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1. Introduction 

Motivated by the simultaneous movements of both energy and agricultural commodities in 

similar directions, especially with the expansion of biofuel production, numerous studies 

have newly emerged attempting to study the interactions between these commodity markets 

(see, among others, Du et al., 2011; Nicola et al., 2016). Usually, existing studies have relied 

on price return and to a lesser extent on price volatility in studying inter-market linkages. In 

particular, return volatility has been typically measured as realized variance or modelled 

within a GARCH framework (e.g. Mensi et al., 2014b) although implied volatility is most 

often found to have more informational content and predictive power about future volatility 

(Jiang and Tian, 2005). Recently proposed by the Chicago Board Options Exchange (CBOE), 

implied volatility is backed out from option prices and thus reflects the market's expectation 

of volatility with an horizon corresponding to the maturity of the option.  

Notably, potential differences in the volatility causal investigation between high and low 

frequencies represent an important issue and a concern for market participants who often use 

short- and/or long-term horizons in their trading strategies but are poorly informed about the 

dynamic of the volatility causality in the frequency-domain within the energy-agricultural 

commodity nexus. The presence of structural breaks represents another important issue that 

has to be addressed when examining the volatility causality across commodity markets. To 

address the needs of market participants and the related gap in the existing literature, we aim 

to uncover the short-, medium-, and long-run causal linkages across the implied volatility 

indices of crude oil, corn, and wheat while accounting for the presence of structural breaks.  

This study differs from the existing literature in several ways and presents at least three 

important contributions. First, it uses implied volatility indices that reflect anticipative 

supplementary information that a model-based historical volatility could not (Jiang and Tian, 

2005). Second, it employs the frequency-domain approach of Breitung and Candelon (2006) 

which provides innovations in modelling the causal relation among energy and agricultural 

commodity markets by uncovering short-run and long-run causality which should be of 

interest to economic actors who can tailor a trading strategy and risk management structures 

that are dependent not upon the usual time-domain but upon the frequency-domain. The latter 

approach decomposes the causality at different frequencies, and allows the causality at low 

frequencies to differ from that at high frequencies. This notable frequency domain approach, 

which provides broader and informative outcomes than in the standard Granger causality, has 

been very useful in modelling the relationships between financial variables (Grandojevic and 

Dobardzic, 2013; Gupta et al. 2015). Third, it accounts for the presence of structural breaks in 

the causal relation, otherwise the analyses could lead to distorted results and inferences.   

 

2. Prior studies 

The link between energy and agricultural commodity markets has been the subject of numer-

ous studies. Baffes (2007) uses regression analyses to examine the effect of crude oil prices 

on the prices of 35 internationally traded primary commodities from 1960 to 2005. The au-

thor finds, among others, that agriculture commodities exhibit a strong response to crude oil 

prices. Mensi et al. (2014b) use a multivariate GARCH model and report evidence of signifi-

cant return and volatility linkages between energy and cereal commodities. The authors also 

account for the impact of OPEC news announcements. Using a bivariate-VAR model to asses 

assess the co-movements between crude oil and food prices, Lucotte (2016) reports evidence 

of strong positive co-movements in the aftermath of the commodity boom. Rafiq and Bloch 

(2016) employ both linear and nonlinear Autoregressive Distributed Lag models and asym-

metric Granger causality tests on annual data from 1900 to 2011 and find significant effects 
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of oil price on several agricultural and non-agricultural commodity prices. Given the rising 

role of biofuel business in strengthening the linkage between energy and commodity cereals, 

several studies have emerged on the subject. Du et al. (2011) show that the boom in ethanol 

production in late 2006 intensified the market integration between crude oil, corn, and wheat 

prices. Fernandez-Perez et al. (2016) use a structural VAR model and show that crude oil 

price have a unidirectional effect on the prices of corn, soybean, and wheat. The authors also 

report bi-directional effects between corn and wheat, and indicate that the linkages across the 

examined variables is stronger during periods of high oil prices. An interesting empirical 

study by de Nicola et al. (2016) indicates strong co-movements between the prices of 11 ma-

jor energy, agricultural, and commodities from 1970-2013 and points toward the expansion of 

the biofuel industry and its important role in intensifying those co-movements. Huchet and 

