one lottery compared to another for a voter with parameter α, i.e., δ(α), is a
monotonic function of α. (At a finer level of detail, what is crucial is that as we vary α, the
sign of δ(α) can change at most once.) To understand the limits of the argument, suppose
that the utility from x for a voter with parameter α is a general function w(αv(x)) of the
product αv(x). Given lotteries λ and µ, the difference in expected utility is then

∑

x∈X

w(αv(x))λ(x) −
∑

x∈X

w(αv(x))µ(x),

and the rate of change with respect to α is then
∑

x∈X

v(x)w′(αv(x))λ(x) −
∑

x∈X

v(x)w′(αv(x))µ(x). (3)

Because the derivative w′ is written as a general function, we cannot disentangle the param-
eter α from the choice x to sign the change in expected utility.

Now suppose that the derivative has the form w′(αv(x)) = s(α)t(x) for some functions s
and t with the sign of s(α) constant; this is the case in the earlier analysis, where w is the
identity function. Then the rate of change in (3) becomes

s(α)

(

∑

x∈X

t(x)λ(x) −
∑

x∈X

t(x)µ(x)

)

,

and the difference in expected utility changes sign at most once. The above decomposition of
the derivative is of course not a general property; rather, it determines a functional equation
that is satisfied by a special class of functions. Consider the possibility of specifying three
functions, f , g, and h, such that the equation f(xy) = g(x)h(y) holds identically for x, y > 0.
This is a functional equation of Pexider, and it is satisfied (see Theorem 4 (p.144) of Aczél
(1966)) for all and only functions of the following form: either f and g (or f and h) are
identically zero, or

f(z) = abzc, g(z) = azc, h(z) = bzc,

where a, b, and c are parameters. In our application, f corresponds to the derivative w′.
Thus, w′(z) = abzc, and therefore we have two cases: for c 6= −1, we have (up to an additive
constant) w(z) = ab

1+c
z1+c, and for c = −1, we have w(z) = ab ln(z).

This suggests the following functional forms for the voters’ von Neumann-Morgenstern
representations: consider

Ui(x) = a(αiv(x))b − c(x) + βi, (4)
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or, with the restrictions that αi > 0 and v(X) ⊆ ℜ++,

Ui(x) = a ln(αiv(x)) − c(x) + βi, (5)

where the functions v: X → ℜ and c: X → ℜ and the parameters a, b ∈ ℜ with b 6= 0 are
common to all voters, and αi, βi ∈ ℜ may vary across voters. Note, however, that (4) can be
obtained from (1) by a suitable relabeling of parameters. Specifically, given a utility function
of the form in (4), define α̂i = αb for each voter and v̂(x) = av(x)b to map this into our
earlier functional form. As well, given a utility function of the form in (5), we can define
α̂i = ln(αi), v̂(x) = a for all x, and ĉ(x) = a ln(v(x))− c(x) to again obtain a special case of
(1). Thus, the apparent generality of (4) and (5) is spurious. The decisiveness results may
hold for functional forms beyond those considered here, but it appears that scope for further
general results is quite narrow.
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