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Abstract
This paper presents a model where the ability to enjoy consumption gets impaired by disabilities over time. A

continuous-time Markov chain model is constructed to examine how disability risk affects consumers' discounting of

future utilities. It is shown that hyperbolic discounting arises for all future periods when disabilities occur

independently. When the risks are interdependent, it is shown that hyperbolic discounting arises asymptotically as

long as the hazard of disability increases with the set of possible disabilities.
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1. Introduction 

 

In standard economic models, agents are assumed to discount future payoffs with a constant rate. 

Numerous studies have found however that this is not the case. Evidence seems to support 

hyperbolic discounting, that is, agents discount the near future at a higher rate than the distant 

future.
 1

 This paper aims to provide a new explanation for this empirical regularity.  

The model builds on a simple idea that one needs to be healthy in order to enjoy consumption. 

This is trivially with death: a dead person cannot consume anything. For this reason, discount 

rate has often been interpreted as the sum of pure time preference and mortality rate.
2
 Under this 

interpretation, discount rate will fall when time preference remains constant as long as mortality 

rate decreases with time. What is difficult to justify though is why mortality risk should be 

decreasing rather than increasing over time.  

This paper shows that the problem can be resolved by introducing the possibility of partial 

impairment into the analysis. Accidents occur indeed and some people end up living with 

disabilities for the rest of their lives. It is not difficult to imagine how the loss of hearing or 

vision, for example, will diminish the experience of consumption. This implies, however, that 

rational agents will take this disability risk into account when discounting the future. It might 

make sense then to discount the near future more heavily than the distant future—people have 

more to lose from accidents now than in the future when they may have accumulated several 

disabilities already.  

This intuition is formalized in a model where consumers’ utility depends on which set of 

organs are functioning at the time of consumption. Organs are assumed to fail following a 

multidimensional continuous-time Markov process. The analysis shows that hyperbolic 

discounting arises when organs fail independently of each other. When the failures are 

interdependent, hyperbolic discounting is shown to be asymptotic as long as the total failure rate 

increases with the set of possible disabilities.  

Several authors have taken axiomatic approach and provided foundations for hyperbolic 

discounting. Hayashi (2003) shows that quasi-hyperbolic discounting arises when stationarity 

assumption is relaxed to quasi-stationarity. Ok and Masatlioglu (2007) present a representation 

theorem for preferences on the prize-time space. Their general axiomatic framework covers 

hyperbolic discounting as well as similarity-induced time preference (Rubinstein 2003) and 

subadditive time preference (Read 2001). It is well known that dynamic inconsistency occurs in 

non-expected utility models (Machina 1989; Karni and Schmeidler 1991). Halevy (2008) and 

Saito (2011) derive conditions for quasi-hyperbolic and hyperbolic discounting when the utility 

function is not linear in the continuation probability.  

Within the framework of expected utility theory, Dasgupta and Maskin (2005) showed that 

hyperbolic discounting arises when there is a possibility that payoffs will be realized early. 

Becker and Mulligan (1997) present an endogenous model of time preference where agents can 

enhance their patience through costly investment. Azfar (1999) and Sozou (1998) examined a 

model where decreasing failure rate occurs due to Bayesian updating of an unknown failure rate. 

The closest to this paper is Proschan (1963) where a mixture of non-increasing failure rate 

distributions is shown to have a non-increasing failure rate. Gurland and Sethuraman (1995) 

                                                 
1
 See Strotz (1955), Thaler (1981), and Frederick, Loewenstein, and O’Donoghue (2002). For an alternative view, 

see Read (2001) and Rubinstein (2003). The idea of hyperbolic discounting has been fruitfully applied in various 

contexts (Phelps and Pollak, 1968; Laibson , 1997; O’Donoghue and Rabin , 1999).  
2
 See, for example, Yaari (1965).  



extended this result to mixtures of several increasing failure rate distributions. None of these 

papers, however, examines the case where the failure rate of a component depends on the state of 

other components in the system.  

 

 

2. Model 

 

A consumer has     organs. A consumer’s health is represented by an  -dimensional vector                         Let      if the organ   is functioning and      otherwise. 

Zero vector and unit vectors are defined in the usual way:  

                              
Define     such that            

 

Organs fail as time goes on. Let      be the state of a consumer’s health at time  .      is 

assumed to be an  - dimensional continuous-time Markov chain. The transition probabilities are 

given by                                
 

Define instantaneous transition rates such that                           
 

It is assumed that there are only two types of transitions: either one of the functioning organs 

fails (injury) or all of the functioning organs fail at the same time (death). The corresponding 

transition rates are given by                                                
 

Implicit here is that failed organs never recover, that is,           for     . Let      be the 

total failure rate out of state  :                     
The utility from consumption depends on the consumer’s health. Let    be the rate of 

consumption at time  . Then, the flow utility at time   is given by  

             

 

where               . It shows that organ  , if functioning, contributes    to the ability to 

enjoy consumption. The weights are normalized so that       . For a given initial condition       , the lifetime expected utility of an agent is then given by 

 



                            
           

 

Define an “effective discount factor”       and an (expected) “decay factor”       such that:  

                                                      
 

Then, the lifetime expected utility can be written as  

                     
                    

   
 

Hyperbolic discounting arises when discount rate decreases as time goes on. Given the 

discount factor      , the corresponding discount rate       is implicitly given by 

                     
 

An agent has hyperbolic discounting in state   if  

                              
 

But given the relationship                , it follows that  

                                
 

Hyperbolic discounting is thus equivalent to hyperbolic “decay” in this model.  

 

 

3. Analysis 

 

Notice that the expected decay function       is given by  

                       
 

By differentiating with respect to time, one obtains  

                                 
where                 .  



