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Abstract
In 2008, the Federal Reserve implemented several new monetary policy tools. One of these tools included that it

began to pay interest on a commercial bank's reserves, which created a channel system. A channel system describes a

scenario where the central bank can establish an upper and a lower bound around an announced benchmark interest

rate such as the federal funds rate. The penalty rate establishes the upper bound since a bank will not borrow from

another commercial commercial bank above this rate. A benefit of paying interest on reserves is that IORs place a

lower bound on the federal funds rate. In order to analyze this new policy, this paper utilizes a DSGE model with a

banking sector. The banking sector includes excess reserves in its balance sheet that receive interest that can be

adjusted by the monetary authority. Exogenous shocks are applied to a deterministic model, where agents anticipate

future shocks, and a stochastic model, where agents react to an unexpected shock, in order to analyze the impact on

macroeconomic variables. I find that an expansionary IOR policy results in a lower price level compared to applying

an expansionary OMO policy.
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1 Introduction

The purpose of this monograph is to examine the dynamics of a DSGE model
when a monetary authority has the ability to adjust the interest rate that it pays
on a bank’s reserves. The experience of Canada, New Zealand, and Australia is that
their respective central banks have been able to maintain tighter control over their
target interest rates compared to the Federal Reserve by implementing a “channel
system.” This is where the target interest rate’s ceiling is the penalty rate (commonly
referred to as the discount rate) and the target rate’s floor is the interest paid by
the monetary authority on a banks reserves. Figure 1 presents a channel system. A
Channel System describes a inter-bank market for funds where the central bank sets
an upper and lower bound. In the federal funds market, the upper bound on the
federal funds rate is the discount rate and the lower bound is the interest on reserve
rate. The market determines the effective federal funds rate as long as the rate is
between the two bounds such as point A. The conventional tool for adjusting the
federal funds rate is open market operations. An open market operations purchase
increases the amount of reserves in the federal funds market. The supply of reserves
curve will shift to the right, which lowers the effective federal funds rate. An open
market operation sale will decrease the amount of reserves in the market. The supply
of reserves curve will shift to the left and the effective federal funds rate will increase.

In the aftermath of Quantitative Easing, traditional open market operations were
no longer an option as reserve balances reached 2.6 trillion dollars at the end of 2014.
This was up from 14 billion dollars in 2007. Hence, the interest on reserves (IOR)
tool has been the policy used since the FOMC began rising rates in December, 2015.
This scenario is shown graphically in Figure 2. Until the implementation of IOR
policy, the lower bound has been zero. As a result, the central bank now has the
ability to lift the federal funds rate when it is at the lower bound. This is the
horizontal segment of the demand for reserves curve. The monetary authority can
lift the federal funds rate from point B to point C by increasing the interest on reserve
rate. That is, when the equilibrium exists on the lower bound, the central bank can
adjust the inter-bank rate without adjusting the amount of non-borrowed reserves.

This paper develops a general equilibrium model that includes a banking sector
that earns interest on its reserves. Simulations are then conducted to analyze the
impact on the model’s endogenous variables as a result of changing the interest paid
on reserves. Specifically, I am interested to see how excess reserves can be manipu-
lated through interest on reserves in order to influence the equilibrium price level and
aggregate output. I compare expansionary Open Market Operations (OMO) policy
with IOR policy. The paper’s model finds that an expansionary IOR policy results



in a lower price level compared to an expansionary OMO policy.
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Figure 1: A channel system with the upper bound at the discount rate, dr, and the
lower bound at the interest on reserve rate, IOR. The effective federal funds rate,
ffr∗, is determined by the supply and demand for reserves at point A.
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Figure 2: Initially, the equilibrium takes place on the vertical segment of the supply
for reserve curve and the horizontal segment of the demand for reserve curve Rd

1.
This takes place at point B. IOR policy allows the monetary authority to raise the
federal funds rate by increasing the IOR rate from IOR∗

1 to IOR∗
2. As a result, the

vertical segment of the demand for reserves curve shifts up from Rd
1 to Rd

2 and the
federal funds rate simultaneously increases from ffr∗1 to ffr∗2.



