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Abstract
This paper deals with a new generalization of autoregressive conditional duration (ACD) models. In special, we

propose a new family of ACD models based on a class of log-symmetric distributions. In this new class, it is possible

to model both median and skewness of the duration time distribution. We discuss maximum likelihood estimation of

the model parameters. For illustrative purposes, we analyze a high frequency financial data set from the German DAX

in 2016.

The authors thank the Editor and reviewers for their constructive comments on an earlier version of this manuscript. The research was partially

supported by CNPq and CAPES Grants from the Brazilian Government.

Citation: Helton Saulo and Jeremias Leão, (2017) ''On log-symmetric duration models applied to high frequency financial data'', Economics

Bulletin, Volume 37, Issue 2, pages 1089-1097

Contact: Helton Saulo - heltonsaulo@gmail.com, Jeremias Leão - leaojeremiass@gmail.com.

Submitted: January 12, 2017.   Published: May 14, 2017.

 

   



1 Introduction

High frequency financial data on transactions have been modeled primarily by autoregressive

conditional duration (ACD) models, which were proposed by Engle & Russell (1998). ACDs

models are used to capture the clustering structure often found in trade duration (TD) data. This

type of data contains useful information on market activities (Pacurar 2008) and has a number

of unique characteristics such as: a large number of observations; an irregular nature due to the

way the data are collected; a diurnal pattern; asymmetry of the data distribution; and a hazard

rate (HR) with an inverse bathtub shape; see Engle (2000) and Leiva et al. (2014).

A number of generalizations of the original ACD model have been proposed in the liter-

ature; see, for example, Grammig & Maurer (2000), Bauwens & Giot (2000), Zhang et al.

(2001), De Luca & Zuccolotto (2006), Fernandes & Grammig (2006), Meitz & Terasvirta

(2006), Chiang (2007), Podlaski (2008), Bhatti (2010), Leiva et al. (2014) and Zheng et al.

(2016). These generalizations may take into account the following aspects: the HR shape of

TD data; the conditional mean (or median) dynamics; and the time series properties.

Recently, Jones (2008) investigated the concept of log-symmetry that arises when a random

variable has the same distribution as its reciprocal, or when the distribution of a logged random

variable is symmetrical; see Fang et al. (1990). Distributions having this property belong to

the class of log-symmetric distributions. Vanegas & Paula (2016a) proposed log-symmetric

regression models which allow both the median and skewness (or the relative dispersion) be

described using an arbitrary number of non-parametric additive components. Vanegas & Paula

(2016b) studied some interesting properties of the log-symmetric class of distributions. Vane-

gas & Paula (2016c) proposed an extension to allow the presence of non-informative left or

right-censored data in log-symmetric regression models.

The objective of this paper is to propose a new family of ACD models based on a class of

log-symmetric distributions which is specified in terms of a time-varying conditional median

duration. Some advantages for ACD models based on conditional median durations can be seen

in Bhatti (2010) and Leiva et al. (2014). The proposed class provides more flexibility to the ex-

isting ACD models, because both the median and the skewness of the duration time distribution

can be explicitly modeled. We illustrate the potential applications of the proposed model by

means of high frequency financial data. The proposed class encompasses some existing ACD

models in the literature proposed by Bhatti (2010), Xu (2013) and Leiva et al. (2014).

The rest of the paper proceeds as follows. In Section 2, we briefly describe the class of log-

symmetric distributions. In Section 3, we introduce log-symmetric ACD models. In Section 4,

we illustrate the proposed methodology through an application with a real data set. Finally, in

Section 5, we discuss some conclusions and future studies.

2 Log-symmetric distributions

Let Y be a continuous and symmetric random variable following a symmetric distribution with

location parameter µ ∈ R, dispersion parameter φ > 0 and density generator g(·), and denoted

by Y ∼ S(µ, φ, g(·)). Then, its probability density function (PDF) can be written as

fY (y;µ, φ, g(·)) =
1√
φ
g

(
(y − µ)2

φ

)
, y ∈ R, (1)



with g(u) > 0 for u > 0 and
∫∞
0

u−1/2g(u)∂u = 1; see Fang et al. (1990). Note that if the

distribution of Y is symmetric about µ, then fY (µ − t) = fY (µ + t) for all t. Now, let X be

a continuous and positive random variable such that the distribution of its logarithm belongs

to the symmetric family S(µ, φ, g(·)), that is, X = exp(Y ). Then, X is said to follow a log-

symmetric distribution denoted by X ∼ LS(θ, φ, g(·)) and its PDF is given by

fX(x; θ, φ, g(·)) =
1√
φx

g(a2(x)), x > 0, (2)

where a(x) = log
(
[x/θ]1/

√
φ
)

and θ = exp(µ) > 0 is a scale parameter. Note that the

density generator g(·) may be associated with an extra parameter ξ (or an extra parameter vector