Fam (2016) highlight the effects of financialization and speculation on the energy and agri-

cultural commodity markets. As shown above, several factors such as changes in the macroe-

conomic uncertainty, the expansion of biofuel production, and the financialization and specu-

lation in the commodity markets have played a significant role in intensifying price fluctua-

tions in the energy and agriculture commodity markets. Furthermore, most of the existing 

literature relies on historical volatility measures and overlooks the market expectations of 

near-term volatility taken from option prices as in the case of the CBOE implied volatility 

indices. The rare studies that used implied volatility have so far ignored the energy-

agricultural nexus and focused only on the oil-stock nexus (Maghyereh et al., 2016), or the 

gold-oil nexus (Bouri et al., 2017). To address this void in the financial literature, we use im-

plied volatility indices in assessing the causal relation across crude oil, wheat and corn mar-

kets. Further, the above review shows that most of prior studies have used different econo-

metric methods such as cointegration, non-linear and linear Granger time-domain causality, 

and multivariate GARCH modelling. We instead use the frequency-domain causality ap-

proach of Breitung and Candelon (2006) which decomposes the causality across the implied 

volatility indices at different frequencies and thus uncovers the differences between short, 

medium, and long-run causalities, an unexplored research area.   

 

3. Testing methodology and data 

This section describes the empirical model and the data set.   

3.1 Frequency domain causality 

A variable X is said to “Granger causes” another variable Y if lagged values of X contain        
information that helps predict Y. In addition to such a unidirectional causality running from X 

to Y, a bi-directional causality exists between these two variables if also the lagged values of   

Y contain information that helps predict the other variable X.  Usually conducted with a VAR  

framework, Granger-causality serves as a simple yet powerful tool to examine information     

flow across variables, in both time and frequency domains.  Although the Granger causality    

test in  the time domain has been extensively used in the empirical literature, one of its central   

weaknesses relies in its restricted assumption that only one single statistical measure can be   

used to explain the relation among the examined variables at all frequencies (at an infinite       

time horizon). In this sense, there is enough evidence that the causal influence may change    

along the time and frequency domain (i.e. causality differs in the short, medium, and long 

run). Interestingly, Breitung and Candelon (2006) argue that causality at low frequencies may 

differ from that at high frequencies and decompose the causality at different frequencies. No-
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tably, Breitung and Candelon (2006) based their test on the framework of Geweke (1982) and 

Hosoya (1991).1  

Let Zt = [Xt, Yt] a two-dimensional vector of endogenous variables observed at time t = 1, …., 
T, the vector has a finite order VAR representation such as 

θ(L)Z t=ɛ t                                                                                                                       (1)  

where, θ(L)=1 -θ 1 L- … -θ p Lp  is a 2 × 2 lag polynomial with Lk Z t=Z t - k . The error term ɛ t  

is assumed to be a white noise with zero mean and covariance matrix E(ɛt ɛ′t) = Σ defined 
positive. The matrix Σ is decomposed as G ′G=Σ - 1 , where G is the inferior triangular matrix 

of the Cholesky decomposition, such that E (ηt η′t) = I, and ηt = Gɛt. 

If the system is stationary, then the VAR process will have a moving average with the        

following presentation: 

 

                                                                                 (2) 

where ϕ(L)=θ(L) - 1  and φ(L)=ϕ(L)G - 1   

Accordingly, the spectral density of X t  is given by: 

                                                                                   (3) 

As defined by Geweke (1982) and Hosaya (1991), the measure of causality is defined as: 

     

                                                                                                         (4) 

The above measure of causality can be used to test the null hypothesis that Yt does not 

Granger cause Xt at frequency ω [H0 : M y → x(ω)=0] .  The measure is zero if |φ 1 2  (e -

i ω) |2 =0,  suggesting that Yt does not Granger cause Xt at frequency ω. 
The statistic M y → x(ω)  is obtained by replacing |φ 11 (e - i ω) |  and |φ 1 2 (e - i ω) |  in equation (4) 

by the estimated values obtained from the fitted VAR representation.2 

Although, there is a voluminous empirical literature on the application of Granger causality in 

the time domain, to the best of our knowledge, no prior studies have uncovered the difference 

between high and low frequencies in the dynamics of the implied volatility causalities across 

crude oil, corn, and wheat markets. This notable frequency domain approach of causality has 

been recently applied to model the linkages among stock markets (Grandojevic and Dobar-

dzic, 2013), and sunspot numbers and global temperatures (Gupta et al. 2015).   

