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Abstract
I introduce an econometric framework to identify and estimate horizon-based heterogeneity in panel data. Using this

approach, I identify the horizon-based structure in the cross section of portfolio returns. Accounting for this structure

results in a significant improvement in pricing accuracy relative to the standard CAPM and Fama-French three-factor

models. The majority of the improvement arises from separately pricing long-horizon and shorter-horizon market
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1 Introduction

Horizon-based relationships have a long history in economics and finance. Sticky prices, monetary
neutrality, interest parity, and the yield curve all imply differential economic relationships over different
time horizons. Much of the theoretical literature has explored relationships that operate over the business
cycle – the ICAPM model of Merton (1973) features a state variable that describe time-varying investment
opportunities while Campbell and Cochrane (1999) introduces a state variable that tracks the business
cycle even more explicitly. Changing market exposure over the business cycle was one of the main
motivating considerations in Jagannathan and Wang (1996) – which uses a yield spread that strongly
forecasts the business cycle as an instrument for the conditional market risk premium. Bansal and Yaron
(2004) represents a newer development in the theoretical literature that explores longer-horizon risk
relationships.

More recently, the literature has focused on empirically identifying these horizon-based relationships.
Adrian and Rosenberg (2008), Engle and Rangel (2009), Engle et al. (2013), and Rangel and Engle (2012)
all model volatility risk factors over short and long horizons. A variety of authors have also experimented
with sampling frequencies to capture horizon-based heterogeneity in asset pricing models, e.g. Andersen
et al. (2005), Harvey (1989), Cochrane (1996), Jagannathan and Wang (1996), Ghysels et al. (2007)
among others. A subset of this empirical literature has utilized wavelet-based methods to investigate
horizon-based relationships in asset pricing (Gençay et al., 2001a, 2003, 2005; In and Kim, 2012; Ortu
et al., 2013)

I propose a method of identifying horizon-based structure in a panel setting. My approach uses a
multiresolution analysis associated with a Haar maximal overlap discrete wavelet transform to decompose
a regressor variable – an approach most closely related to Ortu et al. (2013). I then propose a sequential
test based on the cross-sectional mean of Wald statistics to identify patterns of horizon-based hetero-
geneity. I apply this framework to excess market returns in an extension to the standard CAPM asset
pricing model. The panel test identifies five horizon-based components of excess market returns in the
cross section of 100 portfolios sorted on size and book-to-market ratio. I find that separately pricing the
horizon-based market exposure leads to an order of magnitude improvement over the standard CAPM
market model using a variety of performance measures. The largest improvement in pricing performance
arises from separately pricing long-horizon market exposure (horizons 10 years and longer) and market
exposure over shorter horizons (under 10 years).

Although I apply this horizon-based framework to financial data, I note that my approach is relevant
for any large T panel in which the regression relationship is suspected to vary across time horizon, e.g.
when short-run, business-cycle, and long-run effects differ.

2 Methodology and Data

The canonical CAPM model specifies a single source of risk – exposure to the market – captured by βi

in Equation (1) below:
rit − rft = βi (rmt − rft) + ǫit (1)

where rmt denotes the return on the market, rft denotes the risk-free rate, and i indexes a portfolio.
rmt − rft and rit − rft indicate excess market returns and excess portfolio returns, respectively. I extend
this simple model by allowing the estimated exposure to the market to vary across time horizons. To do
so, I propose an additive decomposition of excess market returns

rmt − rft = R1t +R2t + · · ·+Rkt (2)

where Rjt captures the behavior of excess market returns over a particular time horizon. The decompo-
sition is achieved through a wavelet-based method that corresponds to a partitioning of the frequency
domain. The frequency bands associated the partition yield a horizon-based interpretation of the com-
ponents in the time domain. I then allow the coefficient in Equation (1) to vary across components:

rit − rft =

k∑

j=1

βijRjt + ǫit (3)

The estimated coefficients have the same interpretation as in the standard CAPM market model –
portfolio exposure to the market – but now that relationship is described by horizon, e.g. portfolio



exposure to the market over the business cycle, etc. Of note, this approach to horizon-based inference
nests the standard time series regression with the simple restriction that βi1 = βi2 = · · · = βik.

I accomplish the decomposition in (2) using a Daubechies-class maximal overlap discrete wavelet
transform (MODWT). I provide an overview of the decomposition below with sufficient detail to allow
for easy replication. However, for brevity I refer the reader to Percival and Walden (2000) and Gençay
et al. (2001b) for additional technical details.