2 DSGE Model

The model in this paper follows closely Nason and Cogley (1994) and Schorfheide
(2000). There are three sectors in this hypothetical economy: the household, the
firm, and the banking sectors. The monetary authority is a minor fourth agent
in this scenario. Firms and banks are owned by the households and therefore pay
dividends to the households. Households choose to hold money and how much money
to deposit in their interest-bearing deposit accounts. Firms are perfectly competitive.

The modification I make to the original model is that I include excess reserves
in the bank’s balance sheet. In addition, I also include a default rate for the loans
that are made to firms. An additional assumption I make is that the central bank
follows a standard form of the Taylor rule. Also, firms borrow money from the bank
in order to rent capital in each time period. This is in contrast to Nason and Cogley
(1994), where firms borrow money in order to pay workers’ wages. An infinitely lived,
representative household maximizes its expected utility by choosing the optimal path
of consumption spending, ct; the amount it holds as bank deposits, dt; and how much
labor to supply; ht. At the beginning of each time period, the household receives
the money stock from the previous time period. The household solves the expected
utility function described by

max
{ct}∞t=0

,{Ht}∞t=0
,{Mt+1}∞t=0

,{Dt}∞t=0

E0

{

∞
∑

t=0

βt [(1− ψ) ln ct + ψ ln (1− ht)

}

, 0 < β, ψ < 1

subject to two constraints. The first is the CIA constraint:

Ptct ≤ Wtht +Mt − dt, 0 ≤ dt.

The price level of consumption is Pt, and Wt is the wage rate in nominal terms. This
constraint is specified so that cash minus deposits from the end of the previous time
period plus labor wages can be used for consumption spending in the current time
period. Since deposits can never be negative, the qualifier 0 ≤ dt is included. The
second constraint is the households resources constraint. Money carried into the next
time period is a function of current period dividend income from firms and banks,
interest earned on deposits, income from supplying labor, and current money holdings
net of current period deposits and consumption spending. The intertemporal budget
constraint is thus

Mt+1 ≤ ft + bt +RH tdt +Wtht +Mt − dt − Ptct,

where ft and bt are dividend income from firms and banks, respectively. The gross
nominal interest rate that households earn from holding deposits is RH t.



The objective of the representative bank is to maximize the dividends, bt, that it
pays to the households over time. Dividends are discounted by t + 1 to reflect that
the marginal utility of consumption by households take place in the time period after
the dividend payments are made. The problem that banks solve is:

max
{bt}∞t=0

,{lt}∞t=0
,{dt}∞t=0

,{ERt}∞t=0

E0

{

∞
∑

t=0

βt+1
bt

ct+1Pt+1

}

,

subject to three constraints. The first constraint is the bank’s budget constraint

bt ≤ RFt · lt(1− η(lt))− lt · (1− η) + dt −RHt · dt +RiorERt,

where lt are the loans that banks make to firms, and RFt is the interest rate that
firms must pay on those loans. A fraction of the loans are never paid back. The
default rate of loans is η. In addition, ERt are the bank’s excess reserves, and Rior

is the interest rate that the central bank pays the bank for holding reserves.

Because a bank’s liabilities must be less than or equal to its assets, the banks
balance sheet is its second constraint:

dt ≤ lt · (1− η(lt)) + ERt.

Since we assume that banks do not hold capital, the inequality becomes an equality.
The amount of reserves that banks want to hold is determined by solving a revenue

optimization problem subject to the bank’s balance sheet:

E(revenue) = ERt ·Rt,ior + lt · (1− η(lt)) ·RFt

s.t. dt = ERt + lt.

The default rate η is a function of the shock parameter to the default risk, φ. Thus,
banks internalize the default risk shock parameter:

η = φ · lυt , υ > 1 (1)

η′ = υ · φ · lυ−1

t . (2)

The term ν implies defaults increase at an increasing rate as banks lend to the
least risky borrowers first. As the amount of lending increases, banks lend to riskier
borrowers at an increasing rate. Also, RFt > Rior since commercial banks would not
have an incentive to lend otherwise. Solving for the optimal level of loans:

lt =

(

1

φ(1 + υ)

)
1

υ

{

1−
Rior

RF

}
1

υ



Substitute the optimal level of loans back into the balance sheet in order to determine
the optimal level of excess reserves:

ERt = dt − lt.

