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1 Introduction

In a Principal-Agent model, we talk of moral hazard when the agent’s decision which affects the principal’s
well-being, is not completely observed by the principal. The principal can therefore act, on his own
account, on the agent’s action, by means of incentives.
Milgrom and Roberts (1997) write: ”the problems of moral hazard appear when an agent (i.e. a vendor,
consumer, employee, etc.) is tempted to undertake an ineffective action or supply inaccurate information
(leading others to ineffective actions) because his individual interests are not compatible with the collective
interests and because neither the information given or the actions can be checked.
The concept of moral hazard was introduced by Arrow (1963) and Drèze (1961).The standard moral
hazard model in insurance is as follows. An agent suffers a loss and makes an effort e to avoid it. This
effort is not observable by the insurer. Let us recall the insurer’s problem. The insurer maximises his
profit under two constraints. The first is the constraint of the insured’s participation. That means, the
level of insured’s usefulness must be greater than a level ū, no insurance. The second constraint is the
constraint of incentive. This constraint, as its name indicates, encourages the insured to make the optimal
effort.
Let us recall the results with two natural states in the world: accident and not accident. Let us suppose
that there are two possible efforts: the base effort and the high effort. The probability of each event
being realised depends on the effort. The probability of having an accident knowing that the effort is e1

is bigger than the probability of having an accident knowing that the effort is e2. The insurer is neutral
towards the risk and the insured has an aversion to the risk. If the optimal effort is e1 the comprehensive
insurance is optimal, otherwise it is the partial insurance. In other words, if the base effort is optimal,
everything happens as if there were no asymmetry of information between the insurer and the insured
and the insured obtains comprehensive insurance. Otherwise the insurer encourages the insured to make
the optimal effort by offering him a partial insurance contract.
When there are infinite natural states, Mirrlees (1976) considers a principal-agent model where the
agent undertakes an action which cannot be observed by the principal to produce a good outcome.
The principal and agent have strong aversion to risk. Furthermore, Mirrlees supposes that the greater
the level of production the smaller the probability that the agent has carried out a low level of action.
This hypothesis amounts to the monotone likelihood ratio (MLR). Mirrlees shows that, under the MLR
property and the convexity of the conditional distribution function of the production in comparison to
the agent’s action, the optimal remuneration of the agent is a growing function of the level of production.
The MLR property was used in the economy of information by Mirrlees (1976), Holmström (1979),
Milgrom (1981) and in the economy of the uncertain by Landsberger and Meilijson (1990) and Jewitt
(1991) and more recently in adverse-selection by Fluet and Pannequin (1997), Young and Browne (1997)
and Shahidi (2009).
In the presence of moral hazard in insurance, if we consider that there are only two natural states (accident
and no accident), the determination of the optimal contract could be made sometimes graphically or
according to a fomalised problem.
Eisenhauer (2004) has detremined a general solution for the two-state model of pooling in the presence
of moral hazard when the insurer minimized the average risk. In a finite states of losses, for example
Hun Seog (2012) has solved a moral hazard problem and found that the indemnity is increasing in loss.
The determination of the optimal contract for moral hazard when there are infinite natural states poses a
problem. Once the problem is formalised, the problem of optimisation presents some incentive constraints
(constraints which prompt the insured to make the optimal effort) which make the problem non-convex.
So there are problems of existence of solutions which are not yet resolved in insurance case. In principal-
agents problems, Page (1987) has developed an existence theory under general assumptions. In the
present article, we deal explicitely with the insurance case and we show that the optimal non-convex
problem has a solution under some assumptions which are specific to insurance.
This paper is organised as follows. In section 2, we state our basic assumptions and readjust the MLR
property in the context of insurance when there are infinite natural states. In section 3, we present a
version of the Mirrlees’ result for insurance. We show that if there exists a solution, the optimal wealth of
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the insured is non-increasing with respect to the loss. Once the insurer’s problem introduces a non-convex
optimisation problem. This poses a problem of existence of solutions and resolutions. In section 4, we
show that the non-convex problem admits a solution and the proposition 4 gives this new result.