3.2 Data 

We use daily closing price for three implied volatility indices: the crude oil volatility index 

(oilvix), the corn volatility index (cornvix), and the wheat volatility index (wheatvix).  Our 

study covers the period from July 27, 2012 to September 30, 2016, whose start is dictated by 

                                           

1 Lemmens et al. (2008) proposed an alternative Granger causality test over the spectrum based upon Pierce 

(1979). A simulation study suggests the test is less powerful than Breitung and Candeon (2006) test as long as 

the lag orders are appropriately chosen. Lemmens et al. (2008) recommends selecting orders based upon BIC. 
2 The reader can refer to Breitung and Candelon (2006) for a more detailed discussion about the frequency do-

main approach of causality.  

http://www.sciencedirect.com/science/article/pii/S1062940816300420#b0080
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the availability of data. The latter were compiled from DataStream. Interestingly, the sample 

period allows us to make causality inferences based on the recent volatility dynamics across 

crude oil, corn, and wheat markets beyond the usual focus on the global financial crisis of 

2008 and food crisis of 2006-2008. However, Figure 1 shows that the three implied volatility 

indices exhibit large fluctuations over the entire period, especially for the case of crude oil. 

 

Figure 1. Daily time evolution of implied volatility levels. 
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The summary statistics of the implied volatility of crude oil, wheat and corn series are pro-

vided in Table 1. The highest average mean and standard deviation of volatility are observed 

for crude oil. All series are found to be leptokurtic and skewed to the right. The results from 

two unit root tests, Augmented Dickey fuller (ADF) and Phillips Perron (PP), indicate that 

cornvix and wheatvix are stationary at the 1% significance level. As for oilvix, we use the first 

difference (Δoilvix) which is stationary. Given that the frequency domain causality approach 

requires stationary series, we therefore conduct the empirical analysis using the level series of 

cornvix, wheatvix, and the first difference (change) of oilvix. 

 

Table 1: Summary statistics 

 
Mean Max. Min. Std. Dev. Skewness Kurtosis ADF PP 

Oilvix 33.324 78.970 14.500 13.327 0.626 2.598 1.948 1.769 

ΔOilvix 0.000 0.278 -0.135 0.044 0.888 6.991 -31.661* -31.883* 

Cornvix 25.276 45.780 10.400 5.373 0.418 3.795 -5.254* -5.598* 

Wheatvix 26.676 49.220 9.190 4.617 0.525 5.688 -6.155* -5.566* 

Notes: This table provides the summary statistics and unit root tests for the implied volatility indices of crude oil 

(and its first difference), corn, and wheat. The sample period is from July 27, 2012 to September 30, 2016 and 

include 1052 daily observations. For Augmented Dickey fuller (ADF) and Phillips Perron (PP), the null hypoth-

esis is that the series has a unit root; * denotes statistical significance at the 1% level.  

 

However, it is well documented that the presence of structural breaks may affect the causality 

results. To illustrate, Henriques and Sadorsky (2008) failed to find a significant relationship 

between oil prices and stock prices of clean energy firms using January 3, 2001 – May 30, 

2007 data.  Kumar et al. (2012) extended the analysis with weekly data from April 22, 2005 
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to November 26, 2008 and found the stock prices are affected by oil prices. This result con-

trasts with Henriques and Sadorsky (2008) and suggests a possible structural break in the 

relationship between oil prices and stock prices of clean energy firms in the dataset. Mensi et 

al. (2014a) applied daily data from January 2, 1990 to September 18, 2012 to estimate a 

GARCH(1,1) model. Three structural breaks in the returns and three structural breaks in vola-

tility were identified for both Brent index and WTI albeit the estimated break dates are slight-

ly different across the four cases. Notably, July, September, October, and November in 2007 

are all estimated as break dates. Using Bai and Perron’s (2003) sequential and repartition tests 

on the crude oil equation, which includes one lag for Δoilvix and one lag for cornvix, we 

failed to detect a break. We also found no structural breaks for the case of oilvix and wheatvix. 

As for the cornvix equation, which comprises two lags for wheatvix, the structural breaks are 

found at May 1, 2013 and January 10, 2014; accordingly, for the causality analysis of the pair 

cornvix–wheatvix, we divide the entire period into three sub-periods.  

 

4. Empirical results 

4.1 Time domain causality results 

Preceding the examination of the frequency domain causality, we conduct the conventional 

time domain Granger causality analysis calculated as a Wald test within the VAR framework. 

For the latter, we select the number of lagged variables based on SIC criterion. The results 

from Table 2 provide no evidence of a causal relation among the three variables under study 

for the entire period. As for the pair of cornvix–wheatvix in three sub-samples, we report evi-

dence that cornvix Granger causes wheatvix at the 1% significance level in subsample 1. Fur-

thermore, we show a bidirectional causality at the 10% level in sub-sample 2. As for the sub-

sample 3, we find only a unidirectional causality running from wheatvix to cornvix at the10% 

level.  

