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1. Introduction

The concept of a Robinson Crusoe’s economy is a simple framework to study
economics, due to its ability to simplify the complexities of the real world.
The implicit assumption is that the study of a one agent economy will provide
useful insights into the functioning of the real world economy with many
economic agents. This simple general economic system consists of a single
household, and this one-person economy has many of the usual problems of
any economy: production and consumption choices and allows us fully to
present and to model the concept of efficient allocation. This is a centralized
solution concept, since it treats the consumption and production decision in
a single unified fashion and finds a production and consumption plan that
maximizes Robinson’s utility subject to the constraints of available resources
and technology. This is exactly the problem analyzed by Bethmann (2013),
in the spirit of the Lucas-Uzawa model, but under logarithmic preferences.
A more general case was studied by Boucekkine and Ruiz-Tamarit (2008),
and Chilarescu (2011). As he pointed out in his introduction section, similar
models have been analyzed by Uzawa (1965), Lucas (1988), Caballe and
Santos (1993), Mulligan and Sala-i-Martin (1993) and Xie (1994).

In his paper, in order to simplify the analysis, Bethmann considers the
case of a closed economy populated by an arbitrary number of identical and
infinitely-lived agents. The representative agent, Robinson Crusoe, enters
every period with predetermined endowments of human and physical capital,
denoted by h = h(t) and k = k(t), respectively. There are two sectors in the
economy. Firms produce a single homogeneous good and a schooling sector
produces education. Both sectors use constant returns to scale technologies in
the reproducible factors. He also assume that the population is constant over
time and normalised to unity, and therefore all variables can be interpreted
as per capita quantities.

In order to arrive to our results, we preserve these assumptions and will
analyze only the continuous case. The rest of the paper is structured as
follows. In the second section we present the model, determine the first order
conditions and give the relations that characterize the balanced growth path.
In the third section we provide closed-form solutions for the original variables
along the transitional dynamics path and give some important properties. In
the last section, we present some numerical simulations and finally we present
some conclusions.

2. The Model
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In this section, we summarize the model proposed by Bethmann and derive
the differential equations that describe the dynamics of the economy. The
model is characterized by the well-known optimization problem.

Definition 1 The set of paths {k, h, c, u} is called an optimal solution if it
solves the following optimization problem:

V0 = max
u,c

∞∫
0

e−ρtln [c(t)] dt, (1)

subject to 
k̇(t) = Ak(t)α [u(t)h(t)]1−α − c(t),

ḣ(t) = B[1− u(t)]h(t),

k0 = k(0), h0 = h(0),

(2)

where k0 > 0 and h0 > 0 are given, α is the elasticity of output with respect
to physical capital, ρ is a positive discount factor, the efficiency parameters
A > 0 and B > 0 represent the constant technological levels in the good sector
and, respectively in the education sector, k is physical capital, h is human
capital, c is the real consumption and u is the fraction of labor allocated to
the goods production.

The equations (2) give the resources constraints and initial values for the
state variables k and h. To solve the problem (1) subject to (2), we define
the Hamiltonian function:

H = ln(c) +
[
Akα (uh)1−α − c

]
λ+B(1− u)hµ.

The boundary conditions include initial values (k0, h0), and the transversality
conditions:

lim
t→∞

e−ρtλ(t)k(t) = 0 and lim
t→∞

e−ρtµ(t)h(t) = 0.

In this model, there are two control variables, c and u, and two state variables,
k and h. In an optimal program the control variables are chosen so as to
maximize H. We note that along the optimal path, λ and µ are functions of
t only.
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A remark is absolutely necessary here. The above Hamiltonian is clearly
non-concave in the control and state variables, due to the term B(1−u)h and
therefore, Mangasarian’s conditions cannot be used in this case. Nevertheless
Arrow’s sufficiency theorem, that generalizes Mangasarian’s result, still apply
here. For more details we can cite, first of all the paper of Cysne (2006) and
also the excellent book of Seierstad and Sydsaeter’s (1987).

The necessary first order conditions for the pair (c, u) to be an optimal
control are given by: 

k̇
k
= A

(
hu
k

)1−α − c
k
,

ḣ
h
= B(1− u),

ċ
c
= −ρ+ αA

(
hu
k

)1−α
,

u̇
u
= φ− c

k
+Bu, φ = B(1−α)

α
,

λ̇
λ
= ρ− αA

(
hu
k

)1−α
,

µ̇
µ
= ρ−B.

(3)

The system described above reaches the balanced growth path (BGP ) if there
exists t∗ (possibly infinite), such that for all t ≥ t∗, ru = 0 and rk = rc = rh,
where rx denotes the growth rate of variable x, x∗ is its value at t = t∗ and
x∗ is its value for t > t∗. The following proposition gives a preliminary result
that characterize the balanced growth path.