2 The model

2.1 Insurance risk

Let (Ω,B,P) be a probability space. The market provides insurance contracts for a potential loss. we
consider a risk-neutral insurer and a policyholder who has an initial wealth w0 (limited) and is risk averse,
faces a loss X a random variable with support [0, x̄] . He chooses an effort level e ∈ IR+ to limit this
loss. Let F (x, e) be the conditional distribution function of X knowing that the effort level chosen by the
insured is e. We assume that X allows a conditional density f(x, e). We assume that f(x, e) is strictly
positive, continuous in x for all e, concave in e for all x and that f(., e) is bounded.
Let us recall a definition.

Definition 1 The MLR property is that

For all (e, e′) verifying e′ > e, the likelihood ratio
f(x, e′)
f(x, e)

is non-increasing in x

The MLR property makes it possible to differenciate the efforts: the greater the loss observed the greater
the probability that the insured has made a low effort.

Let fe(x, e) =
∂f(x, e)

∂e
.

Lemma 1 The MLR property is equivalent to suppose that
fe(x, e)
f(x, e)

is non-increasing in x for all e.

For a proof, see Topkis (1978). The Lemma 1 will be used in the proofs.
An insurance contract is characterised by a pair (I,Π) where Π is the estimated positive premium and
I : [0, x̄] → IR+ the indemnity depending on the loss. When the loss is worth x, the random wealth of
the insured is

S(x) = w0 −Π + I(x)− x

It is assumed that the insurer is neutral to risk. When the effort of the insured is e, the insurer’s profit
function is worth

Π−
∫ x̄

0

I(x)f(x, e)dx = −
∫ x̄

0

(x + S(x))f(x, e)dx + w0

The insured is risk averse and his utility is defined as below

u(S, Π, e) =
∫ x̄

0

U(S(x))f(x, e)dx− c(e)

where U : IR → IR, strictly increasing, strictly concave and C1. The function c : IR+ → IR+ assumed C1,
strictly increasing and convex, represents the cost of the effort borne by the insured.

2.2 The insured’s constraints

We assume that (S,Π, e) is such that the insured’s level of utility is greater than ū (no insurance case).

u(S, Π, e) ≥ ū

This constraint is called the insured’s participation constraint and marked (CP).
Let us assume that e is the optimal effort. Since the insurer cannot observe the effort made by the
insured, we assume that the contracts verify the constraint of incentive below, marked (CI)
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u(S, Π, e) ≥ u(S, Π, e′) for all e′ ∈ IR+

As its name indicates, this constraint encourages the insured to make the optimal effort because his level
of utility is greater than that obtained with a non optimal effort.
The insurer maximises his profit under the constraint of the insured’s participation and incentive, i.e. he
resolves the problem below.

(U0)





sup
S,Π,e

−
∫ x̄

0

(x + S(x))f(x, e)dx

u(S,Π, e) ≥ ū (CP)
u(S,Π, e) ≥ u(S, Π, e′) for all e′ ∈ IR+ (CI)
Π ≥ 0 and e ≥ 0

3 Optimal contract

Let us introduce a new hypothesis
H1 fe(x, 0) = 0 for all x ∈ [0, x̄] and c′(0) > 0.

Proposition 1 Let us assume the MLR property and H1, the problem (U0) is equivalent to the problem
(U1) (where the new constraint (CI’) replaces the constraint (CI)).

(U1)





sup
S,Π,e

−
∫ x̄

0

(x + S(x))f(x, e)dx

u(S, Π, e) ≥ ū (CP)∫ x̄

0

U(S(x))fe(x, e)dx− c′(e) = 0 (CI′)

Π ≥ 0 and e ≥ 0

The proof is given in Appendix.

In what follows, we present (Mirrlees, 1976)’s result applicated to the insurance case. In (Winter, 2001)
the result of the next proposition is demonstrated in the presence of finitely many states. The proof of
the next proposition is similar to the (Jewitt, 1991) adapted to our insurance model.

