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Abstract
This article assesses the ability of flexible dynamic correlation specifications to improve asset allocation decisions. To

that end, we use the recently proposed Rotated Dynamic Conditional Correlation (RDCC) model that enables the

estimation of models with high degree of parameterization and large number of assets. We also extend the RDCC

model to incorporate 'rotated' realized correlation measures which exploit the information content of intra-day data.

The empirical evidence, based on ten US equities and three years of out-of-sample forecasting (2007-2009), support

the use of flexible diagonal RDCC specifications for portfolio management purposes. However, simpler scalar

specifications enhanced with realized correlation measures can produce superior or in some cases similar results.

Overall, our findings give evidence in favor of inter-daily flexible RDCC models for asset allocation purposes when the

computation of realized correlation measures is practically unfeasible.
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1. Introduction 

The pivotal role of volatility and correlation forecasts in asset allocation decisions is 

reflected in the plethora of  multivariate GARCH (MGARCH) models proposed in the 

literature (e.g. see  Laurent et al. 2012). A central topic in this research field is the degree of 

flexibility (parameterization) of the MGARCH models. Hansen (2009) provides theoretical 

arguments that models with good in-sample fitting have inferior out-of-sample forecasting 

performance. In the same vein, Engle and Kelly (2012), for instance, propose parsimonious 

correlation models that lead to superior portfolio selections, whereas Bilio et al. (2006) and 

Noureldin et al. (2014) argue in favor of more flexible MGARCH structures.
1
  

Another strand of the literature has focused on the economic value of the realized 

covariance matrices in terms of optimal portfolio allocations (e.g. see Varneskov and Voev, 

2013 and references therein). Realized covariance matrices are non-parametric measures of 

the unobserved (co)variance of assets returns and are computed using intraday high frequency 

data (e.g. see Andersen et al. 2003). These studies evaluate the information content of 

intraday returns, encapsulated in the realized (co)variance measures, against the information 

content of inter-daily returns utilized by the MGARCH models. The empirical evidence, so 

far, suggest that realized measures can significantly improve the quality of the (co)variance 

forecasts. 

We contribute to this growing literature by complementing previous studies for several 

aspects. First, we implement the recently proposed Rotated Dynamic Conditional Correlation 

(RDCC) model (Noureldin et al. 2014) in order to examine the impact of different levels of 

model parameterization (flexibility) on asset allocation decisions. The RDCC model is 

efficiently estimated even for large portfolios and is therefore an ideal candidate for the 

purpose of our study. To our knowledge this is the first time that the RDCC model is 

employed in a portfolio selection application. Second, we extent the RDCC model to 

incorporate ‘rotated’ realized correlation measures in order to examine whether the 

information content of intraday data can further improve asset allocation. Third, we also 

investigate whether the forecasting performance of the RDCC model enhanced with realized 

correlations can be further improved by adding more flexibility in the model’s structure. This 

is a new feature in the literature since the majority of the extant studies are restricted to the 

comparison between inter-daily and realized covariance models. The empirical analysis is 

based on ten US stocks and three years of out-of-sample forecasting. Finally, we evaluate the 

out-of-sampling forecasting performance of the alternative specifications by examining the 

mean-variance tradeoff of the corresponding efficient portfolios.       

The rest of the article is organized as follows. Section 2 describes the econometric 

methodology while Section 3 presents the empirical results which are based on ten US stocks 

and three years of out-of-sample forecasting (2007-2009). Section 4 concludes this article.  

2. The Rotated DCC model 

Assume that tr , Tt ,...,1= , is an N-dimensional vector of asset returns with ( ) 01 =−tt FrE  

and ( ) ttt HFrVar =−1  being the conditional mean and covariance,  respectively. The standard 

DCC model of Engle (2002) decomposes tH  as 

tttt DCDH =  (1) 

                                                            
1 Estimation of flexible MGARCH models suffers from computational problems in real-world applications with 

large dimension portfolios. Computational problems may also arise from the parameter restrictions which are 

necessary to ensure that the estimated covariance matrices are positive definite.  



 

where tC  is the conditional correlation matrix of tr  and tD is a diagonal matrix with the 

conditional standard deviations on its main diagonal, i.e. ( )tiit hdiagD ,=  with Ni ,...,1= . 

