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Abstract
Three regime threshold autoregressive models such as the BAND-TAR and EQ-TAR (Balke & Fomby, 1997) are

commonly used when studying arbitrage in the presence of trade frictions because the estimated thresholds represent

the size of the impediments to arbitrage. This paper shows that, while commonly overlooked, the attractors in these

models play an important role in threshold estimation. In particular, misspecified attractors cause systematic biases in

estimated thresholds. This paper proposes a generalized three regime TAR model that nests both the BAND-TAR and

the EQ-TAR models and allows the attractor to be freely estimated. Simulations suggest that the generalized model

mitigates the biases that arise when the attractor is misspecified.
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1. Introduction

Nonlinear time series models are increasingly being used in applied work. In particular,
the threshold autoregressive (TAR) model is one of the more commonly used form of this
type of model. For instance, Hansen (2011) has demonstrated the broad influence of the
TAR model in economic research. The study of arbitrage in the presence of transportation
costs is a specific area that has benefited from the use nonlinear time series analysis. For
example, the TAR model has been used to study index arbitrage (see Dwyer, Locke, & Yu,
1996, Martens, Kofman, & Vorst, 1998), foreign exchange arbitrage (see Canjels, Prakash-
Canjels, & Taylor, 2004, Chappell, Padmore, Mistry, & Ellis, 1996), international goods
market arbitrage (see Obstfeld & Taylor, 1997, Sarno, Taylor, & Chowdhury, 2004), and
arbitrage in early financial markets (see Bernholz & Kugler, 2011, Norman & Wills, 2015,
Volckart & Wolf, 2006) among others. The three regime TAR model has been useful when
studying arbitrage, in part, because the threshold estimates can be interpreted as the value of
the price difference at which arbitrage becomes profitable. The distance between thresholds
then represents a measure of the impediments to trade.

This paper shows that the attractors in the popularly used Equilibrium-TAR and Band-
TAR models proposed by Balke & Fomby (1997) (BF) play an important role in threshold
estimation. In particular, it is shown that because the attractors in these two models are
fixed, biases in the estimated thresholds can arise if the wrong model is used. This is
especially important because economic theory has little to say regarding which of the two
models is appropriate in any given situation. This paper proposes using a threshold model
which allows the attractor to be part of the estimation process. This generalized model nests
both the Equilibrium-TAR and Band-TAR models. Evidence is provided which suggests
that allowing the attractor to be estimated mitigates the potential bias in the threshold
estimation. A strategy for using these models in applied work is also provided.

2. BAND and EQ TAR models

When examining arbitrage in the presence of trade frictions, TAR models are usually em-
ployed in the context of cointegration analysis. The principle of nonlinear cointegration can
be demonstrated with a simple bivariate model similar to the one used in van Dijk & Franses
(2000),

yt + βxt = zt, zt = (ρ1 + ρ2R(zt−d))zt−1 + εt (1)

yt + αxt = wt, wt = wt−1 + ηt, (2)

for t = 1, ..., T where εt and ηt are i.i.d mean zero random variables. Here the cointegrating
vector is (1, β) and wt is the common stochastic trend of yt and xt. The long run equilibrium
is yt = −βxt, and thus the deviation from the equilibrium is zt. Cointegration between yt and
xt implies zt is stationary. When R(zt−d) = 0 for all zt−d the model represents conventional
linear cointegration. In the linear case yt and xt are cointegrated if |ρ1| < 1.



For nonlinear cointegration, the transition function, R(zt−d), is a function that is bounded
between 0 and 1. The transition variable, zt−d, controls the dynamic behavior of the devi-
ation from equilibrium. When R(zt−d) = 1, the rate at which the long run equilibrium is
established is based upon the value ρ1 + ρ2, and when R(zt−d) = 0 the rate is based upon
the value of just ρ1.

BF propose the Equilibrium-TAR (EQ-TAR) model:

zt = ρ1zt−1 + I(|zt−d| ≥ γ)ρ2zt−1 + εt. (3)

In this case the equilibrium error behaves differently whether zt−d it is within [−γ, γ] or not.
BF focus on the case where ρ1 = 1 and |ρ2| < 1. These values imply that zt follows a simple
random walk when zt−d is within the band and mean reverts to zero when it is outside the
band. BF also posit the Band-TAR model:

zt =







γ(1− ρ) + ρzt−1 + εt if zt−d > γ

zt−1 + εt if γ ≥ zt−d ≥ −γ

−γ(1− ρ) + ρzt−1 + εt if zt−d < −γ.
(4)

In this model, the time series process follows a unit root when it is smaller in magnitude
than the threshold, γ. When the process is larger than γ it reverts towards γ, and when the
process is smaller than −γ it reverts towards −γ.