At their core, wavelet transforms can be understood as a set of related bandpass filters. This set of
bandpass filters is constructed such that the filter outputs decompose the variance of a time series across
the time horizons associated with the individual filters. A multiresolution analysis (MRA) associated
with a wavelet transform is a similar set of bandpass filters but with an additive decomposition in the
time series rather than the variance. In general, the impulse response sequences of wavelet transforms
and their associated MRA do not have closed-form analytical expressions. However, for expository clarity
and reproducibility, I use the MRA from the simplest MODWT wavelet – the Haar wavelet1 – which
does indeed have the following closed form expression for the jth component part Rjt from (2):

Rjt =:
2
j−1∑

ℓ=−2j+1

wj,ℓ (rm,t−ℓ − rf,t−ℓ) (4)

where for j < k:

wj,ℓ =





2
j−3|ℓ|
4j

|ℓ| ≤ 2j−1

|ℓ|−2
j

4j
2j−1 < |ℓ| ≤ 2j − 1

0 otherwise

(5)

and for j = k:

wk,ℓ =

{
2
j−|ℓ|
4j

|ℓ| ≤ 2j

0 otherwise
(6)

Due to the bandpass nature of the filtering operations, the j < k component describes the time domain
behavior of the original series over horizons between 2j−1 and 2j sample units (e.g. days, months, etc.).
The kth component – the output of a low pass filter – captures long horizon behavior greater than 2k

units. While k is flexible in practice, it is clear from Equations (4) - (6), the length of impulse response
sequence for the kth filter is exponential in k, leading to practical, data-determined constraints on k.
Furthermore, the choice of k determines the time horizons described by the last component. In this
paper I work with k = 8, a choice informed by the longest NBER-dated business cycle (for monthly data
28 = 128 months). I present the impulse response sequences for this k = 8 component decomposition in
Figure 1.

2.1 A Panel Test for Horizon-based Structure

I propose a simple testing procedure to identify horizon-based structure in the cross section of portfolio
returns. While this test is presented in the context of cross-sectional asset pricing, it is applicable in more
general panel settings in which horizon-based structure is assumed common but unobserved in the panel
cross section. This test can be viewed as a model selection procedure with a preference for parsimony
– I only decompose the regressor insofar as there is significant evidence that the regression relationship
differs across horizons. If there is not sufficient evidence for heterogeneity across horizon, the regressor
will not be decomposed and the standard, single factor model will obtain.

The testing procedure is formulated as follows: First, the unrestricted model (3) is estimated for
each portfolio i. Individual Wald statistics WiT for the test βi1 = βi2 are formed. I then compute the
cross-sectional average WnT = n−1

∑n

i=1
WiT of these Wald statistics where

√
n

2

(
WnT − 1

) d
→ N(0, 1) (7)

1The Haar wavelet is the crudest of the so-called Daubechies-class of discrete wavelets – a popular class of discrete
wavelets that yield asymptotically uncorrelated components. The simplicity and closed-form impulse response sequences
come at the expense of poor frequency domain resolution. More complicated Daubechies-class wavelets have better fre-
quency domain resolution but are only analytically defined in the frequency domain. See Percival and Walden (2000) for
details.



Figure 1: Haar Multiresolution Impulse Response Sequences
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This figure presents the impulse response sequences for the multiresolution analysis associated with
a k = 8 component Haar maximal overlap discrete wavelet transform (MODWT). The time series
decomposition is achieved through standard filtering operations – a convolution of the impulse response
sequences above and the time series being decomposed.



as length of the time series T → ∞ and then cross-sectional size n → ∞. The asymptotic behavior
of this statistic follows from the fact that it is the mean of n χ2(1) statistics. Similar panel tests have
been utilized to identify noncausality (Dumitrescu and Hurlin, 2012) and stationarity (So et al., 2003).
This statistic tests the null that βi1 = βi2 under the assumption of cross-sectional homogeneity of scale
structure, i.e. that all assets or portfolios have the same structure. While the assumption might easily
be violated, it is necessary to meaningfully proceed in a cross-sectional asset pricing study. If the null
is not rejected, a new regression is estimated under the enforced null that βi1 = βi2, i.e. R1t and R2t

from Equation (2) are recombined to form a single component of excess market returns. The procedure
above is repeated for the test that the coefficient on R1t + R2t is equal to the coefficient on R3t. If
instead, the test that βi1 = βi2 is rejected, then I proceed in testing whether βi2 = βi3. This procedure
is sequentially iterated over all components in decomposition (2).