Conditional variances, tiih , , are typically described by GARCH-type models, whereas 

conditional correlations by the following relationships 

 ( ) ( ) 2

1

2

1
−−= NttNtt IQQIQC       (2) 

( ) BBQAεεABQBAQAQQ tttt
′+′′+′−′−= −−− 111  (3) 

where A  and B  are NN ×  parameter matrices, ttt rDε 1−=  are the standardized returns, 

( )tεVarQ =  is the unconditional covariance matrix of tε  and BQBAQAQ ′−′−  is assumed 

to be positive semidefinite.
2
 The model in Eq. (3) is a correlation-targeting DCC 

parameterization which means that tQ  mean reverts to Q . Correlation targeting also 

facilitates QML estimation because Q  is estimated in separate step using a method of 

moments estimator. Nonetheless, even in this form, DCC estimation is cumbersome in 

practical applications with large N and flexible dynamics (e.g. diagonal A  and B  matrices), 

because it is hard to impose parameter restrictions which ensure the positive definiteness of 

BQBAQAQ ′−′− .  

Noureldin et al. (2014) propose to work with rotated standardized returns to circumvent 

the aforementioned issues and make the estimation of large and flexible DCC models more 

tractable. In particular, the computation of rotated returns is based on the spectral 

decomposition of Q , i.e. PΛPQ ′=  where P  is a matrix of eigenvectors and Λ  is a 

diagonal matrix with the eigenvalues on its main diagonal. The rotated standardized returns 

are defined as tt εPΛPε ′= − 2/1~ , with ( ) Nt IεVar =~ . Therefore, in the Rotated DCC (RDCC) 

model the conditional covariance of tε~  is modelled as 

( ) BQBAεεABBAAIQ tttNt
′+′′+′−′−= −−− 111

~~~~
 (4) 

NIQ =0

~
 

Then, the tQ  in Eq. (3) is computed as PΛPQPΛPQ tt
′′= 2/12/1 ~
.  

Section 2.1 presents four distinct parameterizations which correspond to four different 

levels of flexibility. The RDCC model is also extended to incorporate realized correlation 

measures. 

2.1. Alternative specifications 

Diagonal RDCC (D-RDCC). This is the most heavily parameterized specification which 

assumes a diagonal structure for the parameter matrices ( ( )2/1

iiadiagA =  and ( )2/1

iibdiagB = ) 

and has 2N parameters. The conditional correlation process is covariance stationary and the 

BBAAI N
′−′−  matrix is positive definite if 1<+ iiii ba .    

Common Persistence RDCC (CP-RDCC). Based on the empirical observation that the 

persistence parameter of the conditional variance, iib , is less heterogeneous than the 

smoothness parameter, iia , Noureldin et al. (2014) propose a common persistence parameter 

for the diagonal elements of tQ
~

 which reduces the number of parameters (but also flexibility) 

from 2N to N+1. In particular, the CP-RDCC model is given by 

                                                            
2 The symbol ‘ ’ denotes the Hadamard product. 



 

( ) BQBAεεAIȜQ tttNt

~~~~~1
~

111
′+′′+−= −−−  (5) 

where ( )2/1

iiadiagA = , ( )( )2/1~
ιιaȜdiagB −=  and  Ȝ  is scalar with 10 << Ȝ  and iiaȜ max≥ . 

Stationarity of tQ
~

 and positive definiteness of ( ) NIȜ−1  is reassured for 1<Ȝ .  

Scalar RDCC (S-RDCC). The scalar specification restricts all elements of tQ
~

 to share 

common dynamic parameters, i.e. NIaA 2/1=  and NIbB 2/1= . For 1<+ ba  the process is 

covariance stationary and BBAAI N
′−′−  is positive definite.  

Rotated Dynamic Equicorrelation (RDECO). The Dynamic Equicorrelation (DECO) 

model of Engle and Kelly (2012) reduces the flexibility of the model even more, since it 

assumes equal pairwise correlations across all N assets. The Rotated DECO model uses the 

average RDCC correlation which is given by  

( ) ( )nιCι
nn

ρ tt −′
−

=
1

1
 (6) 

( ) NtNt

DECO

t JρIρC +−= 1  (7) 

where ι  is a vector of ones and NJ  is an NN ×  matrix of ones. The main advantage of the 

DECO model is that the determinant and the inverse of the DECO

tC  matrix are available in a 

closed form. This feature alleviates the computational burden of QML estimation when N 

grows large. 

All four abovementioned specifications are further enhanced with realized correlation 

measures that utilize the information content of intraday high frequency returns. More 

specifically, the standard realized covariance matrix is defined as (e.g. see Andersen et al. 

2003) 

tm

M

m tmt rrRCOV ,1 ,∑ =
′=  (8) 

where M is the number of intraday returns sampled at equidistant time intervals. The realized 

correlation ( RC ) matrix is easily derived from Eq. (8) and can replace the 11
~~
−− ′

tt εε  matrix in 

Eq. (4). We consistently incorporated the RC  matrix into the RDCC model by computing a 

rotated RC  (RRC) measure which has an unconditional expectation equal to NI . Defining 

the unconditional expectation of RC  as ( )tRCEV =  the rotated RC  is given by 

 tt RCVRRC 1−=  (9) 

It is easy to verify that ( ) Nt IRRCE = . 