Proposition 2 Let us assume the MLR property and H1. If (S∗,Π∗, e∗) is a solution of (U1), then S∗

is a non-increasing function of x. In other words, the optimal wealth of the insured is non-increasing
with respect to the loss.

The proof is given in the Appendix.
Usually the authors donot show that the non-convex problem has a solution (for example see Holmström
1979 or Mirrlees 1976). In the next, we show that under technical conditions there exists a solution.
As we deal with insurance market, we must suppose that there is no overinsurance case (I(x) ≤ x).

4 The existence of solution

As we have just remarked, we supppose that I(x) ≤ x. There exists a constant a ∈ IR such that

a ≤ S(x) ≤ w0 −Π (CA)
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where a = w0 −Π− x̄.

Let us recall the optimal insurance contract if there is no moral hazard.
4.1 No moral hazard case

(US)





sup
S,Π,e

−
∫ x̄

0

(x + S(x))f(x, e)dx

u(S, Π, e) ≥ ū (CP)
a ≤ S(x) ≤ w0 −Π (CA)
Π ≥ 0 and e ≥ 0

H2 U ′(a) = ∞ and U ′(w0 −Π) = 0.

Proposition 3 Let us assume H2. If (S∗, Π∗, e∗) is a solution of (US), then S∗ is constant.

The proof is given in the Appendix.
In other words the optimal contract is a deductible one.
In the next, let us consider the problem (US) under moral hazard, i.e. we add the constraint (CI′).

4.2 Existence of solution in moral hazard

Let us define the model (U2) (the model (U2) with the constraint of the bounded wealth)

(U2)





sup
S, Π, e

−
∫ x̄

0

(x + S(x))f(x, e)dx

u(S,Π, e) ≥ ū (CP)∫ x̄

0
U(S(x))fe(x, e)dx− c′(e) = 0 (CI′)

a ≤ S(x) ≤ w0 −Π (CA)
Π ≥ 0 and e ≥ 0

The next proposition is the principal result of our paper because of the existence of an optimal solution
specific to insurance case.

Proposition 4 Let us assume the MLR property, H1 and H2. The problem (U2) has an optimal
solution (S∗, Π∗, e∗). For any optimal solution, there exists an optimal solution with the same premium
and the same level of effort such that the optimal wealth of the insured is a non-increasing function of
the loss and gives the same profit to the insurer and the same utility to the insured.

The proof is given in the Appendix.

5 Conclusion

In the presence of moral hazard, when there are infinite natural states, we gave the proposition of
the existence of solutions to our non-convex problem. Our demonstration is based on the concept of
decreasing rearrangement of random variables and the Hardy Littlewood inequality.We established that
for all optimal contract, there exists an optimal solution such that the optimal wealth of the insured is a
decreasing function of the loss and gave the same utility level to the insured and the same profit to the
insurer. An other concept of the asymmetry of information which we can consider is adverse selection.
In this model, the insurer proposes a set of contracts and he ignores the type of the agents. The high
risks obtain full coverage while the low risks’ contract is an optimal solution of a non-convex problem
such that the associated wealth is non-increasing with respect to the loss.
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Appendix
PROOF OF PROPOSITION 1 The effort e satisfies the constraint of incitation (CI) if and only if there
exists a solution to the below problem

sup
e≥0

u(S,Π, e) (1)

As f(x, e) is concave in e and c is convex, u(S, Π, .) is concave. Let e∗ be a solution of (1). If e∗ > 0, it
is solution of ∫ x̄

0

U(S(x))fe(x, e)dx− c′(e) = 0 (CI′)

The effort zero could not be a solution of (U1). If e∗ = 0 is an optimal solution of (U1) then the
constraint (CI′) becomes, under H1, c′(0) = 0 which is impossible. Under H1, the problem (U1) is
equivalent to the problem (U0).

