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Abstract
The aim of the paper is to analyze the use of pesticides in multicrops farms. To this end, we propose a framework to

estimate damage reducing functions based on an extension of the Lichtenberg-Zilberman specification to a vector

output. The estimation provides useful insights for farmers about the effectiveness of pesticides application among

productions at farm level. Besides, from a perspective of pesticides reduction, our analysis may provide guidance for

policymakers since it highlights the effective role of pesticides in production processes.
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1. Introduction

Pesticides have been a major contributor to productivity growth in agriculture over the past
half-century, along with the selection of high-yielding varieties, the use of fertilizers and the
development of irrigation and harvesting technologies. Given that pesticides represent a
cost-efficient way to enhance productivity, and reduce the use of more expensive inputs (e.g.
labor), we observe an increase in their use, from the beginning of the 1950s to the mid-1980s,
regardless of the level of economic development of countries.

The publication of Rachel Carson’s Silent Spring (Carson (1962)) dampened this enthu-
siasm towards pesticides use in agriculture. She introduced the broader public to the risks
related to pesticides: negative side effects on public health and wildlife. This publication
and the followings (e.g. Rudd (1964)) have raised public awareness of environmental issues
and specifically the use of pesticides in agriculture and demand for regulation. Since, gov-
ernments are increasingly facing the challenge of designing policies to re-orient agricultural
production towards safer and sustainable practices. Debates on pesticides regulation policies
lead to the functional specification of production technologies issues. Indeed, the production
technology provides useful information, specifically the cost of limiting pesticide use in terms
of foregone production. The appropriate pesticides modeling in agricultural process has been
subject to lively debates in agricultural economics (e.g. Lichtenberg and Zilberman (1986),
Carpentier and Weaver (1997)).

This analysis is a contribution to the understanding of pesticides action in agriculture.
We propose an extension of the Lichtenberg-Zilberman specification to a vector output and
present a framework for the estimation of damage reducing functions in the developed mod-
eling. To our best knowledge, our analysis is the first to study pesticides management in
multicrop farms, using primal production function (i.e., without the use of cost function –
the dual form of production function – which requires information on the price of all inputs),
while accounting for the special nature of pesticides. Indeed, analyses on this topic have
been performed on mono-output farms (e.g. Oude Lansink and Carpentier (2001), Zhengfei
et al. (2005), Oude Lansink and Silva (2004)). Therefore, our analysis intends to bridge this
gap. Results give indication on the way pesticides are used among productions and may
be useful both to farmers, and policymakers who aim at reducing the use of pesticides in
agriculture. The remainder of the paper is structured as follows. Section 2 presents the
model. Our estimation approach is introduced in section 3. Section 4 discusses the data and
the results. Section 5 concludes.

2. The model

Lichtenberg and Zilberman (1986) were the first to discuss the special nature of pesticides
and to consider it in the production technology specification, introducing the concept of
damage reducing function. Indeed, starting from the observation that pesticides are not
standard inputs like land and capital (from some agronomic evidences), they propose a new
specification of the production technology. We begin with the presentation of their functional
specification. Then we show how it could be extended to a vector output.



2.1. The Lichtenberg and Zilberman specification

In Lichtenberg and Zilberman (1986), pesticides are considered as damage reducing rather
than productivity increasing inputs. The effect of pesticides on the output is indirect and
results from a two-stage process: i) the effect of damage control inputs on the damage agent
and ii) the effect of the remaining damage agent on the output. The Lichtenberg-Zilberman
general specification is as follows:

y = f [x, g(z, r)] (1)

where x is a vector of M inputs, y the observed output and f the production function. The
damage reducing function (g) depends on the level of pesticides (z) and pest pressure (r),
and lies between 0 and 1. Note also that g is increasing with the level of pesticides and
decreasing with the pest pressure.

As explained in Lichtenberg and Zilberman (1986) (page 264), the specification in Equa-
tion (1) may take a simple linear form:

y = f(x)g(z, r) (2)

where f(x) is the potential output. g represents the percentage of potential output obtained
under pest presence, with pesticides application.