3. Empirical results 

We use ten liquid stocks from the Dow Jones Industrial Average index to estimate the 

models and evaluate their forecasting performance.
3
 Daily returns and realized (co)variances 

were downloaded from the Oxford Man Institute’s realized library and span from 1/2/2001 to 

31/12/2009 (2,242 observations).
4
 The realized covariance metrics are estimated using 5-

minute time intervals with subsampling. 

                                                            
3 The stocks are: Alcoa(AA), American Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont 

(DD), General Electric (GE), International Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), 

and Exxon Mobil (XOM). 

4 See Gerd et al. (2009). 



 

Graphical investigation of the realized and rotated realized correlations in Figure 1 reveals 

that both series share common dynamic characteristics but they have different scaling, as 

expected.
5
 Specifically, rotated series hover around their unconditional mean that is forced to 

be zero.  

 

Figure 1 Realized and rotated realized correlations for two pairs of stocks 

 

Notes. The pairs of stocks are (Alcoa (AA), General Electric (GE)) and (Bank of America (BAC), Microsoft 

(MSFT)).  

Estimation results presented in Table I are, overall, in line with those in Noureldin et al. 

(2014). The incorporation of the RRC measure, however, has significantly improved the in-

sample fitting across models. Moreover, the RRC has greater impact on future correlation ( a  

and iia estimates) compared to its inter-daily counterpart, i.e. 11
~~
−− ′

tt εε  matrix. Nevertheless, the 

overall persistence of the models does not change substantially. 

 

3.1. Economic evaluation 

We follow Chiriac and Voev (2011) and we evaluate the forecasting performance of the 

alternative specifications in terms of a standard asset allocation problem where a risk-averse 

investor minimizes the asset portfolio variance given a target annual return.
6
 To that end, we 

produce out-of-sample covariance forecasts for 1, 5 and 10 days ahead forecasting horizons. 

 

                                                            
5 The pairs of stocks are (Alcoa (AA), General Electric (GE)) and (Bank of America (BAC), Microsoft 

(MSFT)). 
6 Varneskov and Voev (2013) argue in favor of this kind of conditional economic evaluation relied on the results 

of  Voev (2009) who showed that economic evaluation based on unconditional portfolio volatility tends to favor 

smoother models.   
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Table I Quasi maximum likelihood (QML) estimations for the full sample (1/2/2001- 31/12/2009). 

Variance targeting GARCH(1,1) estimations 

AA AXP BAC KO DD GE IBM JPM MSFT XOM 

α  0.044 0.065 0.050 0.020 0.060 0.038 0.067 0.042 0.041 0.064 

(0.003) (0.006) (0.007) (0.002) (0.006) (0.004) (0.006) (0.006) (0.005) (0.011) 

β 0.947 0.932 0.940 0.975 0.933 0.963 0.928 0.955 0.956 0.919 

(0.004) (0.006) (0.008) (0.003) (0.007) (0.004) (0.007) (0.006) (0.005) (0.014) 

GARCH LL -4,346 -4,663 -4,023 -4,503 -4,020 -5,089 -4,654 -4,225 -4,243 -3,515 

Dynamic correlation estimations 

D-RDCC CP-RDCC S-RDCC RDECO D-RDCC-Real CP-RDCC-Real S-RDCC-Real RDECO-Real 

a  0.007 0.035 0.073 0.193 

(0.001) (0.012) (0.020) (0.049) 

b  0.980 0.952 0.849 0.798 

(0.003) (0.019)  (0.049) (0.061) 

iiamin  0.003 0.002 0.018 0.020 

(0.007) (0.002) (0.013) (0.018) 

iiamax  0.021 0.016 0.531 0.733 

(0.045) (0.012) (0.206) (0.387) 

iibmin  0.957 0.337 

(0.116) (0.634) 

iibmax  0.991 0.981 

(0.016) (0.040) 

iiii ba +min  0.974 0.868 

iiii ba +max  0.998 0.999 

Ȝ 0.986 0.966 

(0.003) (0.020) 

Correlation LL 110 107 96 52 125 119 106 67 

Total LL -43,171 -43,174 -43,185 -43,229 -43,156 -43,162 -43,175 -43,214 

Notes. D-RDCC, CP-RDCC and S-RDCC stand for the Diagonal-, Common Persistence- and Scalar- Rotated Dynamic Conditional Correlation model respectively. The RDECO stands for the Rotated Dynamic 

Equicorrelation model.  The suffix ‘–Real’ in the alternative RDCC specifications denotes that the rotated realized correlation measure is incorporated in the corresponding model. LL denotes the log-likelihood. 