The major difference between these two models is the “attractor” or direction of rever-
sion. While the Band-TAR model shows reversion towards the nearest threshold, the EQ-
TAR model reverts to the equilibrium. This is illustrated in Figures 1-2. The Band-TAR
autogregressive function is continuous, while the EQ-TAR model exhibits discontinuities at
the thresholds. A more generalized model, which nests both the EQ and Band threshold
models, can be formulated by adding a parameter which controls the value of the attractor.
If κ is the attractor then the TAR model would have the following form,

zt =







κ(1− ρ) + ρzt−1 + εt if zt−d > γ

zt−1 + εt if γ ≥ zt−d ≥ −γ

−κ(1− ρ) + ρzt−1 + εt if zt−d < −γ.
(5)

In this paper, the above model will be known as the Gen-TAR model. Note that when
κ = γ then the Gen-TAR model is the same as the Band-TAR and when κ = 0 it is the
EQ-TAR model. While there is a cost of having to estimate one additional parameter, the
Gen-TAR model could potentially be used to discriminate between the the EQ and Band
TAR models and prevent any complications that could arise from misspecification.1 This
could be done by simple examining the estimated value of κ.

1In empirical work, it appears that the Band-TAR model is more commonly used than the EQ-TAR
model. Some studies do use both models such as Lo & Zivot (2001), Lo (2008), and Federico (2012).



While there is a clear theoretical interpretation of the threshold in a three regime TAR
model, there is no clear economic meaning of the attractor. It is by definition the focus of
the direction of the time series when it is outside of the inner band. Economic theory has
little if anything to say with respect to what the value of the attractor should be, whether
γ, zero, or some value in between. This could be viewed as further justification for the use
of the GEN-TAR model where the attractor is freely estimated and not arbitrarily set to a
specific value.

3. Monte Carlo Simulations

Monte Carlo simulations were performed to evaluate the performance of the three TAR
models in a variety of circumstances. Data was created by setting y0 = 0, iterating the data
generating process (DGP) T + 250 times, and then discarding the first 250 observations so
that the final data set had T observations. The DGP for the EQ-TAR and Band-TAR are
given in equations 3 and 4. The error term is an iid standard normal random variable, or
εt ∼ N(0, σ) with σ = 1. As is noted by van Dijk, Teräsvirta, & Franses (2002), in the
case of smooth transition autoregressive models, when γ is divided by σ the estimate of γ
become approximately scale free. As a result, only the values of γ will be adjusted between
simulations while the distribution of the error term remains unchanged.

Hansen (1997) describes the method of estimating TAR models. For a given threshold
value, γ, the model can be estimated by OLS. The threshold is chosen among γ ∈ [γ, γ]
such that a given percentage of the observations are in each of the outer and inner regimes.
The threshold associated with the lowest combined sum of squared errors among the three
regimes is chosen as the estimated threshold. The values of γ and γ are chosen to be the
15th and 85th percentile.

Tables 1 and 2 contain the simulation results for the cases when the DGP is Band-
TAR and EQ-TAR respectively. The simulations were run with T = {200, 500, 1000}, ρ =
{0.1, 0.5, 0.9}, and γ = {0.5, 1.0, 2.0}. In each case, the Band-TAR, EQ-TAR, and Gen-TAR
models were estimated with the simulated data. The average values of σ̂, ρ̂, and γ̂ are
reported. The true threshold values were chosen so that they would be well identified with
respect to the distribution of the data. In other words, values of γ are set so that they are
found within the distribution and not near the edges or outside of the distribution. Figures
3 and 4 show the thresholds plotted against the distribution of the DGP.2

When the DGP is Band-TAR and correctly specified, there is a positive bias in the
estimated threshold when the value of ρ is large although this bias does appear to diminish
as the sample size increases. This positive bias also appears to be inversely related to the
size of the threshold. The most likely cause of this bias is the fact that both a larger value of

2The distribution of of the DGP was estimated by setting y0 = 0 and then iterating the DGP 100, 250
times. The first 250 observations were then discarded and a distribution was constructed using a normal
kernel density based upon the remaining 100,000 observations.



