

Volume 38, Issue 1

Economic Motivations for Software Bug Bounties

Christopher Sprague

Rochester Institute of Technology

Jeffrey Wagner

Rochester Institute of Technology

Abstract
Some software developers sponsor bug bounty programs, whereby outside parties with comparatively lower costs are

compensated for finding bugs. We propose a basic model of why some developers offer bounties while others don't,

and why those that do offer bounties typically outsource only a portion of the bug-finding. Our relatively basic

framework and preliminary result can support further investigation of public policy instruments, such as products

liability law, aimed at modulating software failures that may have large public impacts.

We appreciate several helpful comments and suggestions from session participants at RIT's 10th Annual Economics and Public Policy Student

Research Conference. This work began as the first author's undergraduate capstone project while double-majoring in Computer Science and

Economics.

Citation: Christopher Sprague and Jeffrey Wagner, (2018) ''Economic Motivations for Software Bug Bounties'', Economics Bulletin, Volume

38, Issue 1, pages 550-557

Contact: Christopher Sprague - css7209@rit.edu, Jeffrey Wagner - mjwgse@rit.edu.

Submitted: December 31, 2017. Published: March 23, 2018.

1. Introduction and Literature Review

The purpose of this note is to set forth a basic economic model of software bug bounties. Such
bounties are an emerging trend in software markets, wherein software developers offer to pay
professionals outside the firm (a.k.a., bug hunters) for finding bugs that slip past the firm’s own
care in finding them. Not all software companies offer bug bounty programs; among those that
do, some bug bounty programs are relatively substantial. For instance, Facebook’s bug bounty
program has paid $5 million in roughly the past five years1; several additional examples are
noted by Hunt (2017). Both software developers and public policy professionals seeking to
maximize social welfare from software are interested in bug bounty programs for several
reasons. First, all parties are interested in finding bugs at the lowest marginal cost, and where the
marginal benefits and marginal costs of finding bugs are equal. Second, finding more bugs
raises software quality, which raises demand for software. Third, a bug bounty program can
reduce not only the firm’s costs, but consumer prices as well—both consumer and producer
surplus can rise via an effective bug bounty program. Fourth, bug bounty programs enable
external bug reporting and discourage “black market” malicious bug knowledge activity. The
main contribution of our paper is to combine elements of the existing literature to motivate a
basic economic model of bug bounties. That is, while multiple papers touch upon the topic of
bug bounties in the course of focusing upon other aspects of software, our approach is to feature
bug bounties at the core of the model.

Before setting forth our model in the next section, we survey the relatively short existing
literature that comments upon the strengths and weaknesses of bug bounties. Barnes (2004, 322-
24) was an early commentator in the legal scholarship on the topic of bug bounties within the
more general topic of whether or not software developers should be held liable for software
failures. He notes that it is not immediately clear why some firms have bounty programs and
others do not, and that perhaps mandatory bug bounty programs should be established. Hahn
and Layne-Ferrar (2006, 338), citing Barnes (2004), also explore several strengths and
weaknesses of holding developers responsible for software security problems. Within that
analysis, they suggest that bug bounties have been moderately successful and cost-effective for
modulating some software issues. Moore (2010, 107-108, 113) describes the challenges and
opportunities in utilizing either ex ante care standards or ex post liability for dealing with
software security issues, and the vulnerability faced by most consumers who are typically limited
to installing patches and maintaining their anti-virus software as defense against bugs. Choi et

al. (2010, 885) provide a model in which voluntary and mandatory security vulnerability
disclosure policies can be compared. Within their disclosure model, they show that bug bounty
programs can be welfare-improving. Lam (2016, 49) emphasizes that software developers invest
effort in both attack prevention and damage control (i.e. multidimensional care), and that
implementing bug bounty programs can have the undesirable effect of relaxing effort directed to
attach prevention in favor of hoping to deal with any software issues down the road instead. So
instead of promoting bug bounties, he advocates the joint use of a standard of care with a partial
liability rule.

