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Abstract
The purpose of this paper is to show that computing the minimum cost index (MCI) for a given price-amount data set,

proposed by Dean and Martin (2010, 2015) as a goodness-of-fit measure for the revealed preference test, is NP-hard.

Our proof uses a polynomial reduction from the feedback arc set problem, which is a decision problem known to be

NP-complete. Our result refines the NP-hardness result in Dean and Martin (2010), which is presented in a more

abstract framework than our economic data setting. Thus the computation of MCI is NP-hard even if we restrict our

attention to the revealed preference setting for economic data. We also discuss computational procedures for MCI and

provide a way of approximating MCI in polynomial-time using approximation algorithms for the (weighted) feedback

arc set problem.
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1. Introduction

Given a finite data set {(pk, xk)}
n
k=1 where pk ∈ Rℓ

++, xk ∈ Rℓ
+ (k = 1, . . . , n), the data can

be supported by some non-satiated utility function u : Rℓ
+ → R as solutions of a utility

maximization problem if and only if the data are consistent with the generalized axiom
of revealed preference (GARP). This classical result originates from Afriat (Afriat, 1962;
Diewert, 1973; Varian, 1982). Based on this result, we can determine whether or not there is
a utility function that rationalizes an arbitrary data set {(pk, xk)}

n
k=1. This test is a binary

choice between two alternatives and hence, if some of the data violates GARP, then we have
no information about the severity of the violation.

To quantify how severely a data set {(pk, xk)}
n
k=1 violates GARP, several severity-measures

have been proposed as goodness-of-fit measures. For example, Afriat (1973), Houtman and
Maks (1985), Varian (1990), Echenique et al. (2011), and Smeulders et al. (2013) pro-
posed indices that express, in various ways, how severely the data violate GARP.1 However,
Smeulders et al. (2013, 2014) showed that computing some of those indices is NP-hard.2

More specifically, they showed that the indices in Houtman and Maks (1985), Varian (1990),
and Echenique et al. (2011) are NP-hard and proposed a polynomial-time algorithm for the
index in Afriat (1973), as well as two new indices that have polynomial-time algorithms and
behave similarly to the index in Echenique et al. (2011).

Recently, Dean and Martin (2010, 2015) proposed a new index called the minimum cost
index (MCI). They computed the MCI for a real economic data set {(pk, xk)}

n
k=1 using an

NP-hard problem called the minimum set covering problem (MSCP). In this paper, we show
the converse. We show that an NP-hard problem called the feedback arc set problem can be
solved using the problem of computing MCI for an economic dataset {(pk, xk)}

n
k=1, and thus

the MCI computation problem for an economic dataset {(pk, xk)}
n
k=1 is in the class of NP-

hard problems. Note that Dean and Martin (2010, 2015) and their online appendices show
that a problem they call the maximal acyclical set problem (MASP) is equivalent to MSCP,
and hence is NP-hard. Because MASP contains the computation of MCI in the economic
data setting, our result refines their NP-hardness result, in that there is no exact polynomial-
time algorithm for the MCI computation problem even if we restrict our attention to the
revealed preference setting for a given economic dataset {(pk, xk)}

n
k=1.

2. Minimum Cost Index: Definition, Validity, and Complexity Result

MCI is a goodness-of-fit measure for the revealed preference test proposed by Dean and
Martin (2010, 2015). MCI expresses the minimum cost of information that must be ignored

1Another branch of research in the literature investigates PC-based Monte Carlo procedures for measuring
the severity of GARP violations. See Gross (1995), Fleissig and Whitney (2005), and Heufer (2008). For
an overview of older goodness-of-fit measures, see Gross (1995). Apesteguia and Ballester (2015) provided a
new argument for comparing these alternative measures from the welfare analytic view point.

2An optimization problem or a decision problem in the class of NP-hard (or NP-complete) problems is not
easy to solve in the sense that, if there is a polynomial-time algorithm for the problem, then every problem
in the class of NP problems can be solved in polynomial-time. In other words, an NP-hard problem is no
easier to solve than any other NP problem. As an example, the well-known Hamiltonian circuit problem is
in the class of NP problems.) Moreover, no NP problem at present has an exact polynomial-time algorithm,
and hence it must also be difficult to find an exact polynomial-time algorithm for an NP-hard problem. For
more detailed discussion on the theory of NP, NP-completeness, and NP-hardness, see Karp (1972), Garey
and Johnson (1979), and Korte and Vygen (2012).



from the data set so that the remaining information of the data satisfy a condition equivalent
to GARP. We first formalize what is meant by a condition equivalent to GARP using some
graph theoretic apparatus.