The derivation of the optimal amount of loans are relegated to the appendix. Firms
attempt to maximize the dividends they pay to households over time analogous to
the bank. In addition, a firm chooses how much dividends to pay and how much
capital to accumulate during each time period. The firm’s choice variables are divi-
dends, next period’s capital stock, how much labor to hire, and the amount of loans.
Furthermore, the firm faces a trade-off between increasing dividend payoffs and its
capital accumulation. Just like in the case for banks, dividends are discounted by
t+ 1. The other choice variables are loans, deposits, and excess reserves. The firm’s
objective function is

max
{ft}∞t=0

,{kt+1}∞t=0
,{nt}∞t=0

,{lt}∞t=0

E0

{

∞
∑

t=0

βt+1
ft

ct+1Pt+1

}

,

subject to three constraints. The budget constraint of the firm is

ft +RFt · lt(1− η(lt)) +Wtnt − lt(1− η(lt)) ≤ Pt[yt − it],

where gross investment is described by the law of motion of capital:

it = kt+1 − (1− δ)kt, 0 < δ < 1,

and the firms output is produced with a CRS production function:

yt = kαt [Atnt]
1−α, 0 < α < 1.

The second constraint that the firm faces is that it must finance its current capital
costs by borrowing from the bank, such that

Rtkt ≥ lt. (3)

Kiyotaki and Moore (1997) note that the value of capital cannot be more than the
loan since the capital is also collateral for the loan. Hence, equation (3) is the firm’s
collateral constraint.



The central bank follows the Taylor rule when choosing the interbank lending
rate, i.e., the federal funds rate (ffr). The monetary authority responds to a convex
combination of a GDP gap and inflation gap. The ffr is represented as

ffrt = Φ · ffr∗t−1 + (1− Φ) · [φy · (yt − y⋆) + φπ · (πt − π⋆)], (4)

where πt =
Pt

Pt−1
is the inflation rate, π⋆ is the inflation target, (yt − y⋆) is the GDP

gap, (πt−π
⋆) is an inflation gap, and ffr∗ is the equilibrium federal funds rate. The

persistence of the inflation target is reflected in Φ. In this model we assume that the
monetary authority sets the interest on reserve rate equal to the federal funds rate.

2.1 Equilibrium

Because not all loans to firms are paid back to the bank, there is a default wedge
of 1− η between the interest paid on deposits and the interest charged for loans. As
a result, the interest rate that firms pay for loans is higher than the interest rate
that households receive from holding deposits to account for the difference in risk.
In equilibrium,

RFt(1− η(lt)) = RHt. (5)

Equation (5) tells us that a bank must charge a higher rate on loans than it pays
deposits in order to make a normal profit. The interest rate that households receive
on their deposits equals interest paid on reserves:

RHt = Rt,ior. (6)

From the last two optimality conditions, we can write

RFt(1− η(lt)) = RH t = Rior ≡ R. (7)

We restrict R ≤ RF in order to reflect a financial friction that results from default
loans. Labor supply equals labor demand in the labor market ht = nt. Equilibrium in
the money market is described by Ptct =Mt, which is the equation of exchange where
velocity is equal to one. Equilibrium in the goods market implies that consumption
and investment spending is equal to aggregate output

ct + kt+1 − (1− δ)kt = kαt [Atnt]
1−α.

The model’s optimality conditions are presented in the appendix.



3 Exogenous Disturbances

In this section, I explore the reaction of agents to unanticipated shocks to the
exogenous variables by utilizing a stochastic model. The growth rate of a monetary
injection follows the exogenous stochastic process

ln mt = (1− ρ) ln m∗ + ρ ln mt−1 + ǫM,t, ǫM,t ∼ N(0, σ2

M).

This equation is interpreted as a simple monetary rule, where the growth rate of the
money stock is mt =

Mt+1

Mt

. The parameters m* and ρ imply a significant shift in
the conduct of monetary policy. Schorfheide (2000) describes changes in these two
parameters as reflecting “rare regime shifts.”