Like many studies (e.g. Zhengfei et al. (2006), page 206; Zhengfei et al. (2005), page 170,
Oude Lansink and Carpentier (2001), page 13), we consider the latter specification and refer
to it as the Lichtenberg-Zilberman specification. Equation (2) can be rewritten as:

yη(z, r) = ymax = f(x) with 1 ≤ η(z, r) = 1/g(z, r) < ∞ (3)

where ymax is the potential output, i.e. the maximum output from the use of standard inputs
(without pests and pesticides).

2.2. The multi-output specification

Since the Lichtenberg-Zilberman specification is a mono-output one, it fails to analyze pro-
duction processes of multicrop farms. Indeed most farms produce several products in the
same time period and deserve to be analyzed taking into account the specificity of pesticides.
To this end, we propose a new specification that accounts for the special nature of pesticides
and handles the multicrop production of farms. Let us start by the production technology:

q(y, r, z) = f(x) (4)

y is the observed vector of S outputs. Recall that observed level of outputs at the farm
level are obtained through the application of a certain level of pesticides z. The production
technology specification can therefore be rewritten to highlight the effect of pesticides as
follows for the sth output:

ys = ymax
s δs(z, r) ⇐⇒ ymax

s = ysφs(z, r) (5)

where ymax
s is the maximum (potential) level of output and ys the observed one. Note



that applying pesticides enables as in the Lichtenberg-Zilberman mono-output framework to
protect the maximum potential output that is from the use of standard inputs. Therefore the
damage reducing function δ lies between 0 and 1 and φ, its inverse, between 1 and infinite.

Starting from this extension of the Lichtenberg-Zilberman specification to a vector out-
put, our objective is to estimate among productions damage reducing functions at the farm
level to give insights about the effectiveness of pesticides use to both farmers and policy-
makers. Note that since we opt not to constrain φ, choosing a functional form, we are only
interested in its estimated value, which lies between 1 and infinite. Keeping this information
in mind, we assume in the remainder of the analysis that φ can be considered as a parameter
(to be estimated) which value is in the above-mentioned range.

3. The estimation

We present in this section the framework for the estimation of damage reducing functions us-
ing our extension of the Lichtenberg-Zilberman specification. The strategy followed involves
the estimation of technology frontiers and associated technical efficiencies. For such estima-
tions, two main techniques are available: Data Envelopment Analysis (DEA, see Charnes
et al. (1978)) and Stochastic Frontier Analysis (SFA, see Kumbhakar and Lovell (2000)).
DEA uses mathematical programming to construct a surface that envelops the observations
as tightly as possible, deriving thereby a technology frontier, whereas SFA uses econometric
approach that involves the use of an arbitrary functional form to approximate the unknown
technology frontier. We employ in our analysis an envelopment method (DEA) rather than
an econometric approach (SFA) for two main reasons. First DEA does not rely on the choice
of an arbitrary functional form to estimate the production technology, though the assump-
tion that there is no random error might be seen as a drawback.1 Second, the DEA method
unlike the SFA’s, handles quite easily multi-output production technology estimation. We
begin with the presentation of frontiers estimation in multi-outputs setting using DEA. Then
we show how to adapt this method to estimate damage reducing functions.

3.1. The standard multi-output DEA

Let us consider a set of n farms using a common technology that transforms M inputs
(x) into S observed outputs (y). The farms production technology is represented by the
following closed, nonempty set:

T = {(x,y) : x can produce y} (6)

which may be fully described in terms of its sections i.e., the production possibility set:

P T =
{

y ∈ R
S
+ : (x,y) ∈ T

}

(7)

1Since there as there are no measurement errors in DEA, the whole deviation from the estimated frontier
of the production technology is considered as inefficiency.



If free disposability of inputs and outputs, convexity and variable returns to scale are
assumed to hold, the production possibility set P T̂ (x) can be estimated using DEA:

P T̂ (x) =

{

y :
n

∑

i=1

λiyi ≥ y;
n

∑

i=1

λixi ≤ x;
n

∑

i=1

λi = 1;λi ≥ 0

}

(8)

where yi is the observed output levels of farm i and xi the vector of inputs used by farm i.
λ is a (n× 1) vector of intensity variables (farm weights).