ρ and a smaller value of γ increases the number of observations in the outer regimes. This
can be seen in Figure 3. It has been noted by Norman (2008) that an uneven distribution
of observations between regimes can cause a small sample bias in threshold estimation.

Under misspecification, when the DGP is the Band-TAR and the EQ-TAR model is
estimated, there is also a positive bias in the estimated threshold, but it is much larger and
the reduction in the bias is much smaller for large samples. When the Gen-TAR model is
estimated the bias is in between that of the Band-TAR model and the EQ-TAR model in
almost every case. In other words, the Gen-TAR model performs better that the incorrectly
EQ-TAR specified model, but not as well as the correctly specified Band-TAR model. The
estimated value of κ is also reported when the Gen-TAR model is estimated. The attractor
is best estimated when the sample size is large and ρ is small.

When the DGP is EQ-TAR and there is no misspecification, there is a similar positive
bias in estimation for large ρ and small γ. The bias also decreases with increased sample
sizes. When the Band-TAR model is estimated with data created from the EQ-TAR model,
the estimated threshold is always smaller than when the model is correctly specified. This
negative bias is also persistent even when the sample size increases. Interestingly, when
the Gen-TAR model is used, the estimated threshold is very close to the thresholds that
are estimated from the EQ-Model. This suggests that, in terms of threshold estimation,
using the Gen-TAR model and EQ-TAR model will result in about the same performance as
when the EQ-TAR model is the DGP. As with the BAND-TAR data, the attractor is best
estimated when the sample size is large and ρ is small.

These results suggest that when using these models with actual data, the practitioner who
is interested in the value of a threshold might want to estimate all three models. Without
knowing the correct model, in general the Band-TAR will tend to give the lowest value of
the threshold estimate, the EQ-TAR model tends to give the highest value, and the Gen-
TAR model will yield an estimate in between the two. In the absence of economic theory to
guide the model choice, estimating all three models will give the researcher a more informed
understanding of the range of possible values of a threshold.

4. Conclusion

This paper has demonstrated that the attractors in Equilibrium-TAR and Band-TAR models
affect threshold estimation. It is shown that because the attractors in these two models are
not estimated, biases in the thresholds estimates are observed when the incorrect model is
used. This paper proposes using a generalized threshold model which allows the attractor
to be part of the estimation process. Evidence was given that suggests that allowing the
attractor to be estimated reduces the bias in the threshold estimation that stems from
model misspecification. It is suggested that those interested in estimating thresholds should
estimate all three models to better understand what the true value of the threshold is.
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5. Tables

Table 1: Band-TAR DGP Monte Carlo Simulations

T=200 T=500 T=1000
ρ = 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γ =0.5

Band
σ̂ 0.99 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
ρ̂ 0.07 0.45 0.80 0.09 0.48 0.87 0.10 0.49 0.88
γ̂ 0.51 0.56 1.36 0.50 0.52 0.97 0.50 0.50 0.79

EQ
σ̂ 0.98 0.98 0.98 1.00 0.99 0.99 1.00 1.00 1.00
ρ̂ 0.34 0.60 0.89 0.36 0.62 0.90 0.36 0.62 0.91
γ̂ 0.83 0.97 2.04 0.81 0.89 1.73 0.79 0.85 1.51

Gen
σ̂ 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99
ρ̂ 0.19 0.59 0.90 0.14 0.54 0.92 0.13 0.53 0.92
γ̂ 0.66 0.88 1.98 0.58 0.74 1.72 0.54 0.66 1.50
κ̂ 0.26 -0.22 1.15 0.40 0.19 -4.33 0.45 0.37 2.78

γ =1

Band
σ̂ 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
ρ̂ 0.07 0.44 0.80 0.09 0.48 0.86 0.09 0.49 0.88
γ̂ 0.99 1.02 1.76 1.00 1.00 1.35 1.00 1.00 1.17

EQ
σ̂ 0.98 0.98 0.98 1.00 0.99 0.99 1.01 1.00 1.00
ρ̂ 0.48 0.67 0.90 0.50 0.69 0.91 0.51 0.70 0.92
γ̂ 1.38 1.49 2.44 1.39 1.46 2.20 1.39 1.45 2.03

Gen
σ̂ 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99
ρ̂ 0.20 0.57 0.89 0.15 0.54 0.92 0.14 0.53 0.92
γ̂ 1.01 1.17 2.26 0.98 1.07 2.06 0.98 1.01 1.86
κ̂ -2.10 0.57 15.00 0.86 0.59 0.45 0.93 0.84 -0.43