PROOF OF PROPOSITION 2 Let us suppose that (S∗, Π∗, e∗) is a solution of (U1). As U is concave,
if S∗ is a solution of (U1), there exists λ ≥ 0 and µ ∈ IR such that S∗ is solution of

sup
S,Π≥0,e≥0

−
∫ x̄

0

(x + S(x))f(x, e)dx + λ

(∫ x̄

0

U(S(x))f(x, e)dx− c(e)− ū

)

+ µ

(∫ x̄

0

U(S(x))fe(x, e)dx− c′(e)
)

For all x ∈ [0, x̄], S∗ is then solution of

sup
S
−(x + S)f(x, e) + λU(S)f(x, e) + µU(S)fe(x, e)
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then
1

U ′(S∗(x))
= λ + µ

fe(x, e∗)
f(x, e∗)

S∗ is a function of
fe(x, e∗)
f(x, e∗)

, constant if µ = 0, non increasing if µ < 0, non decreasing if µ > 0. If S∗ is

a constant (S∗ = S̄), the constraint (CI’) becomes

U(S̄)
∫ x̄

0

fe(x, e∗)dx = c′(e∗)

As
∫ x̄

0

f(x, e)dx = 1 for all e,
∫ x̄

0

fe(x, e)dx = 0 for all e. Moreover, c′(e) > 0 for all e involves that the

constraint (CI ′) is not satisfied. If S∗ is a non increasing function of
fe(x, e∗)
f(x, e∗)

,

cov(U(S∗(X)),
fe(X, e∗)
f(X, e∗)

) ≤ 0

The previous inequality is equivalent to
∫ x̄

0

U(S∗(x))
fe(x, e∗)
f(x, e∗)

f(x, e∗)dx ≤
(∫ x̄

0

U(S∗(x))f(x, e∗)dx

) (∫ x̄

0

fe(x, e∗)
f(x, e∗)

f(x, e∗)dx

)
(2)

We have just remarked that
∫ x̄

0
fe(x, e)dx = 0 for all e. The inequality (2) is then equivalent to

∫ x̄

0

U(S∗(x))fe(x, e∗)dx ≤ 0

which contradicts the constraint (CI ′) because c′(e∗) > 0. Then S∗ is a non decreasing function of
fe(x, e∗)
f(x, e∗)

(and µ > 0). According to the MLR property, the function fe(x,e)
f(x,e) is non increasng in x for all

e. S∗ is then a non increasing function of x.

PROOF OF PROPOSITION 3 Let us assume that (S∗, Π∗, e∗) be a solution of (US). As U is concave,
there exists λ ≥ 0 such that S∗ is a solution of

sup
a≤S≤w0−Π, Π≥0, e≥0

W (S, Π, e, λ)

where

W (S, Π, e, λ) = −
∫ x̄

0

(x + S(x))f(x, e)dx + λ(
∫ x̄

0

U(S(x))f(x, e)dx− c(e)− ū)

The optimal solution S∗ of (US) is obtained by maximising pointwise

sup
a≤S≤w0−Π

V (S) (3)

where V (S) = −(x + S) + λU(S). Let us remark that

V ′(S) = −1 + λU ′(S)

According to H2, we could remark that if λ > 0

V ′(a) > 0, V ′(w0 −Π) < 0
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Furthermore, as V ′ is trictly decreasing in S then for all x, S∗ is a solution of

1
U ′(S∗(x))

= λ

S∗ is then a constant. If λ = 0 then S∗(x) = a. In any case, S∗ is a constant.

PROOF OF PROPOSITION 4 Before giving the proof , let us recall the definition of a non decreasing
rearrangement, the inequality of (Hardy et al, 1934) and Helly’s theorem.

