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1 Introduction

Since the Lehman Crisis in 2008, many economists have been studying financial crises.

Most of these studies have been interested in the financial-intermediation role of banks and

have tried to explain the relationship between bank runs and financial crises. Especially,

Champ, Smith, and Williamson (1996), Smith (2002), and Haslag and Martin (2007) have

incorporated the essence of Diamond and Dybvig (1983) into an overlapping generations

(OLG) model and explored implications of monetary policies on the financial crises.1

In their model, they concentrated their attention on the Friedman rule and showed its

suboptimality as one of main results.

In their model, there are two islands between which there is no communication (spa-

tial friction). In each island, there is a single bank as a coalition of agents. Furthermore,

liquidity shocks are modeled by random relocation of agents. In order to analyze a sym-

metric situation, the size of liquidity shocks are common between two islands. Therefore,

each bank faces common liquidity shocks in the existing models. However, liquidity shocks

are usually asymmetric among banks. In this article, then, we modify the existing model

to allow for asymmetric liquidity shocks among banks and reexamine optimality of the

Friedman rule.

This article presents an OLG model with random relocations among more-than-two

islands, numbered from 0 to J ≥ 1. The fraction π of agents of the 0-th island are assumed

to be randomly selected and equally distributed to other islands. At the same time, the

fraction π/J of agents of the j-th island are randomly selected and move to the 0-th island.

Because of the difference in the size of movers between 0-th island and other islands, this

framework describes asymmetric liquidity shocks among islands. Furthermore, this paper

defines monetary equilibrium (and, as its special case, monetary steady state) precisely.

In the model, we first verify the existence of monetary steady state and provide some

sufficient condition for such existence. Given such existence of monetary steady state, this

article shows suboptimality of the Friedman rule. Especially, we show that the optimal

money growth rate is equal to one. This is an extension of the existing result obtained

by Smith (2002) and Haslag and Martin (2007) to our framework. Furthermore, it is

shown that, when the number of islands diverges, there is no room for monetary policy to

improve social welfare. This is because the welfare loss by the liquidity shocks becomes

relatively small when the number of islands increases. Finally, we show that the pair of

the discount window and the Friedman rule achieves an optimal situation.

The organization of this paper is as follows: Section 2 describes the model considered

in this article. Our model is an extension of that studied per Haslag and Martin (2007).

Section 3 defines a monetary equilibrium precisely. Section 4 shows the existence of at

least one monetary equilibrium. Section 5 reexamines optimality of the Friedman rule.

Section 6 argues the effect of increasing in the number of islands and considers the discount

window policy. Concluding remarks are provided in Section 7. Proofs are provided in the

Appendix.

1See also Schreft and Smith (2002) and Matsuoka (2011) for an OLG model with spatial frictions.
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2 Ingredients of the Model

We extend an overlapping generations model with spatial separation à la Smith (2002)

and Haslag and Martin (2007) by allowing the number of islands to be more than two.2

Time is indexed by t and runs discretely from minus infinity to plus infinity. At each

date, there exists a single perishable commodity, called the consumption good. As distinct

locations, more-than-two islands exist, where there exits no communication among them.

Islands are indexed and we denote by J the set of those indexes, where J = {0, 1, . . . , J}
for some integer J ≥ 1. Furthermore, there exists a storage technology whereby one unit

stored at date t generates x > 1 units of the consumption good at date t + 1. The gross

return of the storage technology, x, is a known constant.3

At each date, one new generation, consisting of a continuum of ex-ante identical agents

with a unit mass, appears on each island and lives for two periods. Agents born at date

t are young at date t and old at date t + 1. They aim to maximize their utility u(ct+1)

derived from consumption, ct+1 ≥ 0, at the second period of their lives, whereas they are

endowed with ω > 0 units of the consumption good at date t. This article specifies the

utility function u by u(c) = ln c for each c > 0.4

Moreover, agents in the same cohort in each island j ∈ J are ex-ante identical but

learn their types, θ ∈ Θ := {m,n}, at the end of the first period of their lives. Type m

agents in each island at date t, called movers, move to other islands at date t+1, whereas

type n agents, called nonmovers, stay in the same island. It is assumed that, in each island

j ∈ J , movers cannot receive the return of the storage investment, whereas nonmovers

can do so. Especially, we assume that movers in island 0 are equally distributed to islands

1, . . . , J , whereas movers in island k ∈ {1, . . . , J} move to island 0. We also assume that

the fraction of movers in island 0 is given by π ∈ (0, 1) and that in island k ∈ {1, . . . , J}
is given by µ = π/J . Figure 1 illustrates an example of the relocation mechanism in the

case that J = 2.