Figure 1 shows the DEA frontier of the production possibility set in the two-output case.
Points a, b, c, d, e, f , g, h and u represent the various output combinations that could be
produced using a given input level. Farms that lie on the frontier are technically efficient
and those located in the interior of the frontier are technically inefficient (see Zhengfei and
Oude Lansink (2003), pages 468-469 and Simar and Wilson (2007), page 34.).
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Figure 1: The DEA production possibility set

Note that technical efficiency scores resulting from the DEA estimation of the production
possibility set depend on the objective of the farm under evaluation. These objectives are
represented by projection direction choices. Directional distance functions (Chambers et al.
(1998)) allow doing such evaluations. The general form of these distance functions, relatively

to the estimated production possibility set (P T̂ ), is given by:

−→
D(x,y, gx, gy) = sup

{

(x− θgx,y + θgy) ∈ P T̂
}

(9)

For example, if the evaluation is performed in the direction of y1 (gx=0, gy1 = θ, gy
s6=1

=
0), the technical efficiency is approximated for the farm “0”, under the assumptions of
free disposability of inputs, convexity and variable returns to scale, by the following linear
programming:



θ̂T = arg max
{λ,θ}

{

θ :

n
∑

i=1

λiys,i ≥ ys,0;

n
∑

i=1

λixm,i ≤ xm,0;

n
∑

i=1

λiy1,i ≥ θy1,0;

n
∑

i=1

λi = 1;λi ≥ 0; s = 2, ..., S;m = 1, ...,M

}

(10)

Figure 2 depicts this evaluation in the two-output case. The technical efficiency of the
farm h is given by the ratio oj/oh. This ratio gives an idea of the maximum feasible ex-
pansion of the output y1 that can be produced with the input vector x, while keeping the
second output superior or equal to y2.
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Figure 2: The technical efficiency estimation

3.2. The estimation of damage reducing functions

We set up the DEAmethodology on our extension of the Lichtenberg-Zilberman specification.
It leads to the following (non-observed) output possibility set:

P T̂
G (x) =

{

ymax :
n

∑

i=1

λiy
max
i ≥ ymax;

n
∑

i=1

λixi ≤ x;
n

∑

i=1

λi = 1;λi ≥ 0

}

(11)

Figure 3 shows the DEA frontier - dashed green line - of the production possibility set in
the two-output case. The dotted red line represents the frontier of the standard production
possibility set (the starting framework). The following relation exists between these two sets:

P T̂ ⊆ P T̂
G .

This example of production possibility set considers the various possible situations. Farms
a, g and e have unit damage reducing functions on the two outputs considered. Farms b, c
and d have small damage reducing functions on the two outputs, and farms i, f , and h have
different damage reducing functions on the two outputs.
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Figure 3: The DEA production possibility set (with our specification)

Farms’ evaluation is performed relatively to the DEA estimation of the production pos-
sibility set P T̂

G . As seen above, applying φ changes the relative position of farms and the
production possibility set. For instance farm b moves from its previous position to b′ (Fig-
ure 4). If we still consider that the evaluation is performed in the direction of ymax

1 (gx=0,
gymax

1
= θ′, gymax

s6=1
= 0), the technical efficiency for the farm “0”, with standard assumptions,

is approximated by:

θ̂G = arg max
{λ,θ′}

{

θ′ :

n
∑

i=1

λiy
max
s,i ≥ ymax

s,0 ;

n
∑

i=1

λixm,i ≤ xm,0;

n
∑

i=1

λiy
max
1,i ≥ θ′ymax

1,0 ;

n
∑

i=1

λi = 1;λi ≥ 0; s = 2, ..., S;m = 1, ...,M

}

(12)

Let us consider now the evaluation of the farm b relatively to the estimated frontier P T̂
G ,

in the direction of ymax
1 . This evaluation results from the following programming:

θ̂G−up = arg max
{λ,θ′′}

{

θ′′ :

n
∑

i=1

λiy
max
s,i ≥ ys,b;

n
∑

i=1

λixm,i ≤ xm,b;

n
∑

i=1

λiy
max
1,i ≥ θ′′y1,b;

n
∑

i=1

λi = 1;λi ≥ 0; s = 2, ..., S;m = 1, ...,M

}

(13)

From this estimation, we obtain bj. This distance is the upper bound estimation of φ1,b

(associated to y1,b), which exact value is the distance bv. Figure 4 illustrates this observation.
The same method is applied on y2,b to estimate the upper bound of φ2,b.
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Figure 4: The upper boundary estimation

The estimation process could be refined to approach the “exact” value of φ. To see how,
let us consider the evaluation of farms relatively to the frontier P T̂