The modification made to the Taylor Rule in this paper’s stochastic model is
that the central bank sets the ior rate equal to the ffr rate as shown in Figure ??.
The central bank follows the Taylor Rule when choosing the interbank lending rate,
which is also the IOR rate. The ffr is determined by the Taylor rule as described
above with an additive structural shock term:

Rh = ffrt = Φ ·R∗
t−1 + (1− Φ) · [φy · (yt − y⋆) + φπ · (πt − π⋆)] + εffr, t.

In this stochastic model setting, the Taylor rule now includes the serially uncorrelated
innovation εffr, which has mean zero and variance σ2

ffr: εffr ∼ N(0, σ2
ffr).

3.1 Impulse Response Functions

In this section, I demonstrate how an unanticipated structural shock passes
through the model with impulse response functions. The model is perturbed by
a one standard deviation impulse to the structural shocks ǫM and, ǫffr in the first
time period. Figure 3 shows the impulse responses from a temporary money supply
shock on the endogenous variables. The money supply, price level, and thus inflation
all jump up from their steady states on impact. The money supply returns to its
steady state in about 10 quarters while the price level and inflation rate fall slightly
below their respective steady states. Because of the higher prices, consumption ini-
tially decreases but recovers in 10 quarters as the price level falls. Consumption
remains above the steady state as long as the price level stays below its own steady
state. The higher price level and inflation rate prompt the monetary authority to
increase its benchmark rate. Thus, the lending, deposit, and IOR rates also increase.
The higher interest rates result in an increase in the demand for excess reserves and
also in an increase in deposits. The unanticipated money shock stimulates output
by the firm. The firm raises wages to attract more worker hours. Despite the higher



Figure 3: Orthogonalized shock to ǫM . The y-axis is the deviations from the steady
state.

borrowing rate, firms rent more capital so the amount of loans increases. Capital has
a smooth transition because it follows the law of motion. At first, defaults on loans
fall, but over time as banks lend to relatively more risky borrowers, the default rate
increases. The higher interest on reserve rate also causes an increase an excess re-
serves. That is, the increases in deposits are allocated between both more loans and
more excess reserves. Since capital and labor are complements, labor hours increase,
and aggregate output also increases.

The impulse responses from an unanticipated shock to interest rates are presented
in Figure 4. In this scenario, the monetary authority decreases its benchmark rate
which simultaneously decreases the deposit rate and the bank’s lending rate. When
the benchmark interest rate decreases, firms expect a lower inflation rate so decrease
the price level. As the price level decreases, consumption spending increases. A lower
lending rate encourages firms to borrow more in order to rent more capital. There
is a smooth increase in capital accumulation as it follows the law of motion before



decreasing back to its initial steady state. Output increase on impact and then falls
back to its steady state. Because of the initial increase in production, labor demand

Figure 4: Orthogonalized shock to ǫffr. The y-axis is the deviations from the steady
state.

increases since capital and labor are compliments. The increase in labor demand
raises wages so that workers provide more labor hours. The increase in consumption
spending results in less deposits. In addition, lower consumption spending along
with a lower IOR rate causes excess reserves to decrease.

We can now make some observation regarding these two stimulative monetary
policy tools. As we saw above, an increase in the money supply raises the price
level along with the deposit and lending rates. This was in contrast to the monetary
authority reducing the IOR rate, which caused the lending and deposit rates to
decrease along with the price level.

Moreover, the positive monetary shock also led to more deposits and an increase
of excess reserves in contrast to lowering the IOR rate. Even though both tools
increased output, the increase in output resulting from the money supply shock



caused only an increase in capital accumulation but not an increase in consumption
good production. Simultaneously, household income was deposited instead of spent
on the consumption good because of the relatively higher price level. As a further
result, excess reserves increased.

However, the output increase that resulted from the stimulative IOR policy in-
creased capital accumulation as well as consumption good production. Another dif-
ference is that because of the increase in consumption spending, deposits decreased
and therefore so did excess reserves. An unexpected difference is that loan defaults
decreased with more lending in the money supply shock case.