ξ). The cumulative distribution function (CDF) of X can be written as FX(x; θ, φ, g(·)) =
FV (a(x);µ, φ, g(·)), where FV (·) is CDF of V = (Y − µ)/

√
φ ∼ S(µ = 0, φ = 1, g(·)). The

HR of X is given by hX(x; θ, φ, g(·)) = fX(x; θ, φ, g(·))/(1− FX(x; θ, φ, g(·))).
Some well-known examples of log-symmetric distributions are the log-normal (Crow &

Shimizu 1988, Johnson et al. 1994), log-logistic and log-Cauchy (Marshall & Olkin 2007),

F and log-Laplace (Johnson et al. 1995), log-power-exponential, log-Student-t, log-power-

exponential and log-slash (Vanegas & Paula 2016b), harmonic law (Podlaski 2008), Birnbaum-

Saunders (Birnbaum & Saunders 1969, Rieck & Nedelman 1991) and generalized Birnbaum-

Saunders (Dı́az-Garcı́a & Leiva 2005) distributions; see Table I for some models which will be

used in this work.

Table I: Density generator g(u) for some log-symmetric distributions.

Distribution g(u)

Log-normal(θ, φ) ∝ exp
(
−1

2
u
)

Log-Student-t(θ, φ, ξ) ∝
(
1 + u

ξ

)− ξ+1

2

, ξ > 0

Birnbaum-Saunders(θ, φ = 4, ξ) ∝ cosh(u1/2) exp
(
− 2

ξ2 sinh
2(u1/2)

)
, ξ > 0

Some mathematical properties of the log-symmetric distribution are as follows. Let X ∼
LS(θ, φ, g(·)). Then (Vanegas & Paula 2015),

(P1) X⋆ =
(
X
θ

)1/√φ ∼ LS(θ = 1, φ = 1, g(·)) follows a standard log-symmetric distribution;

(P2) cX ∼ LS(cθ, φ, g(·)), with c > 0;

(P3) Xc ∼ LS(θc, c2φ, g(·)), with c 6= 0;

(P4) The median of the distribution of X is θ.

From (P2) and (P3), note that the log-symmetric distribution belongs to scale and closed

under reciprocation families, respectively. The property (P3) allows us, for example, to pro-

pose modified moment estimators; see Ng et al. (2003) for the Birnbaum-Saunders case. The

quantile function of the log-symmetric distribution is given by

tX(q; θ, φ, g(·)) = θ exp(
√
φvξ(q)), (3)

where vξ(q) is the q × 100th quantile of V = (Y − µ)/
√
φ ∼ S(µ = 0, φ = 1, g(·)).



3 Log-symmetric ACD models

Let Xi = Ti − Ti−1 be the duration, that is, the time elapsed between two successive arrival

times, Ti−1 and Ti, at which market events occur. We consider a dynamic point process model

specified in terms of a conditional median duration θi = tX(0.5; θi, φ, g(·)), where tX(·) is the

inverse CDF or quantile function (QF) of the log-symmetric distribution based on (3), and Ωi−1

is the information set, which includes all information available until Ti−1; see Bhatti (2010).

The log-symmetric ACD model is formulated as

Xi = θi ǫ
√
φi

i , i = 1, . . . , n, (4)

where θi and φi are median and skewness of the Xi distribution, respectively, and {ǫi} are

independent identically distributed (IID) random variables following a standard log-symmetric

distribution, denoted by ǫi
IID∼ LS(1, 1, g(·)). Then, Xi

IND∼ LS(θi, φi, g(·)).
The conditional PDF for Xi given θi and φi is given by

fX|θ,φ(xi|θi, φi; g(·)) =
1√
φixi

g(a2(xi)), xi > 0, (5)

where a(xi) = log
(
(xi/θi)

1/
√
φi

)
and θi = exp(µi) > 0 with time-varying conditional median

dynamics defined by

log(θi) = ̟ +
∑p

j=1
αj log(θi−j) +

∑q
j=1

βj

(
Xi−j

θi−j

)
, (6)

and φi written in the following form

log(φi) = w⊤
i ζ, i = 1, . . . , n, (7)

where wi = (wik, . . . , wik) is the vector of explanatory variables for φi and ζ = (ζ1, . . . , ζk)
⊤

is the parameter vector. For simplicity’s sake, we assume that φi = φ, for i = 1, . . . , n. The

following notation is used LS-ACD(p, q), where p and q refer to the orders of the lags. In this

work, we consider p = 1 and q = 1, because we notice that a higher order does not improve

the fit of the models; see Bhatti (2010).