In order to close this section, we introduce a durable and intrinsically useless object,

called money, to the economy. Money is issued by the central bank and its per-capita

money stock in period t is denoted by Mt, which is common to all islands except for island

0. The per-capita money stock in island 0 is assumed to be given by JMt. The stock

of money in islands 1, . . . , J follows the equation, Mt = σtMt−1 for each date t, where

σt > 0 is the growth rate of money and chosen by the central bank. Young agents in island

k ∈ {1, . . . , J} at date t receive the newly issued money, Zt := Mt−Mt−1 = (σt−1)Mt/σt,

2When the number of locations is two, our model degenerates into that studied per Haslag and Martin
(2007).

3In this article, the storage technology is explicitly assumed to be unable to be scrapped. This captures
the feature that the investment cannot be liquidate prematurely.

4In the existing literature, it is standard to specify the utility function by the constant relative risk
aversion (RRA) utility functions with coefficient of RRA lying on (0, 1), not being greater than or equal
to one. This is because, if the RRA aversion is greater than [equal to] 1, the model produces the
counterintuitive result that bank reserves increase [are constant] when inflation increases. However, as
adopted by Smith (2002), a utility function with the logarithmic form is a technical specification to make
the argument simpler.
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Figure 1: An Example of the Relocation Mechanism: The Case with J = 2

and those in island 0 receive JZt as lump-sum money tax/transfer when they are young.

For each date t, we denote by P j
t the nominal price of the consumption good in island

j ∈ J . Especially, this paper considers a situation where nominal prices in islands

1, . . . , J coincide with each other, i.e.: P j
t ≡ Qt for each j ∈ {1, . . . , J}, because islands

1, . . . , J face an identical situation. We also denote by ρ0t and ρt the per-capita real money

balance in island 0 and other islands, respectively, i.e.: ρ0t := JMt/P
0
t and ρt := Mt/Qt.

3 Definition of Equilibria

Suppose now that, at each date t, the young agents in the same island j ∈ J establish

a bank and deposit all of their after-tax/transfer endowment, ω+τ jt , with the bank, where

τ jt is defined by JZt/P
0
t = [(σt−1)/σt]ρ

0
t if j = 0 and otherwise by Zt/P

j
t = [(σt−1)/σt]ρt.

It is assumed that movers in each island j ∈ J loose their connection to their banks in

their second period.

In each island j ∈ J , the bank established in the island at date t enters into local

spot markets at dates t and t+1 and is assumed to behave as if it is a price-taker. At date

t, the bank chooses its portfolio in a local spot market, i.e.: the amount of investment in

the storage technology and money. Its balance sheet constraint is given by

sjt +
mj

t + nj
t

P j
t

≤ ω + τ jt , (1)

where sjt and (mj
t + nj

t)/P
j
t are the amount of investment in the storage technology and

money, respectively.5

5Interpretations of mj
t and nj

t are given after Eq.(3).
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The bank also chooses a schedule of returns on deposits at date t+1. For each j ∈ J ,

let dj,mt and dj,nt denote the gross real return rates offered to movers and nonmovers, born

in period t, in island j, respectively. The returns of investments of the bank must meet

the total return of deposits. This is captured by

(ω + τ jt )d
j,m
t πj + (ω + τ jt )d

j,n
t (1− πj) ≤ xsjt + Rj

t+1

nj
t

P j
t

+ E j
t+1

mj
t

P j
t

, (2)

where Rj
t+1 := P j

t /P
j
t+1,

E j
t+1 :=


P 0
t

Qt+1

if j = 0,

Qt

P 0
t+1

otherwise,

and πj is equal to π if j = 0 and otherwise µ. The bank also faces a liquidity constraint.

Because movers loose their connection to their banks in their second period, they withdraw

their money after they learn their types. At the beginning of the second period, therefore,

the bank in island j ∈ J must have sufficient liquidity in order to meet the needs of

movers:

(ω + τ jt )d
j,m
t πj ≤ E j

t+1

mj
t

P j
t

. (3)

Given this liquidity constraint, one can interpret mj
t and nj

t as the money holdings for

movers and nonmovers, respectively.