4 Conclusion

Dynamic stochastic general equilibrium models are the workhorse of macroeco-
nomics. With the relatively new Federal Reserve policy of paying interest paid on a
commercial bank’s reserves, incorporating an interest rate on excess reserves within
a DSGE model is a natural extension of the DSGE model literature. This paper has
modeled interest on reserve policy into a stochastic model in order to analyze the
effects on the macro-economy. Using this new tool of monetary policy, the Federal
Reserve no longer has to face a trade-off between interest rates and the money supply.

This paper compares the effects of stimulative OMO policy with IOR policy.
Even though both MP tools increased output, I find that IOR policy is deflationary
while OMO policy is inflationary. While increasing the money supply will decrease
nominal interest rates, the model shows that real interest rates will increase which
leads to higher prices. As a result, consumption spending increases from IOR policy,
but decreases from OMO policy. The increase in the money supply from OMOs get
absorbed in excess reserves.
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Appendix: Optimal Loans and Excess Reserves

The following describes the optimal level of lending, and thus, the optimal level
of reserves:

The amount of reserves that banks want to hold is determined by solving a sep-
arate optimization problem subject to the bank’s balance sheet:

E(R) = ER ·Rior + l · (1− η(l)) ·RFt

s.t. d = ER + l.

The default rate on loans is η, which is a function of the shock parameter to the
default risk, φ. Thus, it is the banks that internalize the default risk shock parameter.
The first derivative of η with respect to loans implies the probability of default, η′ .

η = φ · lυ, υ > 1 (8)

η′ = υ · φ · lυ−1 (9)

The quadratic term ν implies defaults increase at an increasing rate as banks lend
to the least risky borrowers first. As the amount of lending increases, banks lend
to riskier borrowers at an increasing rate. Also, RFt > RiorERt since commercial
banks would not have an incentive to lend otherwise.
Rearrange the balance sheet so that ER = d+l and then substitute into the objective
function.

E[R] = (d− l) ·Rior + l · (1− η(l)) ·RF

Take the FOC with respect to loans and solve for the optimal level of loans:

0 = −Rior + (1− η(l)) ·RF − l · η′(l) ·RF

0 = −Rior + (1− φ · lυ) ·RF − l · υ · φ · lυ−1
·RF

Rior = RF −RF · φ · lυ −RF · υ · φ · lυ

RF −Rior = RF · φ · lυ +RF · υ · φ · lυ

= RF · lυ · φ(1 + υ)

Solving for the optimal level of loans:

lυ =
RF −Rior

RF · φ(1 + υ)
→ l =

(

RF −Rior

RF · φ(1 + υ)

)
1

υ

=

(

1

φ(1 + υ)
−

Rior

RF · φ(1 + υ)

)
1

υ



=

(

1

φ(1 + υ)

{

1−
Rior

RF

})
1

υ

=

(

1

φ(1 + υ)

)
1

υ

{

1−
Rior

RF

}
1

υ

≡ χ.

Substitute the optimal level of loans back into the balance sheet in order to determine
the optimal level of excess reserves:

ER = d− χ

Appendix: Optimality Conditions

The first Euler equation in this model describes optimality in the goods market

Et

{

Pt

ct+1Pt+1

= β
Pt+1[αk

α−1

t+1 At+1 n
1−α
t+1 + (1− δ)]

ct+2Pt+2

}

.

Solving for the interest rate R, in equation (3), we get the borrowing constraint
of the firm

Rt =
lt

kt
.

Equating the supply of labor, the demand for labor, and the marginal rate of substitu-
tion between consumption and leisure, the optimality condition for the intratemporal
labor market becomes

(

−ψ

1− ψ

)

ctPt

1− nt

+W = 0.

The second intertemporal Euler equation describes optimality in the credit mar-
ket:

1

ctPt

− βRtEt

{

1

ct+1Pt+1

}

.

The credit market is in equilibrium when the nominal interest rate equals the marginal
product of capital. Thus,

RFt = Ptαk
α−1

t A1−α
t n1−α

t .