Proposition 1 Let ρ < B. If for all t ≥ t∗, ru = 0, then the above system
reaches the BGP and the following statements are valid

i. r∗ = rk∗ = rh∗ = rc∗ = B − ρ,

ii. u∗ ∈ [0, 1] and

u∗ =
ρ

B
, (4)

iii.
c∗
k∗

=
αρ+B(1− α)

α
= ρ+ φ = ξ. (5)
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The proof follows immediately by direct computation.
From this proposition we deduce that it is not possible to compute the

values of all variables at BGP . To find closed-form solutions to the optimal
problem (1) − (2) , we need starting values for the control variables. These
starting values obviously depend on the starting values of state variables and
therefore should be computed as part of the closed-form solution. Without
this assumption it is impossible to determine the values of variables (state
and control) along the transitional dynamics and along the BGP . What we
want to do next is to find a closed-form solution for the system described by
(3), u0 being determined as a function of the initial values of state variables.

3. The Closed-form Solution

As in the paper of Chilarescu (2011), we denote by

z(t) =
h(t)u(t)

k(t)
, z0 =

h0u0

k0
. (6)

Obviously, z is a positive increasing function, in both variables, u ant t. (For
more details concerning the properties of the function z, see the above cited
paper). Differentiating (6) with respect to time we arrive to the following
differential equation

ż =

[
B

α
− Az1−α

]
z. (7)

A non-constant admissible solution of equation (7) is given by

z(t) =
z∗z0[(

z1−α
∗ − z1−α

0

)
e−φt + z1−α

0

] 1
1−α

, z∗ =

[
B

αA

] 1
1−α

, (8)

and this solution enable us to solve the system (3) and provide a closed-form
solution. This result is given by the next theorem.

Theorem 1 Let B > ρ. Then for all t > 0 the optimization problem (1)−(2)
has the following unique solution

k(t) =
h0u0e

ξt

z(t)

Q∗ −Q(t)

Q∗
e(B−ρ)t,

h(t) =
h0e

ξt

φ

φQ∗ +Bu0 [Q∗ −Q1(t)] e−φt −Bu0 [Q∗ −Q(t)]

Q∗
e(B−ρ)t,
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c(t) = c(t) =
h0u0

Q∗
z(t)−αe(B−ρ)t,

u(t) =
φu0[Q∗ −Q(t)]

[(φ+Bu0)Q∗ −Bu0Q1(t)] e−φt −Bu0[Q∗ −Q(t)]
,

where

Q(t) =

t∫
0

z(s)1−αe−ξsds, Q1(t) =

t∫
0

z(s)1−αe−ρsds,

Q∗ = lim
t→∞

Q(t), Q1∗ = lim
t→∞

Q1(t), Q1∗ =
φ+Bu0

Bu0

Q∗, c0 = k0Q
−1
∗ z1−α

0

and u0 is the unique solution of the following equation

(φ+Bu0)Q∗(u0; k0, h0)−Bu0Q1∗(u0; k0, h0) = 0. (9)

Proof of Theorem 1. For proof that u0 is the unique solution of Eq. (9),
and other properties of the functions Q and Q1, see the paper of Chilarescu
(2011). Substituting Eq. (8) into the third equation of the system (3) we
arrive to the following differential equation

ċ

c
= −ρ+

αAz1−α
∗ z1−α

0(
z1−α
∗ − z1−α

0

)
e−φt + z1−α

0

,

whose solution is given by

c(t) = c0z
α
0 z

−αe(B−ρ)t, ⇒ λ(t) = c−1
0 z−α

0 zαe−(B−ρ)t, z = z(t).

The first equation of the system (3) can now be written

k̇ = Az1−αk − c0z
α
0 z

−αe(B−ρ)t.

After some algebraic manipulations, the solution for k is given by

k(t) = z0z
−1e

B
α
t
[
k0 − c0z

−1+α
0 Q(t)

]
.

Denoting G(t) = k0−c0z
−1+α
0 Q(t), and since Q is a bounded positive function

of time, G(0) = k0 > 0, lim
t→∞

G(t) = k0 − c0z
−1+α
0 Q∗, Q∗ = lim

t→∞
Q(t), and

Ġ(t) = −c0z
−1+α
0 z(t)1−αe−ξt < 0, we deduce that G is a decreasing function
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of time. Since k(t) > 0 we deduce that k0 − c0z
−1+α
0 Q∗ ≥ 0. Transversality

condition for k requires that

c0 = k0Q
−1
∗ z1−α

0 , (10)

and therefor we can write

k(t) =
h0u0

z(t)Q∗
e

B
α
t [Q∗ −Q(t)] =

h0u0e
ξt

z(t)

Q∗ −Q(t)

Q∗
e(B−ρ)t. (11)

The solution for c follows immediately and is given by

c(t) =
h0u0

Q∗
z(t)−αe(B−ρ)t. (12)

Passing to the limit in the above two relations and knowing that we get

k∗ =
h0u0e

(B−ρ)t∗

ξQ∗zα∗
, and c∗ =

h0u0e
(B−ρ)t∗

Q∗zα∗
.