Definition 2 Let t : [0, x̄] → [0, ȳ], be a measurable function with respect to µ (a nonatomic Borel
probability measure on [0, x̄]), there exists a unique non-decreasing function t̃, which is called the non-
decreasing rearrangement of t with respect to µ such that

µ({t̃ ≤ α}) = µ({t ≤ α}), for all α ∈ [0, ȳ] (4)

Let us recall that (4) is equivalent to the equimeasurability of t and t̃, which is defined as:
∫ x̄

0

f(t(x))dµ(x) =
∫ x̄

0

f(t̃(x))dµ(x)for every measurable functionf

Lemma 2 Let µ be a measure such that dµ = f(x)dx where f is positive, f ∈ L1 and
∫

dµ = 1. Let
ti : [0, x̄] −→ [0, ȳ] for i = 1, 2 be measurable with respect to µ. Let t1 be the non-increasing rearrangement
of t1 with respect to µ and let t̄i be the non-decreasing rearrangement of ti for i = 1, 2 with respect to µ.
We then have: ∫ x̄

0

t̄1(x)t̄2(x)dµ(x) ≥
∫ x̄

0

t1(x)t2(x)dµ(x) ≥
∫ x̄

0

t1(x)t̄2(x)dµ(x)

Let us recall Helly’s theorem:

Theorem 1 Let F = {f(x)} be a sequence of non-decreasing functions, defined on [0, x̄]. If every
function is bounded by the same constant:

|f(x)| ≤ K, f ∈ F, 0 ≤ x ≤ x̄,

then there exists a subsequence of functions {fn(x)} in F , which converges pointwise to a non-decreasing
function φ(x).

Let us consider the problem (U3). This new problem is similar to (U2) where the constraint (CI’) is
replaced by the constraint (CI”).

(U3)





sup
S, Π, e

−
∫ x̄

0

(x + S(x))f(x, e)dx

u(S, Π, e) ≥ ū (CP)∫ x̄

0
U(S(x))fe(x, e)dx ≥ c′(e) (CI′′)

a ≤ S(x) ≤ w0 −Π (CA)
Π ≥ 0 and e ≥ 0

First, let us verify that (S∗,Π∗, e∗) is a solution of (U2) if and only if (S∗,Π∗, e∗) is a solution of
(U3). Let Vi be the function value of the problem (Ui) for i = 3, 4. the difference between the problems
(U2) and (U3) is based on the second constraint which appears with an inequality in (U3) instead of
an equality in (U2). Then, V4 ≥ V3.
Let us verify that if (S∗, Π∗, e∗) is a solution of (U3), it is then a solution of (U2). For this, we have to
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demonstrate that the constraint (CI”) is bounded. Let us suppose that it is not bounded, (S∗, Π∗, e∗)
is then a solution of

sup
a≤S≤w0−Π, Π≥0, e≥0

W (S, Π, e, λ)

defined in the proof of Proposition 3 (because the associated multiplier to (CI ′′) is equal to zero ). The
optimal wealth S∗ is then a constant, in this case (CI′′) is equivalent to c′(e∗) ≤ 0, this inequality could
not be satisfied (see the proof of Proposition 2). We then have V4 ≤ V3 which implies that V4 = V3.

Let us verify that if (S∗, Π∗, e∗) satisfies the constraints (CP), (CI”) and (CA), then (S̃∗,Π∗, e∗),
where S̃∗ is the non-increasing rearrangement (see Définition 2) of S∗ with respect to f(x, e∗)dx, satisfies
also the constraints.

• Since S∗ and S̃∗ have the same probability distribution,

u(S∗, Π∗, e∗) = u(S̃∗, Π∗, e∗)

Then, (S̃∗, Π∗, e∗) satisfies (CP).

• To verify the constraint (CI′′), let us use Lemma 2 of Hardy et al.. According to the MLR property,
the function fe(x,e)

f(x,e) is non-increasing in x for all e. We obtain then

∫ x̄

0

U(S̃∗(x))
fe(x, e∗)
f(x, e∗)

f(x, e∗)dx ≥
∫ x̄

0

U(S∗(x))
fe(x, e∗)
f(x, e∗)

f(x, e∗)dx ≥ c′(e∗).

(S̃∗, Π∗, e∗) satisfies then the constraint (CI”).

• Moreover S̃∗ satisfies the constraint (CA).