A directed graph is a pair G = (V,E) where V is a finite set and E is a subset of the
ordered pairs V × V . We call an element v ∈ V a vertex and an element (v, u) ∈ E an
edge.3 A path (or a vi0-vim path) vi0 → vi1 → · · · → vim is a sequence of vertices and edges
vi0(vi0 , vi1)vi1(vi1 , vi2)vi2 · · · vi(m−1)

(vi(m−1)
, vim)vim . A path is called a cycle if vi0 = vim . A

graph that contains no cycle is said to be acyclic.

Definition 1. For any data {(pk, xk)}
n
k=1 where pk ∈ Rℓ

++, xk ∈ Rℓ
+ (k = 1, . . . , n), we

define the following directed graph: Gnp := (V,Enp) where

V := {x1, x2, . . . , xn} (1)

Enp := {(xk, xk′) | k, k
′ = 1, . . . , n, k ̸= k′, and pk · (xk′ − xk) ≦ 0}. (2)

We call the graph Gnp := (V,Enp) the associated graph or the graph associated with the data.

As pointed out in Piaw and Vohra (2003), Fujishige and Yang (2012), and Talla Nobibon
et al. (2014), we can translate GARP into the graph theoretic conditions stated in the
following proposition.4

Proposition 1. Given the data {(pk, xk)}
n
k=1, the following three conditions are equivalent:

(i) Cyclical consistency (GARP): pk0 ·(xk1−xk0) ≦ 0, pk1 ·(xk2−xk1) ≦ 0, . . . , pkm ·(xkm+1−
xkm) ≦ 0 (where km+1 = k0) implies that pki · (xk(i+1)

− xki) = 0 for all i = 0, . . . ,m.

(ii) The associated graph Gnp = (V,Enp) has no cycle that contains an edge (xk, xk′) satis-
fying pk · (xk′ − xk) < 0.

The first condition is the cyclical consistency condition of Afriat (1967) and is equivalent
to GARP (see Varian (1987)). The second condition is a graph theoretic equivalent of the
cyclical consistency condition that is related to the definition of MCI as we will see below.

Definition 2. (Dean and Martin (2010, 2015)) For any data {(pk, xk)}
n
k=1 where

pk ∈ Rℓ
++, xk ∈ Rℓ

+ (k = 1, . . . , n), we define MCI as follows:

MCI := min{
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) | E
′ ⊂ Enp and

G′ := (V,Enp \ E
′) is acyclic} (3)

where Gnp = (V,Enp) is the graph associated with the data {(pk, xk)}
n
k=1.

Note that Dean and Martin (2010, 2015) defined MCI as normalized by the total wealth
of the data, that is, by dividing the value (3) by

∑n

k=1 pk ·xk > 0. We omit this normalization
as our goal is to determine the computational complexity of MCI and (omission of) normal-
ization obviously does not harm the conclusion. Moreover, while the original definition of

3In this paper, we only consider simple graphs. That is, we assume that there are no loops or parallel

edges in G = (V,E).
4For a detailed discussion for this graph theoretic structure, see also Shiozawa (2015).



MCI is based on the direct revealed preference relation R0 of Varian (1987), we adopt its
graph theoretic representation Gnp.

While the definition of MCI is based on the idea of the minimum cost of information that
must be ignored so that the remaining data satisfies a condition equivalent to GARP, the
condition used in Equation (3) is slightly different from that in Condition (ii) in Proposition
1. However, it is clear that

MCI = min{
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) | E
′ ⊂ Enp and G′ = (V,Enp \ E

′)

has no cycle containing a negative edge}. (4)

Thus, we can see that the definition of MCI actually grasps the above-mentioned idea and,
from Proposition 1, that MCI also has theoretical validity as a goodness-of-fit measure for
GARP violation. Conversely, MCI is not easy to compute in general. Actually, as we will
see below, the problem of calculating MCI for an arbitrarily given data set {(pk, xk)}

n
k=1 is

NP-hard. Hence, there is probably no polynomial-time exact algorithm for computing MCI
for a given data set {(pk, xk)}

n
k=1. We formally state the problem of computing MCI below:

MCI COMPUTATION
Instance: An integer ℓ ≧ 1 and a data set {(pk, xk)}

n
k=1 where pk ∈ Rℓ

++, xk ∈ Rℓ
+.

Task: Compute MCI as defined in Equation (3).

Theorem 1. MCI COMPUTATION problem is NP-hard.

Proof. Observe that the right-hand side of Equation (3) is a problem that asks the minimum
value of edges to remove to get an acyclic subgraph of Gnp. There is a similar problem called
the feedback arc set problem (FAS), which is known to be NP-complete (Garey and Johnson,
1979, p.192). FAS is formalized as follows:

FAS
Instance: A directed graph G = (U,A) and an integer k ≦ |A|.
Question: Is there any subset A′ ⊂ A such that subgraph G′ = (U,A \ A′) is acyclic and
|A′| ≦ k.