By linearizing the process in Equation (4), we obtain

log(Xi)︸ ︷︷ ︸
Yi

= log(θi)︸ ︷︷ ︸
µi

+
√
φ log(ǫi)︸ ︷︷ ︸

εi

, i = 1, . . . , n, (8)

where εi
IND∼ S(0, 1, g(·)), that is, εi follows a standard symmetric distribution with PDF given

by (1), having location parameter µ = 0, dispersion parameter φ = 1 and density generator

g(·). From (8), we note that Yi
IND∼ S(µi, φ, g(·)).

Estimation

The parameters of the LS-ACD(p, q) model can be estimated by fitting a symmetric ACD model

to the transformed variable Yi = log(Xi). Hence, the estimates are obtained by maximizing the

recursively defined log-likelihood function associated with (4) with increments given by

ℓi(ϑ) ∝ −1

2
log(φ) + log(g(v2i )), (9)



where ϑ = (̟,α1, . . . , αp, β1, . . . , βq, φ, ξ)
⊤ and vi = (yi − µi)/

√
φ. To obtain the estimates

of the model parameter vector ϑ, we use the ML method, which must be solved by an iterative

procedure for non-linear optimization, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

quasi-Newton method. This method is regarded as the best-performing algorithm; see Mittel-

hammer et al. (2000, p. 199) and Leiva et al. (2014). The BFGS method is implemented in

the R software available at http://cran.r-project.org, by the functions optim and

maxBFGS.

In order to estimate the extra parameter ξ (log-Student-t), we can use the profile log-

likelihood. Therefore, we have the following two steps, for example, in the log-Student-t
case:

1) Let ξk = k and for each k = 1, . . . , 100 compute the ML estimates of

(̟,α1, . . . , αp, β1, . . . , βq, φ, ξ)
⊤ by using the above procedures. Compute also the log-

likelihood function;

2) The final estimate of ξ is the one which maximizes the log-likelihood function and the

associated estimates of (̟,α1, . . . , αp, β1, . . . , βq, φ, ξ)
⊤ are the final ones.

We can carry out inference for ϑ of the LS-ACD(p, q) model by using the asymptotic dis-

tribution of the ML estimator ϑ̂. This estimator is consistent and has a multivariate normal

joint asymptotic distribution, with an asymptotic mean ϑ and an asymptotic covariance matrix

Σϑ̂ , which can be obtained from the corresponding expected Fisher information matrix I(ϑ).
Hence, we have √

n [ϑ̂− ϑ]
D→ Np1+q1+2(0,Σϑ̂ = J (ϑ)−1),

as n → ∞, where
D→ means “convergence in distribution to” and J (ϑ) = limn→∞[1/n]I(ϑ).

Note that Î(ϑ)−1 is a consistent estimator of the asymptotic variance-covariance matrix of ϑ̂.

4 Illustrative example

We consider price durations of BASF-SE stock on 19th April 2016 obtained from the Dukas-

copy site (www.dukascopy.com). The data was adjusted in order to remove the diurnal

pattern; see Engle & Russell (1998) and the R package ACDm (see Belfrage 2015). Table II

provides descriptive statistics for both plain and diurnally adjusted BASF-SE data. From this

table, we note the right skewed nature and high kurtosis level of the data distribution. Moreover,

sample autocorrelations indicate that when the diurnal factor is considered, the persistence is

slightly changed. In general, the descriptive statistics results support the use of ACD models.

We estimate by ML the ACD models listed in Table III assuming the following log-

symmetric ACD models: Birnbaum-Saunders (BSACD), lognormal (LNACD) and log-

Student-t (LtACD). For comparison, the generalized gamma ACD (GGACD) model, which is

regarded as the status quo for ACD models (Bhatti 2010), the Weibull ACD (WEACD) model

(Engle & Russell 1998) and the Burr ACD (BUACD) model (Grammig & Maurer 2000), are

also considered. Note that the log-symmetric ACD models are constructed in terms of a con-

ditional median duration, rather than the GGACD, WEACD and BUACD models based on the

mean conditional duration. The median-based model is more robust to atypical cases (extremes



Table II: Summary statistics for the BASF-SE data.