γ =2

Band
σ̂ 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
ρ̂ 0.05 0.43 0.79 0.08 0.47 0.86 0.09 0.49 0.88
γ̂ 1.97 1.97 2.58 1.99 1.98 2.24 2.00 1.99 2.09

EQ
σ̂ 0.99 0.98 0.98 1.00 0.99 0.99 1.01 1.00 0.99
ρ̂ 0.66 0.77 0.91 0.67 0.78 0.93 0.67 0.79 0.93
γ̂ 2.28 2.40 3.25 2.36 2.48 3.14 2.39 2.52 3.06

Gen
σ̂ 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99
ρ̂ 0.17 0.54 0.86 0.17 0.55 0.91 0.15 0.54 0.91
γ̂ 1.75 1.82 2.79 1.89 1.88 2.65 1.95 1.92 2.50
κ̂ 2.01 2.26 2.05 1.81 1.41 -2.53 1.89 1.76 5.67



Table 2: EQ-TAR DGP Monte Carlo Simulations

T=200 T=500 T=1000
ρ = 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γ =0.5

Band
σ̂ 1.00 0.99 0.99 1.01 1.00 0.99 1.01 1.00 1.00
ρ̂ -0.08 0.38 0.81 -0.06 0.40 0.86 -0.06 0.41 0.88
γ̂ 0.25 0.29 1.04 0.23 0.26 0.68 0.22 0.24 0.54

EQ
σ̂ 0.98 0.98 0.98 0.99 0.99 0.99 1.00 0.99 1.00
ρ̂ 0.09 0.48 0.87 0.10 0.49 0.89 0.10 0.50 0.89
γ̂ 0.49 0.57 1.66 0.49 0.51 1.30 0.50 0.50 1.04

Gen
σ̂ 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 1.00
ρ̂ 0.16 0.57 0.91 0.12 0.53 0.93 0.11 0.52 0.92
γ̂ 0.50 0.58 1.66 0.49 0.52 1.37 0.49 0.50 1.10
κ̂ -0.18 -0.66 6.39 -0.06 -0.20 -2.11 -0.03 -0.09 -1.74

γ =1

Band
σ̂ 1.02 1.00 0.99 1.04 1.01 1.00 1.04 1.01 1.00
ρ̂ -0.33 0.28 0.81 -0.32 0.30 0.86 -0.32 0.30 0.87
γ̂ 0.61 0.57 1.06 0.61 0.57 0.73 0.61 0.58 0.61

EQ
σ̂ 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 0.99
ρ̂ 0.09 0.49 0.87 0.10 0.49 0.89 0.10 0.50 0.89
γ̂ 0.99 0.98 1.71 1.00 0.99 1.41 1.00 1.00 1.21

Gen
σ̂ 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99
ρ̂ 0.12 0.54 0.91 0.11 0.51 0.92 0.11 0.51 0.92
γ̂ 0.96 0.92 1.71 0.99 0.96 1.45 1.00 0.99 1.23
κ̂ -0.28 -0.63 211.29 -0.08 -0.25 255.97 -0.04 -0.11 -1.45

γ =2

Band
σ̂ 1.06 1.01 0.99 1.07 1.02 0.99 1.08 1.03 1.00
ρ̂ -0.95 -0.07 0.79 -0.93 -0.05 0.84 -0.91 -0.04 0.85
γ̂ 1.54 1.49 1.45 1.54 1.51 1.23 1.54 1.51 1.17

EQ
σ̂ 1.01 0.98 0.98 1.01 0.99 0.99 1.01 1.00 1.00
ρ̂ 0.14 0.49 0.87 0.13 0.50 0.89 0.12 0.50 0.90
γ̂ 1.92 1.95 2.17 1.95 1.99 2.05 1.97 2.00 1.99

Gen
σ̂ 1.00 0.97 0.97 1.01 0.99 0.99 1.01 1.00 0.99
ρ̂ -0.17 0.47 0.89 -0.09 0.50 0.91 -0.05 0.51 0.91
γ̂ 1.85 1.83 1.99 1.94 1.97 1.89 1.96 1.99 1.87
κ̂ 0.19 0.48 6.07 0.29 -0.90 3.53 0.30 -0.32 -1.27



6. Figures
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Figure 1: Band-TAR Autogregressive Function
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Figure 2: EQ-TAR Autogregressive Function
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Figure 3: Band-TAR Distributions
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Figure 4: EQ-TAR Distributions