Table 2. VAR Granger causality test 
 Sample  Null hypothesis  df Chi-sq P values 

Oil-Corn  Full sample  oildvix ≠› cornvix 3 5.425 0.143 

  cornvix ≠› oilvix  3 0.119 0.989 

Oil-Wheat  Full sample  oilvix ≠› wheatvix 3 1.639 0.650 

  wheatvix ≠› oilvix  3 2.413 0.491 

Corn-Wheat  Full sample   cornvix ≠› wheatvix 5 8.865 0.114 

   wheatvix ≠› cornvix  5 6.349 0.273 

Corn-Wheat Subsample 1  cornvix ≠› wheatvix 1 7.578 0.005 

  wheatvix ≠› cornvix  1 0.057 0.810 

Corn-Wheat Subsample 2  cornvix ≠› wheatvix 3 6.638 0.084 

  wheatvix ≠› cornvix  3 6.568 0.087 

Corn-Wheat Subsample 3  cornvix ≠› wheatvix 2 0.397 0.819 

   wheatvix ≠› cornvix  2 5.755 0.056 

Notes: This table tests the null hypothesis of no Granger causality. The degrees of freedom are determined by 

SIC. Subsample 1 spans from July 27, 2012 to May 1, 2013; subsample 2 spans from May 2, 2013 to 10 January, 

2014; subsample 3 spans from January 11, 2014 to September 30, 2016.  

 

4.2 Frequency domain causality results 

Figures 2-7 depict the results from the frequency-domain test along the lines of Breitung and 

Candelon (2006), for the full sample and three sub-samples. The dashed line represents the 

10% or 5% critical value, while the solid line characterizes the statistical test of all frequen-

cies in the interval (0,π). Further, the horizontal axis describes the frequency parameter ome-

ga (ω) which is used to calculate the length of the period T. The latter is measured in days and 

corresponds to a cycle where T = 2π /ω. If the test statistic is below the 10% (5%) critical 
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value, then the null hypothesis of no causality is rejected for the corresponding frequency, 

and vice versa.  

 

Figure 2. Frequency domain causality between ΔOilvix and Cornvix 
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Figure 3. Frequency domain causality between ΔOilvix and Wheatvix 
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Figure 4. Frequency domain causality between Cornvix and Wheatvix –full sample 
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For the entire period Figures 2-4 present the estimation results from the frequency-domain 

causality, where the most suitable maximum number of lags was fixed at three. As shown in 

Figure 2, oilvix changes Granger cause cornvix at the 10% significance level in medium fre-

quencies of 0.8 to 1.6, corresponding to a wave ranging from four to eight days; and there is 

no evidence of any feedback effects. Accordingly, the changes in implied volatility of the 

crude oil market can be used to predict the implied volatility of the corn market in medium 

frequencies. This result may be explained by the dominance effect of the crude oil market on 

the corn market, as reported in the existing literature (e.g. Mensi et al., 2014b). In Figure 3, 

there is no evidence of causality between oilvix changes and wheatvix. As for the pair of 

cornvix-wheatvix, Figure 4 clearly shows evidence at the 10% significance level of a bi-

directional causal effect between wheatvix and cornvix that differs across frequencies. This 

latest finding adds to the bi-directional effects between corn and wheat markets reported by 

Fernandez-Perez et al. (2016).  

Overall, the above results for the full period indicate that the causal relation between the   

implied volatility indices across crude oil, corn, and wheat markets vary across time and        

frequency, which is important in terms of hedging strategies and portfolio risk management. 

 

Figure 5. Frequency domain causality between Cornvix and Wheatvix –subsample 1 
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Figure 6. Frequency domain causality between Cornvix and Wheatvix –subsample 2 
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Figure 7. Frequency domain causality between Cornvix and Wheatvix –subsample 3 
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Given the presence of two structural break points in the relation between cornvix and    

wheatvix, we divide the full sample accordingly into three subsamples and re-examine the 

frequency domain causality (Figures 5-7). In subsample 1, Figure 5 shows that at the 5% lev-

el cornvix Granger causes wheatvix in long frequencies higher than 2.3, corresponding to a 

period of three days. In contrast, in subsample 2, Figure 6 shows evidence of a bi-directional 

causality between cornvix and wheatvix in different frequencies at the 5% significance level. 

Furthermore, in subsample 3, Figure 7 also reveals that, at the 5% level, wheatvix Granger 

causes cornvix in medium and high frequencies, corresponding to a period of two to five 

days; whereas the reverse causality is for low, medium, and high frequencies, corresponding 

to a period of two to eight days. These findings suggest that the inter-predictability between 

cornvix and wheatvix is affected by the presence of structural breaks and thus differs across 

the different subsamples. Furthermore, the findings highlight the role of the cycle-length in 

linking between the two cereal implied volatility indices for potential Vega hedging strategies. 