G′ in dashed black (see
figure 5, left graph).
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Figure 5: The upper boundary estimation, refinement

This production possibility frontier is elaborated focusing only on the output y1 and the
function φ1. In other words, the frontier is constructed considering only the first output as
potential output. The second is the observed one. We can note that the evaluation of the
farm b relatively to the new frontier, enables us to estimate the function φ1,b exactly. For some
farms (see the observation c for example), we have improved their previous estimation of φ1,i

(but it still remains an estimation of the upper bound). At the whole, this estimation process,
compared to the previous one, improves our knowledge about φ1. The new estimation of φ1

comes from the following programming:



θ̂G′−up = arg max
{λ,θ∗}

{

θ∗ :

n
∑

i=1

λiys,i ≥ ys,0;

n
∑

i=1

λixm,i ≤ xm,0

;

n
∑

i=1

λiy
max
1,i ≥ θ∗y1,0;

n
∑

i=1

λi = 1;λi ≥ 0; s = 2, ..., S;m = 1, ...,M

}

(14)

The problem with the programming in (14) is its nonlinearity (note that λymax
1 = λφ1y1).

Both the damage reducing function (φ1) and the intensity weights (λ) are variable. Conse-
quently standard linear approximation models are not helpful. To perform this estimation,
it has to be linearized. Following Kuosmanen (2005), we consider: λi = µi + πi, with
µi = φ1,iλi and πi = (1 − φ1,i)λi. The upper boundary of φ1,i can be retrieved using the
following expression: φ1,i = µi/(µi + πi).

Using this decomposition, the nonlinear programming in (14) can be rewritten as follows:

θ̂G′−up = arg max
{λ,θ∗}

{

θ∗ :
n

∑

i=1

(µi + πi)ys,i ≥ ys,0;
n

∑

i=1

(πi + µi)xm,i ≤ xm,0

;
n

∑

i=1

µiy1,i ≥ θ∗y1,0;
n

∑

i=1

(µi + πi) = 1;µi, πi ≥ 0; s = 2, ..., S;m = 1, ...,M

}

(15)

This linear programming is then used to estimate the function φ1. The same process is
followed for the second output, and can be generalized to S outputs.

To improve a step further the estimation results and to avoid the outliers bias, we use a
sub-sampling method. To this end, for the evaluation of each farm and each direction, we
randomly generate 1,000 subsets. Each of them consists of 90% of the whole sample farms
drawn randomly, without replacement. Therefore, for a given farm and evaluation direction
y1,s, we get 1,000 estimations of technical efficiency (and therefore 1,000 estimations of φ1,s).
We consider the minimum value obtained as the estimation in this direction of the function
φs. This methodology enables us to converge towards the “exact” φ1,s.

To clearly understand how estimations are improved, let us focus on the farm c (see
Figure 5) and assume that the evaluation direction is y1. Several subsets of the starting
sample (with 9 farms: from farm a to i) can be formed. Let us consider two for illustrative
purpose: (a, b, d, e, g, h, i, c), (a, c, d, e, f , h, i, g). If we consider the subsample without
the farm b, we could observe that the dashed “black” production frontier will pass through
the point represented by its observed first output y1,c times φ1. With this new production
possibility set, we are able to estimate the function φ1,c associated to c exactly. By contrast,
the subsample with the farm b will produce an upper boundary estimations of φ1,c (its
production possibility set will remain the green one in Figure 5). Therefore, if we want the
exact estimation of this damage reducing function, we should take the minimum value from
subsets.

Note that in the subset generation, our method looks like standard subsampling method
(see Politis et al. (1999), chapter 2). They differ in the way the final estimate is computed



(average versus minimum).

4. Data and results

The data used in the present analysis come from the POPSY (Arable Crop Production,
Environment and Regulation) project database. It is made up of crop farms in the Eure-
et-Loir département in France in 2005. After cleaning for missing and inconsistent values, a
sample of 188 arable farms is used. Four inputs and three outputs characterize the production
technology. The variable “Land” represents the Utilized Agricultural Area of each farm,
expressed in hectares. The variable “Labor” is given in Annual Work Units (aggregation
of family and hired labor). The variable “Intermediate consumption” (I.C.) represents the
operational costs. Finally, the variable “Depreciation” (Dep.) approximates the level of
mechanization and equipment of farms. The three outputs considered are “cereal crops”,
“industrial crops”, and “other crops” (vegetables, fruits, etc.). Descriptive statistics of these
variables used to estimate the production possibility set and damage reduction functions are
in Table 1.