As the objective function, the bank in island j ∈ J at date t is assumed to adopt

U i(cj,mt+1, c
j,n
t+1) = u(cj,mt+1)πj + u(cj,nt+1)(1− πj),

where cj,θt+1 are consumptions of agents, whose type is θ ∈ Θ, in island j at date t+1. We

then define an equilibrium with circulating money, wherein islands 1, . . . , J are treated

equally: A monetary equilibrium given {σt}∞t=−∞ is defined by {(s0t , st, ρ0t , ρt)}∞t=−∞ of

storage investments s0t , st ≥ 0 in island 0 and other islands and per-capita real money

balances ρ0t , ρt > 0, satisfying that ρ0t/σt, ρt/σt < ω, in island 0 and other islands such

that there exists {dj,mt , dj,nt ,mj
t , n

j
t}∞t=−∞ satisfying that, at each date t, (i) for each j ∈ J ,

(dj,mt , dj,nt , sjt ,m
j
t , n

j
t) maximizes U((ω + τ jt )d

j,m
t , (ω + τ jt )d

j,n
t ) subject to (1), (2), and (3)

given P 0
τ = Mτ/ρ

0
τ and Qτ = Mτ/ρτ for τ = t, t + 1, (ii) n0

t +
∑J

k=1m
k
t = JMt, and (iii)

m0
t + n0

t = JMt and mk
t + nk

t = Mt for each k ∈ {1, . . . , J}, where sjt = s0t if j = 0 and

otherwise sjt = st. In this definition, condition (i) describes the optimization problem

of banks, condition (ii) represents the ex-post money stock in island 0 is stationary, and

condition (iii) represents the money-market clearing condition. It is also a monetary

steady state given σt = σ for some given constant σ > 0 if (s0t , st, ρ
0
t , ρt) ≡ (s0, s, ρ0, ρ) for

each t.

We can easily verify that, at each monetary equilibrium, the constraints (1) and (2)

hold with equality because of strict monotonicity of u. Therefore, one should remark that,
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at the equilibrium, the good-market clearing condition for the whole economy, in addition

to the money-market one, holds, i.e.: we can observe that, at a monetary equilibrium,∑
i∈J

[
cj,mt+1πj + cj,nt+1(1− πj) + sjt+1

]
= (1 + J)ω + x

∑
i∈J

sjt

for each j ∈ J and each t, where cj,θt+1 = (ω + τ jt )d
j,θ
t for each θ ∈ Θ and each t.

4 Existence of Monetary Steady State

In order to argue monetary policy, we should ensure that at least one monetary equi-

librium. Before exploring such existence, this section observes a basic property on the

equilibrium rates of return. As noted at the last paragraph in the previous section, the

constraints (1) and (2) hold with equality at each monetary equilibrium. Then, the bank

in island j at date t faces the constraint that

(ω + τ jt )
[
dj,mt πj + dj,nt (1− πj)

]
= x(ω + τ jt ) +

(
Rj

t+1 − x
) nj

t

P j
t

+
(
E j
t+1 − x

) mj
t

P j
t

(4)

in addition to its liquidity constraint, Eq.(3). We can therefore obtain that, at each

monetary equilibrium, both Rj
t+1 ≤ x and E j

t+1 ≤ x hold. This is because the bank in

island j chooses ∞ as nj
t if Rj

t+1 > x and as mj
t if E j

t+1 > x. Furthermore, we can observe

that
(
Rj

t+1 − x
)
nj
t/P

j
t = 0 and

(
E j
t+1 − x

)
mj

t/P
j
t ≤ 0. The former observation holds

immediately if Rj
t+1 = x and, if Rj

t+1 < x, follows immediately from the fact that the

bank prefers to invest in the storage investment rather than money holdings for nonmovers

and chooses zero as nj
t . The latter also follows immediately from the fact that E j

t+1 ≤ x.

Remark that, in a monetary equilibrium, it is allowed that
(
E j
t+1 − x

)
mj

t/P
j
t < 0 because

of the liquidity constraint, Eq.(3). If Rj
t+1 < x, the bank prefers to invest in the storage

investment rather than money holdings for movers and chooses mj
t as small as possible.