 

5. Conclusion 

Unlike most of prior studies, we use the newly introduced implied volatility indices–derived 

from option prices–to examine the linkages across crude oil, corn and wheat prices over the 

period July 27, 2012 to September 30, 2016. Implied volatility reflects information that a 

model–based historical volatility could not, and represents a forward-looking measure of 

market uncertainty. Econometrically, we employ the frequency domain causality (Breitung 

and Candelon, 2006) which decomposes the causality at different frequencies and thus allows 

the causality at low frequencies to differ from that at high frequencies.  

The empirical analyses provide some interesting findings. First, we find that the results from 

the frequency–domain analysis are different and more nuanced than the time–domain 

causality technique. Second, medium-run causalities exist between oilvix changes and cornvix, 

while no causality is found between oilvix changes and wheatvix, suggesting that changes in 

the implied volatility of crude oil predict only the corn implied volatility in some frequencies. 

These findings, which show that the causal relation across the implied volatility indices of 

crude oil and corn differs between frequencies, complement prior studies (e.g. Du et al., 

2011; Mensi et al., 2014b) and intuitively point toward the dominant effect played by the 

crude oil market on the corn market. Third, the findings emphasize the importance of 

accounting for detection structural breaks in the causality analysis between the implied 

volatility indices of corn and wheat commodities, and thus nicely complement Fernandez–
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Perez et al. (2016).  While overall results highlight the importance of using the frequency 

domain causality approach for uncovering short- and long-run linkages across the implied 

volatilities of oil and cereal commodities, we stress on the importance of detecting structural 

breaks in the spectral causality analysis between the implied volatilities of corn and wheat 

markets. 

Traders, portfolio managers, and policy-makers can build on our abovementioned findings in 

managing the risk associated with energy and cereal commodities. This is particularly im-

portant given the emergence of implied volatility linked products as risk management tools to 

facilitate Vega hedging in the crude oil-cereal commodity markets and within cereal com-

modities. As such, traders and investors can also use our empirical findings to construct Vega 

neutral strategies to minimise the risk level of an option portfolio. Practically, the benefits of 

hedging strategies in the energy and cereal commodity markets can still be exploited as a 

consequence of the reported evidence of weak linkages in some high and low frequencies.  

Finally, we offer some caveats regarding the methodology adopted in this paper. In general, 

the results from Granger causality test depend upon the choice of the lag orders. There exists 

a tradeoff such that a smaller lag produces smaller variance but confronts a risk of bias 

whereas a larger lag reduces the bias problem at the cost of efficiency. In the case of long 

memory time series, the lag order would be very large. A parsimonious model such as 

VARFIMA (vector autoregressive fractionally integrated moving average) is preferred. The 

fractional integration order is determined by the Hurst exponent. In other words, Hurst expo-

nent dictates the model specification for the Granger causality test. Test methods are provided 

in Chen (2006, 2015). In our paper, we restrict ourselves to integration order, i.e., I(0) and 

I(1), and fix the lag order at the maximum of three. A more reliable analysis can be undertak-

en allowing for fractional integration. In addition, the Breitung and Candelon test can detect 

only linear Granger causality.  Hlaváˇcková-Schindler et al. (2007) construct a nonparametric 

test with Shannon entropy to detect nonlinear Granger causality3. Both Hurst exponent and 

Shannon entropy can be applied to evaluate market efficiency. Indeed, Mensi et al. (2014a) 

calculate the two measures for two crude oil price indices, European Brent index and WTI, 

and find the former is less inefficient than the latter. 

A structural break identified with Bai and Perron (2003) accommodates the difference before 

and after the break date. Time is the only determining factor for the dynamic process. An 

endogenous structural change can be described by a Markovian switching (MS) VAR model. 

Under this specification, there are two states and different price processes prevail across the 

two states. The state transition probability is described by a constant matrix. Managi and 

Okimoto (2013) adopt a two-state MSVAR model and find a structural change during No-

vember and December of 2007. While MSVAR model is preferred to the Bai-Perron ap-

proach to capture structural change, it is cumbersome to extend the Breitung and Candelon 

test form the VAR to MSVAR framework. Pataracchia (2011) and Cavicchioli (2013) pro-

vide spectral representation for MSVARMA models. The final expressions for the Breitung-

Candelon non-causality restrictions are too complicated to be useful for direct implementa-

tion. This topic will be left for future research. 

 

 

 

                                           

3 Testing for nonlinear Granger causality was first proposed in Hiemstra and Jones (1994) and then modified by 

Diks and Panchenko (2006). The test statistics are based upon correlation integral.   
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