Most recently, Kesan and Hayes (2016), citing Choi et al. (2010), propose building an
exchange market for software security vulnerability information that falls somewhere between

1 https://www.facebook.com/bugbounty, accessed 12/12/2017.

https://www.facebook.com/bugbounty

the black market for information and the so-called white market for information where
traditional bug bounty programs reside. That is, their concern is for incentivizing the exchange
of information related to the most serious security vulnerabilities that, if not traded in grey or
white markets, will transact in black markets instead. Kesan and Hayes (2016, 760-1) note that
typical bug bounties do not offer compensation that is competitive with what researchers can
earn if they sell the information to someone else. So their focus is upon the design of exchanges
wherein third-parties (perhaps the government) would receive claims of found severe
vulnerabilities from hunters; evaluate and score those claims according to a threat severity index;
present software developers with the threat severity index; and help the parties negotiate a price.
A third-party mechanism is arguably crucial to the mechanism because of the peculiarity of
information as a good. If the hunter reveals the specifics of the vulnerability directly to the
software developer, the developer will learn what it wants to know and will have no incentive to
pay for it. Likewise, developers do not have an incentive to pay for the information unless they
can evaluate the quality of the information ex ante. Some type of information must be revealed
in order for a price to materialize, and a third-party broker can facilitate that.

To summarize our review of the literature, we find that each of these papers features one
or more elements of the law, economics, and technology that needs to be taken into account in
order for further progress to occur on this important topic. As noted at the outset, our goal is to
propose a relatively simple model that combines elements from each of the above references to
motivate bug bounties per se and that can support analysis in future research of how various
policy instruments might be used singularly or jointly to effect Pareto-improvements. We
present the basic model in Section 2 and we conclude with some directions for future research in
Section 3.

2. The Baseline Models of Social and Private Optimality

We begin by setting forth notation for our baseline model of social and privately optimal
software bug-finding. As is standard in the law-and-economics literature, we model the decision
variable as care—in this particular context, the amount of care software developers and external
bug hunters should each expend finding bugs in a software program. Suppose damage from
software bugs occurs at an expected dollar rate ܦሺ�ሻ = �ሺ�ሻ� with D continuous and twice

differentiable in bug-finding care x, and
��� < 0,

�2��2 ≥ 0. The “expected” aspect of the damage
function conveys the fairly realistic assumption that software developers and/or bug hunters
sample code for bugs; there is a probability p between zero and one that a bug will be found
upon sampling, and when found, we assume there is an average amount of harm H done if the
bug is not fixed (and that would also occur if the bug is not found to begin with). For simplicity,
we let H be constant—that is, independent of x. Harm H could vary with x, just as p varies with
x, but this merely complicates the algebra without generating additional insights from the model.
We assume throughout the paper that decision-makers are risk-neutral, such that they care about
outcomes in expected value only. We also assume that software consumers are passive, i.e., that
they are not able to take actions to detect bugs.2 Our assumptions on the expected damage

2 This is arguably a fairly realistic assumption in that evidence shows consumers tend not to be very mindful of

installing developer-provided patches; maintaining nor running anti-virus software; or trouble-shooting software

glitches. And software developers are increasingly able to push updates/patches to consumers automatically

function D say that the marginal expected damage from bugs that is avoided by taking care is
positive but diminishing as bug-finding care increases. For simplicity, we assume that the third
derivative of the damage function is zero. Hence, the marginal damage avoided function could
be a horizontal or downward-sloping linear function.

While bugs cause expected damage D, software developers and other professionals such
as bug hunters face costs in taking care to find and fix bugs. Suppose the cost of care involved in
identifying and fixing bugs is given by ܥሺ�ሻ, which is continuous and twice differentiable,
increases as x increases, and is the horizontal summation of all individual cost functions in the
economy (i.e. of care taken by private software developers as well as bug hunters). As in Lam
(2016), we set aside the demand side of the firm’s and society’s concern for now and focus just
upon costs. The social planner’s problem is to have care taken so as to minimize the social costs
of software bugs, where there are costs D of having bugs and costs of care C to reduce bugs. The
social optimization is thus:

min ��ሺ�ሻ = ሺ�ሻܦ + ሺ�ሻ (1)ܥ

Taking the first-order condition, we have ����� = ��� + ��� = 0 (2)

Eq. (2) leads to the choice of �∗ where − ��� = ��� , noting that
��� < 0.