However, the liquidity constraint prevents the value of mj
t from being zero (and holds

with equality). Therefore, it might hold that
(
E j
t+1 − x

)
mj

t/P
j
t < 0.

Obviously, money holdings for movers [nonmovers] and the storage investment are

completely substitutable when E j
t+1 = x [Rj

t+1 = x]. In such a case, monetary equilibrium

might be indeterminate. In order to avoid such indeterminacy, we explore an equilibrium

with E j
t+1 < x and Rj

t+1 < x. Under such conditions, as argued in the previous paragraph,

the money holding for nonmovers, nj
t , becomes zero and the liquidity constraint, Eq.(3),

holds with equality.6 Since Eq.(1) also holds with equality, the objective of the bank at

island j is now to choose mj
t in order to maximize

u

(
1

πj

E j
t+1

mj
t

P j
t

)
πj + u

(
x

1− πj

[
ω + τ jt −

mj
t

P j
t

])
(1− πj).

6Therefore, the constraints of each bank in island j ∈ J can be rewritten as (a) the balance sheet

constraint (1) with equality, (b) the liquidity constraint with equality: (ω+ τ it )d
j,m
t πj = E j

t+1m
j
t/P

j
t , and

(c) constraints about returns to nonmovers: (ω + τ it )d
j,n
t (1− πj) = xsjt , where the equality in (c) follows

from Eq.(4) and (b). This is a standard set of constraints in the existing literature.
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Combining the first order conditions and the money market clearing conditions, we obtain

a system of equations characterizing monetary equilibrium given {σt}∞t=−∞:

0 =
1

σt

ρt+1Ju
′
(

1

σtπ
ρt+1J

)
− xρ0tu

′
(

x

1− π

[
ω − ρ0t

σt

])
(5)

in island 0 and

0 =
1

σt

ρ0t+1u
′
(

1

σtµ

ρ0t+1

J

)
− xρtJu

′
(

x

1− µ

[
ω − ρt

σt

])
(6)

in island j ̸= 0 (and the balance sheet constraint (1) with equality for determinations of

s0 and s).

In order to guarantee the existence of at least one monetary equilibrium, we assume

that the central bank chooses a constant σ and explore a monetary steady state. Then,

we can obtain the following proposition:

Proposition 1 A unique monetary steady state (s0(σ), s(σ), ρ0(σ), ρ(σ)) given σ exists.

Furthermore, (a) it is characterized by

(s0(σ), s(σ), ρ0(σ), ρ(σ)) =

(
(1− π)ω

1− π + π/σ
,

(1− µ)ω

1− µ+ µ/σ
,

πω

1− π + π/σ
,

µω

1− µ+ µ/σ

)
,

(b) s0 = s and ρ0 = ρ when J = 1, and (c) s ↑ ω and ρ ↓ 0 as J ↑ ∞.

As shown by (a), we can obtain equilibrium outcomes by a closed form. The claim (b)

says that the equilibrium outcomes in two islands are identical to each other when J = 1,

i.e.: the number of islands is equal to two. This is a standard environment in the existing

literature on OLG models with spatial separation. The claim (c) is a remarkable result

in this article. When the number of islands increases, the left-hand side of the liquidity

constraint (3) for the bank in each island j ̸= 0 becomes small. In such a case, therefore,

the liquidity constraint for the bank in each island j ̸= 0 is relaxed. Then, it is shown

that banks in islands j ̸= 0 lose their incentive to hold money when the number of islands

increases. However, one should note that, even in the limit that J ↑ ∞, money still

circulates in this economy, whereas the real money balances in island j ̸= 0 tends to zero.

This may look like a fallacy of composition. The rate of return of money for movers, E j
t+1

is calculated by, as J ↑ ∞,

E j
t+1 =


1

σ

1− π + π/σ

1− µ+ µ/σ
→ 1

σ
(1− π + π/σ) if j = 0,

1

σ

1− µ+ µ/σ

1− π + π/σ
→ 1

σ

1

1− π + π/σ
if j ̸= 0,

which is a positive and finite value in each case.