We have just proved that (S̃∗,Π∗, e∗) satisfies all the constraints of the problem (U3). Let us prove
that it gives the same profit to the insurer as (S∗, Π∗, e∗). Since S∗ and S̃∗ have the same probability
distribution

∫ x̄

0

(x + S̃∗(x))f(x, e∗)dx =
∫ x̄

0

(x + S∗(x))f(x, e∗)dx

We have just proved that (S̃∗, Π∗, e∗) gives the same profit to the insurer as (S∗, Π∗, e∗).

Whithout loss of generality, we can suppose that S∗ is non-increasing. We have to prove that the problem
(U3) has a solution assuming this hypothesis.

According to the foregoing, there exists a maximizing sequence (S∗n,Π∗n, e∗n) where S∗n(x) = w0 − Π∗n +
I∗n(x)−x such that S∗n is a non-increasing function of x. We have that (S∗n, Π∗n, e∗n) satisfies the constraints
of the problem U3 and

lim
n→∞

−
∫ x̄

0

(x + S∗n(x))f(x, e∗n)dx = sup
S,Π,e

−
∫ x̄

0

(x + S(x))f(x, e)dx

where (S, Π, e) satisfies the constraints (CP), (CI”) and (CA).

Let us prove that there exists a subsequence, noted in the same way, (S∗n, Π∗n, e∗n) that converges to
(S̄, Π̄, ē) such that the function S̄ : [0, x̄] → [a, w0 − Π̄] is a non-increasing function of x and (S̄, Π̄, ē)
satisfies the constraints (CP), (CI”) and (CA).

• Let us remark that 0 ≤ Π∗n ≤ w0 − a, hence the sequence Π∗n is bounded and there exists then a
subsequence Π∗n that converges to Π̄.
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• The sequence of functions S∗n is non-increasing in x and it is bounded because a ≤ S∗n(x) ≤ w0.
According to Helly’s theorem, there exists a subsequence of functions S∗n which converges to a
function S̄ : [0, x̄] → [a,w0 − Π̄] non-increasing in x.

• Let us prove that e∗n is bounded. Let us suppose that there exists a subsequence e∗n →n→∞ ∞. As
S∗n(x) ≤ w0 and S∗n satisfies the constraint (CP), we obtain

U(w0)− c(e∗n) ≥ u(S∗n,Π∗n, e∗n) ≥ ū

When n →∞,
U(w0)− c(∞) ≥ ū

which is impossible because c(∞) = ∞. There exists then a subsequence e∗n which converges to ē.
Let us remark that lim

n→∞
e∗n 6= 0. If lim

n→∞
e∗n = 0, the constraint (CI′′) becomes under H1, c′(0) ≤ 0

which is impossible.

We have just proved that thers exists a subsequence (S∗n, Π∗n, e∗n) which converges respectively to (S̄, Π̄, ē)
such that the function S̄ : [0, x̄] → [a,w0 − Π̄] is non-increasing in x. It remains to prove that (S̄, Π̄, ē)
satisfies the constraints (CP), (CI”) and (CA).

As S∗n and f(., e∗n) are bounded for all n, using the Theorem of Lebesgue’s convergence,

lim
n→∞

u(S∗n, Π∗n, e∗n) = u(S̄, Π̄, ē) for i = 1, 2.

Using the previous limit, as (S∗n,Π∗n, e∗n) satisfies the constraint (CP), (S̄, Π̄, ē) also satisfies this con-
straint. Doing a similar reasoning (S̄, Π̄, ē) satisfies the constraint (CI′′). Otherwise, (S̄, Π̄, ē) satisfies
the constraint (CA). Furthermore, using again the Theorem of Lebesgue’s convergence

lim
n→∞

−
∫ x̄

0

(x + S∗n(x))f(x, e∗n)dx = −
∫ x̄

0

(x + S̄(x))f(x, ē)dx

= sup
S,Π,e

−
∫ x̄

0

(x + S(x))f(x, e)dx

where (S, Π, e) satisfies the constraints (CP), (CI′′) and (CA). We obtain that (S̄, Π̄, ē) is a solution of
(U3).
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