BASF-SE price durations Plain Adjusted

n 2194 2194

Mean 12.292 1.067

Median 7 0.682

Minimum 1 0.061

Maximum 266 9.776

Standard deviation 16.156 1.167

Coefficient of variation 131.43% 109.35%

Coefficient of skewness 4.695 2.521

Coefficient of kurtosis 42.516 8.902

kth order sample autocorrelation

k = 1 0.160 0.091

k = 4 0.087 0.007

k = 8 0.139 0.036

k = 12 0.099 0.030

k = 16 0.106 0.017

k = 20 0.089 0.015

k = 28 0.061 0.017

k = 36 0.101 0.052

or outliers) than the mean-based model. For skew data such as price durations, this is an im-

portant property as past very unusual events will not affect significantly future predictions; see

Saulo et al. (2017).

Table III reports the ML estimates, computed by the BFGS method, the standard errors

(SEs), the p-values of the t-test, the values of the Akaike (AIC) and Bayesian information

(BIC) criteria, and the p-values of the Ljung-Box (LB) statistic, Q(γ), for up to γth order serial

correlation. The LB test is used to evaluate the absence of autocorrelation in the residuals.

The results in Table III indicate that the BSACD model provides the best adjustment compared

to the other ACD models based on the values of AIC and BIC. In addition, the LB statistics

show no evidence of serial correlation in the residuals. Using the Wald statistic defined by

W = [∆̂ − ∆0]/SE(∆̂), which approximately follows a N(0,1) distribution under H0, we can

perform hypothesis testing of H0: ∆ = ∆0 versus H1: ∆ 6= ∆0, where ∆̂ and ∆0 are the

corresponding estimator and its value under H0, respectively. In Table III, we observe that the

p-values show that all the ACD parameter estimates are statistically significant at the 5% level.

In order to check goodness of fit and departures from the assumptions of the model, we

investigate the generalized Cox-Snell (GCS) residual, which is given by

rGCS
i = − log(Ŝ(xi|Ωi−1)), i = 1, . . . , n, (10)

where Ŝ(·) is the survival function fitted to the ACD data. In this case, the GCS residual

is unit exponential distributed, EXP(1) in short, regardless the ACD model specification; see

Bhatti (2010). Figure 1 displays the QQ plots with simulated envelope of the GCS residual for

the ACD models considered in Table III. This figure indicates that in the BSACD model, the



GCS residual shows a good agreement with the EXP(1) distribution, that is, the BSACD model

seems to be correctly specified. The same behaviour is not observed for the other models.

Table III: ML estimates (with SE in parentheses) and model selection measures for fit to the BASF-SE

data.
Other ACD models Log-symmetric ACD models

BUACD WEACD GGACD BSACD LNACD LtACD

̟ 0.0779 0.0660 0.0724 −0.2756 −0.2666 −0.2278
(0.0203) (0.0177) (0.0183) (0.0975) (0.0799) (0.0592)

[< 0.0001] [< 0.0001] [< 0.0001] [0.0047] [0.0008] [0.0001]

α 0.7077 0.6804 0.7204 0.5800 0.5951 0.6498
0.1010 (0.1181) (0.0936) (0.1758) (0.1502) (0.1193)

[< 0.0001] [< 0.0001] [< 0.0001] [0.0009] [< 0.0001] [< 0.0001]

β 0.1051 0.0933 0.0494 0.0403 0.0494 0.0561
0.0213 (0.0201) (0.0117) (0.0106) (0.0117 ) (0.0124)

[< 0.0001] [< 0.0001] [< 0.0001] [0.0001] [< 0.0001] [< 0.0001]

φ 0.4332 0.2467 1.0675
(0.0627) (0.0547) (0.0161)

ξ 1.3121 1.0244 15.0013 1.1974 3
(0.0426) (0.0163) (6.5247) (0.0180)

AIC 4556.255 4637.567 4488.384 4461.66 6505.187 6782.066

BIC 4584.722 4660.341 4516.851 4484.43 6482.413 6753.599

Q(4) 0.8167 0.9468 0.7964 0.6238 0.9472 0.8662

Q(16) 0.3162 0.3410 0.4344 0.2403 0.7028 0.6887
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Figure 1: QQ plot and its envelope for the GCS residuals in the indicated model with the BASF-SE

data.



5 Concluding remarks

We have discussed a new class of autoregressive conditional duration models based on the

log-symmetric distributions, which are based on the conditional median duration. We have

presented inference about the model parameters. We have applied the proposed models to a

real-world data set of financial transactions of BASF-SE stock on 19th April 2016 from the

Dukascopy site. In general, the considered goodness-of-fit measure suggested that the log-

symmetric ACD model based on the Birnbaum-Saunders distribution (BSACD) has a better

performance.

As part of future research, it would be of interest to propose an outlier detection procedure

to detect and estimate outlier effects for these models; see Chiang & Wang (2012). Work on

these issues is currently in progress and we hope to report some findings in a future paper.
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