We should also verify that both E j
t+1 < x and Rj

t+1 < x hold at the above monetary

steady state given σ. The following proposition provides a sufficient condition for ensuring

such a situation.
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Proposition 2 When x is greater than but sufficiently close to one and J is extremely

large, both E j
t+1 < x and Rj

t+1 < x hold at the monetary steady state given σ > σ0(x),

where

σ0(x) :=
1− π +

√
(1− π)2 + 4xπ

2x
,

which is less than one if x is sufficiently close to one.

This is a rather technical statement. Combining Propositions 1 and 2, however, we might

say that a desirable monetary steady state exists for σ, the range of which includes a

neighborhood of one.

5 The Optimum Quantity of Money

We now examine the optimal monetary policy. This section first defines and charac-

terizes golden rule optimality as an optimality criterion for stationary feasible allocations.

A stationary feasible allocation, which is also symmetric with respect to islands j ̸= 0, is

defined by (c0,m, c0,n, s0, cm, cn, s) satisfying that s0, s ∈ [0, ω] and

[cmπ + c0,n(1− π)] + J [c0,mµ+ cn(1− µ)] ≤ (1 + J)ω + (x− 1)[s0 + Js], (7)

which is a resource constraint for the whole economy, not for each island. It is said to

be interior if (c0,m, c0,n, cm, cn) ≫ 0 and, in this article, golden rule optimal (GRO) if it

maximizes the equally-weighted sum of lifetime utility functions in all islands,

V J(c0,m, c0,n, cm, cn) :=
1

1 + J
[u(c0,m)π + u(c0,n)(1− π)] +

J

1 + J
[u(cm)µ+ u(cn)(1− µ)],

in the space of all stationary feasible allocations. Furthermore, we say that a money

growth rate σ is first best if the allocation at the monetary steady state given σ is GRO.

We can then characterize GRO completely:

Proposition 3 An interior stationary feasible allocation (c0,m, c0,n, s0, cm, cn, s) is golden

rule optimal if and only if c0,m = c0,n = cm = cn = xω and s0 = s = ω.

At an interior GRO allocation, therefore, all of the initial endowment are invested in the

storage technology and (idiosyncratic) liquidity shocks are fully insured.

Consider now optimality of monetary steady state. By Proposition 1, the consumption

allocation at the monetary steady state is given by

(c0,m(σ), c0,n(σ), cm(σ), cn(σ)) :=

(
ω

σ + (1− σ)µ
,

σxω

σ + (1− σ)π
,

ω

σ + (1− σ)π
,

σxω

σ + (1− σ)µ

)
.

Applying Proposition 3 to this allocation, we obtain the next proposition:

Proposition 4 There exists no first-best money growth rate σ.
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In other words, the allocation at the monetary steady state given any σ cannot be

GRO. Because the central bank cannot reach the first-best situation, it should now con-

sider a “second-best” situation. Here, we assume that the central bank chooses σ in order

to maximize the welfare at the monetary steady state,

WJ(σ) := V J(c0,m(σ), c0,n(σ), cm(σ), cn(σ)),

where V J is defined as above. A monetary growth rate σ is now second best if it is a

solution of the above optimization problem of the central bank. The following proposition

characterizes the second-best money growth rate.

Proposition 5 A second-best money growth rate exists uniquely and is given by σ∗∗ = 1.

The monetary steady state and its consumption allocation given σ∗∗ is calculated by

(s0∗∗, s∗∗, ρ
0
∗∗, ρ∗∗) := (s0(σ∗∗), s(σ∗∗), ρ

0(σ∗∗), ρ(σ∗∗)) = ((1− π)ω, (1− µ)ω, πω, µω)

and

(c0,m∗∗ , c0,n∗∗ , c
m
∗∗, c

n
∗∗) := (c0,m(σ∗∗), c

0,n(σ∗∗), c
m(σ∗∗), c

n(σ∗∗)) = (ω, xω, ω, xω) .

Actually, this does not imply a GRO allocation.

As a corollary of the previous proposition, we can claim suboptimality of the Friedman

rule. Define the gross nominal interest rate in island j ∈ J at date t+1 by Ijt+1 := x/Rj
t+1.

Then, the Friedman rule in the monetary steady state corresponds to the money growth

rate σf such that 1 = Ijt+1 = xσf , i.e.: σf = 1/x. Because x > 1, σf < 1 = σ∗∗. Therefore,

the money growth rate σf corresponding to the Friedman rule is neither first nor second

best.