In contrast, the private software developer cannot be assumed to take the full social
damage from bugs into account. Rather, the developer only has incentive to take into account a

private subset of D, say ܦ� < which for simplicity can be normalized to zero. The private ,ܦ

subset of D would include the firm’s financial cost to restore computing services affected by
undetected bugs and harm to its reputation among users aware of persistent bugs and their
effects. However, since indirect users of the buggy software may also be affected by software
failures, and since some users may not be aware of persistent bugs and their effects, and since
software developers are currently shielded from products liability, the private firm’s assessment
of expected damages is almost sure to be less than society’s assessment. In that case, the
software developer’s private optimization can be modeled as:

 min ��ሺ�ሻ = ሺ�ሻ (3)ܥ

Taking the first-order condition, we have

����� = ��� = 0 (4)

The private developer will choose care �̅ = 0 in this abstract case, corresponding to the origin in
Figure 1. What eq. (4) tells us is that the private firm in this abstract case will optimally choose
not to take care to find bugs; firms will rather favor promoting a caveat emptor software market.3

through the internet. Thus we normalize consumer actions to zero and focus upon the decisions software

developers and other professionals such as bug bounty hunters are able to take that abate bugs.
3 Again, note that we normalized the private damage the software developer sustains from the persistence of bugs

to be zero for simplicity. As per Figure 1, if there does not exist an MD function, then it is optimal to minimize just

This inclination not to take socially optimal care will not generate an infinite number of bugs;
after all, software firms are not in the business of making bugs. Rather, the software developer
has an incentive to let stand a finite but possibly large number of bugs rather than to expend care
resources abating them. Equations (2) and (4) together imply that there is room for public policy
to incentivize private market care in detecting and fixing software bugs. That is, policy makers
are concerned to increase bug-reducing care from a rate of �̅ = 0 to a rate of �∗ > 0. The
baseline model is illustrated in Figure 1 below, where triangle ab0 demarks the social surplus to
be captured by successful policy that increases care x taken to find and resolve software bugs.

Figure 1: Comparing Privately and Socially Optimal Care x

As others have noted, there are in principle several policy approaches one can take to
create Pareto-improvements in this situation. These options include the imposition of liability on
software developers for harm done by buggy software. Each of those policies has strengths and
weaknesses. What we focus upon here is the role of bug bounty programs, wherein, according to
the equi-marginal principle, software developers could outsource bug finding such that the
marginal costs of care of developers and bug hunters are equalized and social costs of software
are minimized. Figure 2 illustrates in a dual-x-axis framework the standard case in which
developers do have incentive to outsource some but not all bug hunting activity, and therefore to

have some interest in bug bounty programs. In the illustrated case, ��∗ + �ℎ∗ = �∗ and both
parties take positive rates of care x. This would be considered a voluntary step on the

with respect to the cost of care; since care is costly, the cost is minimized by choosing zero care. In the real world,

the software developer probably spends a relatively modest amount of effort finding bugs in this abstract case of

Ŷot ďeiŶg aĐĐouŶtaďle foƌ aŶy daŵage fƌoŵ ďugs, aŶd suffeƌiŶg aŶy fiŶaŶĐial ĐoŶseƋueŶĐes. We’ve also
proceeded with the assumption that the marginal cost function illustrated in Figure 1 is linear and begins at the

origin. This function could certainly have a positive second derivative, and it could have a positive y-axis intercept.

Relaxing either of these assumptions would not alter the baseline result in which the private firm chooses less care

than is socially optimal.

$

-MD
MC

Care x 0 x*

��∗

a

b

developer’s part to ensure that greater care is taken to find software bugs. Two corner solutions
are possible, however. At one extreme case, if the MCh for hunters is everywhere above the MCd
for developers, such that the MC functions in Figure 2 do not intersect in the positive orthant, all
bug hunting will be carried out in-house and the developer will not voluntarily promote a bug
bounty program. Hence, our model provides a simple motivation and visual for the observation
that many developers do not have bug bounty programs. Likewise, it is theoretically possible for
the MCd of developers in Figure 2 to be everywhere above (and hence not intersect) the MCh of
hunters, in which case all bug hunting would be outsourced from developers to hunters and such
developers would be quite reliant upon successful bug bounty programs. However, we would
not expect to see such a scenario in practice: a software firm that outsources 100% of bug finding
would be rather unusual.