We use a polynomial reduction from FAS. In other words, we show that any instance of
FAS can be reduced to an MCI computation problem of an economic data {(pk, xk)}

n
k=1 in

polynomial-time. Given an arbitrary instance of FAS, namely a directed graph G = (U,A)
and an integer k ≧ 0, we construct an instance of the MCI computation problem, that is,
data {(pk, xk)}

n
k=1, where pk ∈ Rℓ

++, xk ∈ Rℓ
+ (k = 1, . . . , n), and n = ℓ := |U |.5 First, we

define the consumptions xk ∈ Rn
+ (k = 1, . . . , n) as

xk := (xk1, . . . , xk(k−1), xkk, xk(k+1), . . . , xkn) := (0, . . . , 0, 1, 0, . . . , 0). (5)

Next, we define the prices pk ∈ Rn
++ (k = 1, . . . , n) as

pkk′ :=











1 if (uk, uk′) ∈ A

2 if k = k′

3 if (uk, uk′) /∈ A

(6)

5A similar reduction technique is used in Smeulders et al. (2014).



where pkk′ is the k′-th coordinate of the price pk ∈ Rn
++ and uk, uk′ ∈ U . We have

pk · (xk′ − xk) = pkk′ − pkk =

{

−1 < 0 if (uk, uk′) ∈ A

1 > 0 if (uk, uk′) /∈ A
(7)

for all k, k′ = 1, . . . , n where k ̸= k′. Therefore, if we construct the associated graph Gnp

for these data {(pk, xk)}
n
k=1, then it is evident from Equation (7) and the definition of the

associated graph Gnp that there is a one-to-one correspondence between the edges in G =
(U,A) and the edges in Gnp = (V,Enp). Moreover, from Equation (7), the MCI value for the
data {(pk, xk)}

n
k=1 is

MCI = min{
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) | E
′ ⊂ Enp and G′ := (V,Enp \ E

′) is acyclic}

= min{
∑

(uk,uk′ )∈A
′

1 | A′ ⊂ A and G′ := (U,A \ A′) is acyclic}

= min{|A′| | A′ ⊂ A and G′ := (U,A \ A′) is acyclic}. (8)

Therefore, we have an algorithm for solving FAS that uses the MCI computation problem
as a subroutine:

Step 1: Construct the instance for MCI computation from the given instance for FAS
according to Equations (5) and (6).

Step 2: Construct the associated graph Gnp for the data constructed in Step 1.

Step 3: Compute the MCI as defined in Equation (3).

Step 4: Compare the MCI value with the given integer k. If the MCI value is strictly
greater than k, then the answer to FAS is NO; otherwise the answer is YES.

Assuming that we have a polynomial-time algorithm for the MCI computation problem, the
computational time for the above algorithm for FAS is also polynomial. Moreover, because
FAS is NP-complete, this implies that every NP problem can be solved in polynomial-time.
In summary, if we assume that there is a polynomial-time algorithm for the MCI computation
problem, then every NP problem can be solved in polynomial-time, and therefore the MCI
computation problem is NP-hard.

3. Remarks on Computational Procedures for MCI

While there is probably no exact polynomial-time algorithm for the MCI computation prob-
lem, this does not mean that we cannot compute the MCI value for a given data set
{(pk, xk)}

n
k=1. There are many exact algorithms, heuristics, and approximation algorithms

for the minimum feedback arc set problem (the weighted version of FAS), and hence we can
compute or approximate MCI using these algorithms and/or heuristics. For exact algo-
rithms and heuristics, see Eades et al. (1993) and Eades and Lin (1995). For approximation
algorithms, see Seymour (1995), Evan et al. (2000), and Demetrescu and Finocchi (2003).



In addition, approximating MCI can be performed using the problem complementary to
the minimum feedback arc set problem, that is, the maximum feedback arc set problem. Let
E0 be a subset of Enp defined as

E0 := {(xk, xk′) ∈ Enp | pk · (xk′ − xk) = 0}.

We have
∑

(xk,xk′ )∈Enp

pk · (xk − xk′)−MCI

= max{
∑

(xk,xk′ )∈Enp

pk · (xk − xk′)−
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) |

E ′ ⊂ Enp and G′ := (V,Enp \ E
′) is acyclic}

= max{
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) | E
′ ⊂ Enp and G′ := (V,E ′) is acyclic}

= max{
∑

(xk,xk′ )∈E
′

pk · (xk − xk′) | E
′ ⊂ Enp \ E0 and G′ := (V,E ′) is acyclic}, (9)

and the right-hand side of Equation (9) is thus the optimal value for an instance of the
maximum feedback arc set problem defined as G := (V,Enp \E0). We can approximate MCI
by approximating the right-hand side of Equation (9) using a polynomial-time approximation
algorithm from Hassin and Rubinstein (1994). Note that the known approximation ratio for
the maximum feedback arc set problem is better than that for the minimum feedback arc
set problem.
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