6 Discount Window Policy

As shown in Propositions 4 and 5, the central bank cannot achieve a first-best situation

by controlling σ, i.e.: there exists a limit in an improvement of efficiency by the choice of

money growth rate. Such a limit of controlling σ can be observed even when the number

of islands is extremely large.

Proposition 6 limJ↑∞ WJ(σ) = ln(xω).

This proposition says that the welfare function of the central bank is independent of

the value of σ when J increases boundlessly. Actually, in the limit that J ↑ ∞, the

consumption allocation at the monetary steady state given σ becomes

(c0,m(σ), c0,n(σ), cm(σ), cn(σ)) :=

(
ω

σ
,

σxω

σ + (1− σ)π
,

ω

σ + (1− σ)π
, xω

)
.

This consumption allocation can be identical with that at the monetary steady state

given σ∗∗ = 1 if the central bank chooses one as σ. However, because of Proposition 6,

we cannot claim that such a choice about σ increases the welfare. In other words, there
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is no room for monetary policy, such as controlling the money growth rate, to improve

social welfare when the number of islands is extremely large. A natural question here is

whether there exist other policies implementing a first-best situation.

In an OLG model with random relocations of agents between two islands, Haslag and

Martin (2007, Proposition 5) have shown that an efficient allocation can be achieved if

the central bank can make loans and follow the Friedman rule. We finally reexamine their

results in our framework. The timing of the central bank loans are as follows: At date t,

banks established at the date can borrow money from the central bank for movers born

at the date. Then, at date t + 1, banks sell the consumption good to agents who moved

from the other islands in order to obtain money for repaying the central bank loan. It is

assumed that the central bank loans are made at a net interest rate of zero. Also, it is

assumed that the central bank imposes the upper bound ℓ̄j on the real central bank loans

of the bank at island j.

Let ℓjt denote the amount of money of bank at island j as the loan received from the

central bank at date t. Then, the constraints faced by the bank at island j are given by

(ω + τ it )d
j,m
t πj ≤ E j

t+1

mj
t

P j
t

+ E j
t+1

ℓjt

P j
t

, (8)

(ω + τ it )d
j,n
t (1− πj) ≤ xsjt − Rj

t+1

ℓjt

P j
t

= x(ω + τ jt )− x
mj

t

P j
t

− Rj
t+1

ℓjt

P j
t

, (9)

which are constraints on payments for movers and nonmovers, and

ℓjt

P j
t

≤ ℓ̄j (10)

in addition to Eq.(1), where the last terms in the right-hand sides of the first and second

inequalities represent the borrowing of the bank from the central bank and the repayment

of the bank to the central bank, respectively.7

Because this article considers a monetary equilibrium such that Rj
t+1 ≤ x as argued

in Section 4, banks can relax constraint Eq.(9) by increasing ℓjt and decreasing mj
t . This

does not affect the right-hand side of Eq.(8) because the discount window loans ℓjt are

perfect substitute for the money holding mj
t . Therefore, it is always optimal for banks

to borrow as much as possible such that Eq.(10) holds with equality. This observation

also implies that, if the central bank increases ℓ̄j, banks borrow more from the central

bank, decrease money holdings, and increase the amount of the storage investment, i.e.:

it follows that mj
t ↓ 0 and sjt ↑ ω when ℓ̄j increases. This remains true if Rj

t+1 < x or

1/σ < x in the monetary steady state. As a summary of this argument, we provide the

following proposition.

Proposition 7 The money growth rate σf corresponding to the Friedman rule can be first

best if the central bank can make sufficiently large loans.

7See also Footnote 4.
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This result implies that the combination of the discount window policy and the Fried-

man rule is optimal even under the presence of asymmetric liquidity socks. It reinforces

Proposition 5 of Haslag and Martin (2007).

7 Concluding Remarks

This article has modified an overlapping generations (OLG) model with spatial sepa-

ration by allowing that the number of islands is more than two and asymmetric liquidity

shocks are observable. We have precisely defined monetary equilibrium and argued its

existence. The model exhibits subptimality of the Friedman rule and optimality of the

combination of the Friedman rule and the discount window. These observations (par-

tially) strengthen the results of the existing literature (Smith, 2002; Haslag and Martin,

2007; Matsuoka, 2011, for example). Furthermore, it has been shown that, if the number

of islands is extremely large, any monetary policies controlling money growth rates have

no room in order to improve social welfare. This is because an increase in the number of

islands relaxes the liquidity constraints of some banks.