Figure 2: Division of Care by Equi-Marginal Principle

If a developer begins at x*, at the far right of Figure 2, wherein he or she assumes all
responsibility for finding bugs and bug hunters expend no effort finding bugs, we can
immediately see the developer’s incentive to offer a bug bounty. Taking a one-unit step to the
left, we see that the developer’s MC is far above the hunter’s MC. The vertical distance between
MC functions demarks the range of Pareto-improving bounties. For a simple example, MCd
could be $500 and MCh could be $100 at xh = 1. The idea of the bug bounty is that both the
developer and hunter will be better off if the developer agrees to pay the hunter any amount
between $100 and $500 for the hunter’s first unit of bug-hunting effort. Such Pareto-improving
trades exist for all x as we move right to left along the x-axis until MCd = MCh. At that point, the
developer is indifferent to expending the next unit of bug-finding care with her in-house
resources or outsourcing that unit of care to the professional bug-hunting market. Thus, bug

MC
h

MC
d

Care x expended
0

0

$

��∗

x*

x* ��∗ ��∗

bounty programs work in the same manner that competitive, tradable emission permit markets
work to minimize society’s cost to reach any particular environmental quality level.

3. Conclusions and Directions for Future Research

The objective for this paper was to set forth a basic model of the economics of bug bounty
programs. Using a standard equi-marginal cost comparison framework, we are able to see how
differences in agents’ marginal cost of taking care to find bugs create opportunities for Pareto-
improving trades in the form of software developers offering bug bounties to bug hunters. The
gains-from-trade model enables us to likewise derive and visualize graphically the boundary
conditions under which developers would choose not to offer a bug bounty program or to
completely outsource the search for bugs to bug hunters. While others in the literature discuss
the strengths and weaknesses of bug bounty programs—and the policy choices of imposing
mandatory bug bounty programs as opposed to encouraging developers to utilize them
voluntarily—we are not aware of previous papers that illustrate this basic gains-from-trade
motivation for voluntary engagement with bug bounty programs.

While the framework is basic and based upon well-known concepts, its purpose is to
provide a general structure in which alternative policy instruments that promote Pareto-
improvements in care can be analyzed. One key area for extension regards how bug bounty
programs interact with—indeed, may be motivated by—the credible but low-level threat of
liability for harm that software developers face. That is, legal commentators such has Scott
(2008) have suggested that while software developers currently enjoy broad legislative insulation
from products liability claims for software failures, there may come a time when large-scale
software failures motivate the public (through the courts and through its elected legislatures) to
revisit this insulation. Such a possibility calls to mind Kahneman et al. (1986), who warn firms
to take heed of currently legal actions that could nevertheless provoke costly public policy
reversals. In the environmental economics literature, scholars such as Segerson and Wu (2006)
and Brouhle et al. (2009) show that complementing a voluntary pollution prevention approach
with a credible threat to impose more stringent regulations in industries where voluntary
programs fall short of social expectations can motive Pareto-improvements. Likewise, in our
software bug context, we believe that appropriate extension of our basic model would show that
the low but positive probability of being found liable for harm from software weaknesses
efficiently complements (and to some degree motivates) bug bounty programs that move the
privately optimal care to find bugs closer to socially optimal levels.