The ratio c
k
is given by

c(t)

k(t)
=

z1−αe−ξt

Q∗ −Q(t)
, (13)

and passing to the limit yields c∗
k∗

= ξ. Combining the second and the last
equations in (3) and considering the above result we arrive to the following
differential equation

˙(hu)

hu
=

B

α
− z1−αe−ξt

Q∗ −Q(t)
,

whose solution is given by

h(t)u(t) =
h0u0

Q∗
[Q∗ −Q(t)]e

B
α
t. (14)

Passing to the limit and knowing that h∗(t) = h∗e
(B−ρ)(t−t∗), yields

lim
t→∞

h(t)u(t) = h∗u∗ =
h0u0e

(B−ρ)t∗z1−α
∗

ξQ∗
.

Substituting Eq. (13) into the fourth equation of the system (3) we arrive to
the following differential equation

u̇

u
= φ− z1−αe−ξt

Q∗ −Q(t)
+Bu,
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whose solution is given by

u(t) =
φu0[Q∗ −Q(t)]

[(φ+Bu0)Q∗ −Bu0Q1(t)] e−φt −Bu0[Q∗ −Q(t)]
. (15)

It is just an exercise to prove that u(t) ∈ (0, 1), the transversality condition
for h holds and

u∗ = lim
t→∞

u(t) =
ρ

B
, ⇒ h∗ =

Bh0u0e
(B−ρ)t∗z1−α

∗
ρξQ∗

and thus the proof is completed.

4. Conclusions and Numerical Simulations

In this paper we have provided closed-form solutions, for all the variables of
the model analyzed by Bethmann. In this section we present the results of
a numerical simulation procedure. The benchmark values for economy we
consider are the following: α = 0.25, A = 1.05, B = 0.05, ρ = 0.04,
h0 = 10, k0 = 80. In order to find the transitional dynamics equations
for the state and control variables we first determine the starting value for
u0. Under the above benchmark values, the equation (9) gives u0 = 0.76424
and the equation (10) gives c0 = 14.532. The corresponding steady-state
equilibrium is given by: u∗ = 0.80, k∗ = 99.776, h∗ = 13.67, c∗ = 18.95.
The transitional dynamics for these variables are presented at the end of this
section. See the graphics from Fig. No. 1 to Fig. No. 4

548



Economics Bulletin, 2014, Vol. 34 No. 1 pp. 541-550

References

[1] Bethmann D., (2013). Solving Macroeconomic Models with Homoge-
neous Technology and Logarithmic Preferences. Australian Economic
Papers, 52, 1, 1− 18.

[2] Boucekkine R. and Ruiz-Tamarit, R., (2008). Special functions for the
study of economic dynamics: The case of the Lucas-Uzawa model. Jour-
nal of Mathematical Economics, 44, 33− 54.

[3] Caballe J. and Santos M. S., (1993). On Endogenous Growth with
Physical Capital and Human Capital. Journal of Political Economy,
101, 1042− 1067.

[4] Chilarescu C., (2011). On the Existence and Uniqueness of Solution to
the LucasUzawa Model, Economic Modelling, 28, 109− 117.

[5] Cysne R. P., (2006). A note on the non-convexity problem in some
shopping-time and human-capital models. Journal of Banking and Fi-
nance, 30, 2737− 2745.

[6] Lucas R., (1988). On the mechanics of economic development. Journal
of Monetary Economics, 22, 3− 42.

[7] Mulligan C. and Sala-I-Martin X., (1993). Transitional Dynamics in
Two-Sector Models of Endogenous Growth. The Quaterly Journal of
Economics, 108, 739− 773.

549



Economics Bulletin, 2014, Vol. 34 No. 1 pp. 541-550

[8] Seierstad, A., Sydsaeter, K., (1987). Optimal Control Theory With Eco-
nomic Applications. North Holland.

[9] Uzawa H., (1965). Optimum Technical Change in an Aggregative Model
of Economic Growth. International Economic Review, 6, 18− 31.

[10] Xie D., (1994). Divergence in Economic Performance: Transitional Dy-
namics with Multiple Equilibria. Journal of Economic Theory, 63, 97−
112.

550