In order to close this paper, we mention the reserve-to-deposit ratio of the bank at

island j, γj
t , defined by ρ0t/(ω + τ 0t ) if j = 0 and otherwise ρ/(ω + τ jt ). By an easy cal-

culation, one can find that γ0
t = π and γj

t = µ for j ̸= 0. Therefore, in our setting, the

reserve-to-deposit ratios are independent of the value of σ or the nominal interest rate.

This is because the logarithmic utility function neglects the wealth effect. Therefore, the

reserve-to-deposit ratios are also independent of inflation, which might be a counterintu-

itive result.8 The reexamination of our results in the economy, wherein the coefficient of

the constant relative risk aversion is less than one, remains an important future research.

Appendix: Proofs of Propositions

Proof of Proposition 1. By Eqs.(5) and (6) in addition to the logarithmic utility

function, a monetary steady state (s0, s, ρ0, ρ) given σ is characterized by

π

[
ω − ρ0

σ

]
= (1− π)ρ0 and µ

[
ω − ρ

σ

]
= (1− µ)ρ

and the balance sheet constraints (1) with equality. By solving these equations, we obtain

(a). The statements of (b) and (c) follows immediately from (a) with the fact that

µ = π/J ↓ 0 as J ↑ ∞. Q.E.D.

Proof of Proposition 2. By Proposition 1, both E j
t+1 < x and Rj

t+1 < x hold at the

monetary steady state given σ if and only if it holds that (a.1) (1 − µ)xσ2 − (1 − π −
µx)σ−π > 0, (a.2) (1−π)xσ2−(1−πx−µ)σ−µ > 0, and (b) 1/σ < x. Here, we consider

the case that J → ∞. Then, (a.1) and (a.2) are rewritten as xσ2 − (1− π)σ − π > 0 and

8See also Footnote 3.
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[(1 − π)xσ + πx − 1]σ > 0. By solving each of these equalities, in addition to (b) and

σ > 0, with respect to σ, we obtain four inequalities such that

σ > σ0(x) :=
1− π +

√
(1− π)2 + 4xπ

2x

and

σ >
1− πx

(1− π)x

with σ > 1/x := f(x) and σ > 0. Note that σ0(1) = 1 = f(1). Because

σ′
0(x) =

π [(1− π)2 + 4πx]
−1/2 −

[
1− π −

√
(1− π)2 + 4πx

]
2x2

,

it follows that σ′
0(1) = −1+π/(1+π) < 0 and σ′

0(1) > −1 = f ′(1). Therefore, there exists

some sufficiently small δ > 0 such that 0 < σ0(x) < 1, −1 < σ′
0(x) < 0, and σ0(x) > 1/x

for any x ∈ X := ]1, 1 + δ[ .

Combining the last inequality with the inequality that 1/x > (1−πx)/x(1−π), we can

conclude that the solution of the system of inequalities (a.1), (a.2), and (b) is σ > σ0(x)

when x is greater than but sufficiently close to 1 and J is extremely high. Q.E.D.

Proof of Proposition 3. Because of concavity of the objective function V J , an interior

CGRO allocation can be characterized by first-order conditions, which can be written as

u′(c0,m) = u′(c0,n) = u′(cm) = u′(cn) = λ and s0 = s = ω, where λ is a Lagrange multiplier

for the resource constraint (7). Proposition 3 follows immediately from this observation.

Q.E.D.

Proof of Proposition 4. One can easily verify that there exists no σ which implies

that c0,m(σ) = c0,n(σ) = cm(σ) = cn(σ) = xω. This implies Proposition 4. Q.E.D.

Proof of Proposition 5. We can obtain that

(1 + J)W ′
J(σ) =

(
1

σ
− 1

)
π

[
1− π

π + (1− π)σ
+

1− µ

µ+ (1− µ)σ

]
>
=
<

 0 if σ


<
=
>

 1.

Therefore, σ∗∗ = 1 is a unique second-best money growth rate. Q.E.D.

Proof of Proposition 6. Proposition 6 follows immediately from the fact that µ ↓ 0

as J ↑ ∞. Q.E.D.
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