Table 1: Descriptive statistics of DEA variables

Labor Land Dep. I.C. Cereal Industrial Other

Min. 0.5000 36.63 3,144.6 16,620 19,196 5.0 40.0
Qrt.1 1.0000 100.34 20,204.8 42,854 51,097.5 19,293 5,420.3
Qrt.2 1.0000 130.99 30,682.2 63,726 69,673.5 34,166 16,267
Qrt.3 2.0000 169.37 40,670.7 84,216.3 93,974 62,577 34,922.8
Mean 1.3527 138.56 31,818.8 67,511.4 74,609.9 45,194.06 24,174.9
Max. 3.3000 328.61 72,184.7 187,501 192,840 195,852 126,993
Std 0.5438 51.89 15,556.5 29,890.2 31,098.4 35,428.58 25,506.1

Since we have three directions (three outputs), three estimations are performed for each
farm to get φ1,i, φ2,i and φ3,i. We implemented the linear programming in (15) and its
refinement through sub-sampling. Table 2 reports the results – without and with sub-
sampling – of this estimation.

Table 2: The estimation results (averages)

φ1 φ2 φ3

Without sub-sampling
1.2302 1.9439 2.2743

(0.8129) (0.5144) (0.4397)

With sub-sampling
1.1389 1.5488 1.9258

(0.8780) (0.6456) (0.5193)

Results from the linear programming in (15) show us that on average, estimations of
φ1, φ2 and φ3 are respectively 1.2302, 1.9439 and 2.2743. Using the sub-sampling method



to refine the estimation, the average values fall to 1.1389, 1.5488 and 1.9258 respectively.
From these values, we compute the damage reduction functions δ1, δ2 and δ3 (recall that
the damage reduction function δ1 for instance, is the inverse of φ1). Their average values,
reported in Table 2 (in brackets, below the δ′s), highlight that the use of pesticide enables
farmers to protect the potential level of cereals by 87.80%, industrial production by 64.56%
and the other productions by 51.93% on average in Eure-et-Loir.

These results point out two interesting findings. First, the values of damage reducing
functions are, on average, different among outputs. More specifically, pesticides management
is better in cereal crops compared to industrial and other crops in Eure-et-Loir. Our analysis
may therefore be useful to farmers since it provides indications about the effectiveness of
pesticides applications among productions at farm level. For instance, farmers would benefit
much from improving the way pesticides are used on industrial and other crops in Eure-et-
Loir. Second, since the estimation of damage reduction functions indicates that among all
productions, there is a room for improvement in pesticides management at the farm level
(pesticides are not protecting crops at 100% in Eure-et-Loir), policymakers may elaborate on
our results to design more effective pesticides reduction policies. Indeed, they could propose
to farmers pesticides reduction policies that will at least maintain their current levels of
production2: it implies providing them tools to improve pesticides management (the use of
crop varieties that are resistant to diseases, changes in tillage or planting date, assistance
with skilled workers, etc.). In that way, the use of pesticides could be lowered while at
least maintaining a fairly stable level of production or δ′s. Note also that if the objective
of policymakers is to ban the use of pesticides in agriculture, our analysis may help to see
that such a policy will significantly impact more farmers specialized in cereals than others.
In other words, this regulation is not crop-neutral.

5. Conclusion

This analysis is a contribution to the literature on pesticide modeling in the production
process. The contribution is twofolds. First we propose an extension of the Lichtenberg-
Zilberman specification to a vector output to study multicrop farms. Second we develop a
framework to estimate damage reducing functions which provide an indication on the effec-
tiveness of pesticide application among productions at farm level. Since it gives information
about the role of pesticides, this estimation is useful both to farmers and policymakers who
aim at reducing the agricultural use of pesticides.

2Farmers’ most important concern about pesticides reduction policies is their cost in terms of foregone
output. If they are currently protecting their productions efficiently using pesticides in addition to other
farming practices, their incentive to move from this situation and get involved in a reduction program is
quite low. In other words, in this context, a pesticide reduction plan is unlikely to be adopted widely.
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