 This expression can be transformed into a system of linear differential equations. 

Kolmogorov’s Backward Equation is given by  

                                  
 

Multiplying both sides by      and summing over    gives  

                                            

                               

                     
This shows that       satisfies the following system of first-order linear differential equations: 

                               
Given the relatively simple transition structure, the solution to the system can be obtained by 

substitution. A straightforward integration gives 

                                  
              

 

Recall that         and       unless       or    . This implies that       can be 

solved explicitly if         is known for all  . Let     denote the Euclidean norm. For      , 

that is, with only one functioning organ left, the expected decay has a simple form:  

                   
 

By substituting this for      ,       can be determined for      . But this implies that 

sequential substitution will determine all the rest of the expected decay functions for      . 

 For      ,       decays exponentially so that hyperbolic discounting never arises. The 

question is thus whether hyperbolic discounting ever arises for      . A special case of 

interest is when the organs fail independently. This occurs when             for all   and  . In 

this case, each organ fails with a constant rate, which means that its failure time follows an 

exponential distribution. Notice that, with normalization, the expected decay factor can be 

interpreted as a weighted average of organs’ survival probabilities. A well-known result in 

mathematical statistics is that a mixture of exponentials has a decreasing failure rate (Proschan 

1963). If organs fail independently, therefore, this suggests that decay will occur at a decreasing 

rate.  

 



 Proposition 1 (Proschan, 1963).  If             for all   and  , then 
                 for 

 all    . The inequality is strict if             for    .  
 

 Proof  See Appendix. 

 

 Although it might be a reasonable approximation, the assumption that organs fail 

independently seems rather restrictive. It looks problematic in particular when several organs 

have failed already. An organ’s failure is then more likely to depend on which set of organs are 

still functioning at the time. The model developed in this paper is flexible enough to incorporate 

this kind of state-dependent failure patterns. But allowing for state-dependence makes it more 

difficult to characterize the behavior of the expected decay factor. The following proposition 

shows, however, that one can still obtain an asymptotic result under relatively mild assumptions.  

 

 Proposition 2.  If        is strictly increasing and             for    , then there exists 

      such that 
                 for all     . 

 

 Proof  See Appendix. 

 

The monotonicity of the total failure rate        means that injuries occur at a higher rate when 

there are more functioning organs. If organs fail independently, the total failure rate equals the 

sum of the individual failure rates. The monotonicity condition is thus satisfied trivially in this 

case. The condition             for     requires that organs have a distinct failure rate. As is 

the case in Proposition 1, this guarantees that discounting becomes strictly hyperbolic.  

 

 

4. Concluding Remarks 

 

This paper is based on the idea that utilities from consumption depends on the consumers’ 
state of health. In particular, it assumes that consumers may lose some of their abilities to enjoy 

consumption throughout their lifetime. The author is unaware of any formal empirical study that 

either directly supports or refutes this assumption. But it seems to be a fact of life that can be 

confirmed by introspection with relative ease.  

Consider a person who got seriously injured from a car accident. It is not uncommon that 

people with traumatic brain injury lose taste and smell. Suppose that the person made a 

reservation at an expensive restaurant before the accident. It is not difficult to imagine then how 

this new disability will affect the utility from consuming the restaurant meal. Or consider 

someone who lost his or her hearing. The value of a New York Philharmonic ticket, for example, 

must be different before and after the accident.  

Hyperbolic discounting has often been associated with dynamically inconsistent behavior. 

Failing to quit smoking or saving too little for retirement, for example, has often been deemed as 

a consequence of hyperbolic discounting. The government then, through taxes and regulations, 

may increase consumers’ welfare by either discouraging smoking or encouraging saving. What 
this paper shows, however, is that hyperbolic discounting can be compatible with a fully rational 



and dynamically consistent behavior. This suggests that, contrary to common perception, 

paternalistic intervention by the government may not be necessary after all.
3
     

Research has found several different explanations of hyperbolic discounting. These theories 

tend to be supported by some empirical evidence but often have conflicting implications as well. 

It seems possible that hyperbolic discounting is a complex phenomenon with multiple underlying 

mechanisms. It is hoped that the idea presented in this paper will enrich our collective 

understanding of the problem. 
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Appendix 

 

Proof of Proposition 1 

 

Let                . The expected decay factor in this case is given by                    
Then,                                                                                                                     
The last inequality is strict if          as claimed.  □ 

 



Proof of Proposition 2 

 

Define      be the set of functions        such that                          
Lemma            . 

 

Proof  The proof is by induction. For      ,                                   
             

                                 
             

                                                                      
                                                         
                                                                                  

where        . The third equality follows from the assumption that        is strictly 

increasing. Suppose now that            for      . But this implies, for        ,                                   
             

                                      
             

                 
                                    

                           
         

                                     
                       

         
                                     

                       

                               



where                            and                                 . This shows that            for        .   □ 

 

Let   be the set of functions      such that                                                          
Then,                                                                                                                                                                                                      
Notice that                  unless     and      or     and     . Thus,                           , and this implies that 

              becomes positive when   is 

large enough. The proof is complete if it is shown that        . This is immediate for       

because, from the proof of the lemma,                                                                                       
 

given that             and        is strictly increasing. Suppose now that         for      , i.e.,                                                    
where               and              . Then, for        ,                                   

             
                                                      

             

                                                                              
                                                                        

Let                      



and      be its q
th

 smallest element. Define                                          
Then,       can be rewritten as                                                           
where                              
Given that               and            ,                                                       

                                                 
          

Lastly, notice that            , which implies           for some    . For all  , therefore,          . This implies that         for         as desired.   □ 

 