Such an extension that emphasizes the uncertain threat of liability, as opposed to the
actual imposition of liability, on developers complements Lam’s (2016) insightful analysis. The
difference is that in Lam’s model, he assumes that a policy of partial liability could be imposed
with certainty (i.e., that the probability of conviction is one), and that the standard of care that
Lam suggests should be imposed jointly is also known with certainty by all parties. Our review
of the literature suggests these assumptions may be sufficiently strong that we should also
consider the case in which developers are not certain of how much care is necessary to preserve
legal immunity from liability for software quality issues. Developers are likely also quite
uncertain how much care is necessary to meet an ambiguous care standard. Elements of Bhole
and Wagner’s (2008) analysis of taking optimal multidimensional (observable and unobservable)
care in the presence of uncertain conviction for harm could be useful in our framework.
Specifically, the software developers’ care could be considered unobservable care, while

developers’ expenditures on bug bounties could be considered observable care. Suppose that
changes in legislation that shield software developers from products liability are sensitive to
frequent occurrences of major security flaws that are modulated by care, and that changes in
legislation are also sensitive to legislators’ observations of developers’ care. If developers’
private care is difficult to observe, then developers’ investments in observable care in the form of
bug bounties yield both reductions in expected damages as well as reductions in the likelihood of
liability exposure via policy reversal. We hypothesize that this hedge against liability policy
reversal may in fact be the largest benefit of bug bounty programs to software developers.

Second, our model can be generalized to investigate how the introduction of a bug bounty
program in the presence of potential liability affects R & D investment and innovation in
subsequent periods. That is, to our knowledge, the literature on bug bounties focuses upon their
impact within static models. However, more general economic literature shows that policy
levers that have desirable properties in a one-period model may have different properties in
multi-period models. For instance, Endres and Bertram (2006) describe how the development of
care technology in a dynamic model is affected by different liability rules. Elements of their
framework could be added to ours to investigate how bug bounties, with and without potential
liability, affects firms’ incentives to invest in its own care technology. Since innovation has a
public-good component, we are almost sure to find that private decision-making will lead to
suboptimal social care technology investments. The resulting model would shed light on the best
ways forward in that case.

4. References

Barnes, D. A. (2004) “Deworming the internet” Texas Law Review 83, 279-329.

Bhole, B. and J. Wagner (2008) “The joint use of regulation and strict liability with
multidimensional care and uncertain conviction” International Review of Law and Economics
28, 123-132.

Brouhle, K., Griffiths, C. and A. Wolverton (2009) “Evaluating the role of EPA policy levers:
An examination of a voluntary program and regulatory threat in the metal-finishing industry”
Journal of Environmental Economics and Management 57(2), 166-181.

Callan, S. J. and J. M. Thomas (2013) Environmental Economics and Management: Theory,

Policy, and Applications, Sixth Edition, Cengage: Boston.

Choi, J. P., Fershtman, C. and N. Gandal (2010). “Network security: Vulnerability and disclosure
policy” The Journal of Industrial Economics LVIII (4), 868-894.

Endres, A. and R. Bertram (2006) “The development of care technology under liability law”
International Review of Law and Economics 26, 503-518.

Hahn, L. W. and A. Layne-Ferrar (2006) “The law and economics of software security” Harvard

Journal of Law and Public Policy 30, 283-353.

Hunt, T. (2017). https://www.troyhunt.com/fixing-data-breaches-part-4-bug-bounties/.
Accessed December 20, 2017.

Kahneman D., Knetsch, J. L. and R. Thaler (1986) “Fairness as a constraint on profit seeking:
Entitlements in the market” American Economic Review 76(4), 728-741.

Kesan, J. P. and C. M. Hayes (2016) “Bugs in the market: Creating a legitimate, transparent, and
vendor-focused market for software vulnerabilities” Arizona Law Review 58, 753-830.

Kolstad, C. D. (2011) Environmental Economics, Second Edition, Oxford UP: Oxford, UK.

Lam, W. M. W. (2016) “Attack-prevention and damage-control investments in cybersecurity”
Information Economics and Policy 37, 42-51.

Moore, T. (2010) “The economics of cybersecurity: Principles and policy options” International

Journal of Critical Infrastructure Protection 3, 103-117.

Scott, M. D. (2008) “Tort liability for vendors of insecure software: Has the time finally come?”
Maryland Law Review 67(2), 425-484.

Segerson, K. and J. Wu (2006) “Nonpoint pollution control: Inducing first-best outcomes
through the use of threats” Journal of Environmental Economics and Management 51(2), 165-
184.

https://www.troyhunt.com/fixing-data-breaches-part-4-bug-bounties/