Standard errors are presented in parenthesis.  

 



 

The out-of-sample period extents from 3/1/2007 to 31/12/2009 ( 1756 +− k observations, k = 

1, 5, 10) and the forecasts are produced using a 6-year rolling window. Based on the 

covariance forecasts generated by the alternative models, we construct optimal (efficient) 

portfolios for each of the out-of-sample days by solving the following problem 

1    and    250/ s.t.

 ˆ   min

:

:

=′=′

′

+++

+++
+

ιwȝkȝw

wHw

tktpktttkt

tktktttkt
w tkt  

where ∑ = ++ =
k

s stktt HH
1:

ˆˆ  is the k-days ahead cumulative covariance forecast for 

10 and 5 1,=k , ( )1:: −++ = tkttktt FrEȝ  and pȝ  is the annualized target portfolio return.
7
 Optimal 

asset weights, 
tkt

w + , are used to construct portfolios based on ex-post realized returns and 

covariances during the out-of-sample period, i.e. ktttkt

p

ktt rwr +++ ′= ::  and 

tktktttkt

p

ktt wRCOVwσ ++++ ′= :: . Therefore, for a range of target return values, pȝ , we can 

construct efficient frontier graphs and evaluate the ability of the proposed models to produce 

superior portfolio selections in terms of mean-variance tradeoff.  

A number of interesting conclusions can be drawn from Figure 2 which depicts the 

efficient frontiers for the 1 day ahead forecasting horizon.
8
 First, focusing on the models that 

utilize daily returns we observe that more flexible parameterizations present superior mean-

variance tradeoffs compared to less parameterized specifications. More specifically, the 

diagonal RDCC (D-RDCC) is the best performing model followed by the common 

persistence RDCC (CP-RDCC) model. Second, the RDECO model outperforms its 

unrestricted variant (the scalar RDCC (S-RDCC) model) confirming the findings of Engle 

and Kelly (2012). Third, the incorporation of the rotated realized correlation (RRC) measure 

into the alternative RDCC specifications improves asset allocation across models.
9
 

Nevertheless, now, the scalar specification, i.e. the S-RDCC-Real model, outperforms its 

more complicated counterparts. These results align with the arguments of Chiriac and Voev 

(2011) who propose parsimonious multivariate realized volatility models for portfolio 

selection purposes. This finding also indicates that simple scalar specifications can 

adequately capture the extra information content of intraday returns. Overall, the S-RDCC-

Real model is the best performing model followed closely by the inter-daily D-RDCC model. 

Table II presents the Model Confidence Set (MCS) results at a 5% significance level 

(Hansen et al., 2011). The MCS methodology selects statistically that set of models which 

present superior forecasting performance with respect to a specific evaluation metric, which, 

in this study, is the global minimum variance portfolio (GMVP).
10

 The MCS results confirm 

that the D-RDCC and S-RDCC-Real specifications outperform their counterparts producing 

lower GMVP levels for the 5 and 10 ahead forecasting horizons, while for the day-ahead 

predictions the S-RDCC-Real is the only model that belongs to the MCS at 5% significance 

level. 

 

  

                                                            
7 For multistep forecasts we assume that ( ) kttkt QFRRCE ++ ≈

~
. 

8 5 and 10 days ahead efficient frontier graphs give similar results and are available upon request. 
9 RDCC models enhanced with the RRC measure have the suffix ‘-Real’. 
10 GMVP is depicted in Figure 1 with different shapes. 
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is extended to incorporate rotated realized correlation measures. RDCC specifications with 

rich dynamics can be efficiently estimated even in the case of moderately large portfolios. 

This allows us to investigate empirically the forecasting performance of flexible dynamic 

correlation structures using a ten-stock portfolio. Finally, the out-of-sample evaluation 

process is based on the construction of efficient portfolios and the examination of their mean-

variance tradeoff.  

 Empirical evidence suggests that flexible diagonal RDCC structures that utilize daily 

returns can improve the asset allocation performance leading to superior mean-variance 

tradeoffs relative to their more restricted counterparts. However, we also show that simpler 

scalar RDCC specifications enhanced with realized correlation measures can adequately 

capture the correlation dynamics and offer similar or superior mean-variance tradeoffs. From 

a practical perspective, the results indicate that portfolio managers may benefit from the 

implementation of more flexible dynamic correlation structures in cases of illiquid stocks or 

limited availability of intraday data that discourage the use of realized correlation measures.  
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