2.2 Pricing Horizon-based Structure in the Cross Section

I price the cross section of portfolio returns using the Fama-MacBeth procedure (Fama and MacBeth,
1973; Cochrane, 2005), which estimates the following cross sectional regression for each month in my
sample:

rit − rft = α+

8∑

j=1

γj β̂ji + uit (8)

where β̂ji is the ith portfolio’s estimated exposure to the market over 2j−1 to 2j month horizons for
j < k and for j = k the estimated exposure over horizons longer than 2j months.

I apply this approach to monthly returns on the Fama-French 100 size and book-to-market sorted
portfolios2 from January 1948 to June 2018. Of note, this sample yields appropriate asymptotic behavior
of the test statistics in Equation (7) as T = 654 and n = 100.

3 Results

Table 1 presents estimates of Equation (3). For brevity, only five of the 100 portfolios are presented
(unreported portfolios are qualitatively similar). Using the iterated testing procedure outlined above, I
identify five components of excess market returns that characterize the horizon-based structure in the
cross section of the 100 size/BM portfolios. The first component (R1) corresponds to very short horizons
– under two months. The second component aggregates R2 and R3 and corresponds to horizons between
two and eight months. The third component aggregates R4, R5, and R6 and corresponds to horizons
between eight and 64 months. Notably, this component captures standard business cycle fluctuations –
the average NBER-dated business cycle contraction was 11 months over the sample while the average
NBER-dated expansion was 58 months. The final two components identified are R7 (corresponding
to horizons between 64 and 128 months) and R8 (corresponding to “long horizons” greater than 128
months), respectively. Figure 2 provides a graphical representation of these components.

Having identified the relevant horizon-based structure, I proceed in pricing the cross section using a
Fama-Macbeth procedure. For comparison, I also perform the same Fama-Macbeth procedure using two
benchmark asset pricing models – the standard CAPM market model and the Fama-French three factor
model. Table 2 presents several measures of model fit across the three models. The horizon-based model
provides a rather astonishing order of magnitude reduction in the sum of squared pricing errors over the
Fama-French three factor model. Similarly, the cross-sectional naive R2 – defined as the ratio of the cross-
sectional variance of (time) average fitted returns to the cross-sectional variance of the (time) average
realized returns – nearly doubles, with approximately 95% of the cross-sectional variation in excess
portfolio returns being captured by the horizon-based approach. Another asset-pricing-specific metric
for model performance is the estimated intercept from the cross-sectional regressions α– the expected
excess portfolio returns unexplained by the model. Table 2 demonstrates that the (time) average intercept
for both the CAPM market model and the Fama-French three factor model are significantly positive. In
contrast, the horizon-based model has an insignificant average intercept of -0.01. This stark improvement
is visually summarized in Figure 3 – with each point representing the time average of realized to average
fitted excess returns for the 100 size/BM portfolios.

One possible source of the dramatic improvement in pricing performance is the increased flexibility of
the horizon-based model due to additional parameters. In an attempt to isolate the pricing improvements

2Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table 1: Time Series Regressions for Selected Portfolios

Portfolio Excess Returns:

ME4.BM5 ME8.BM5 ME6.BM9 ME6.BM5 ME10.BM8

(1) (2) (3) (4) (5)

<2m 1.001∗∗∗ 1.027∗∗∗ 1.024∗∗∗ 0.986∗∗∗ 0.997∗∗∗

(0.053) (0.045) (0.062) (0.046) (0.053)

2-4m 1.187∗∗∗ 1.060∗∗∗ 1.279∗∗∗ 1.064∗∗∗ 0.719∗∗∗

(0.104) (0.087) (0.121) (0.089) (0.103)

4-8m 1.493∗∗∗ 1.032∗∗∗ 1.199∗∗∗ 1.377∗∗∗ 0.903∗∗∗

(0.182) (0.151) (0.211) (0.156) (0.179)

8-16m 0.924∗∗∗ 1.243∗∗∗ 0.693∗∗ 1.040∗∗∗ 0.960∗∗∗

(0.257) (0.215) (0.299) (0.221) (0.254)

16-32m 1.099∗∗∗ 0.630∗∗ 1.212∗∗∗ 0.714∗∗ 0.452
(0.336) (0.280) (0.391) (0.289) (0.332)

32-64m 1.278∗∗ 0.918∗ 0.996 1.013∗∗ 1.492∗∗∗

(0.571) (0.476) (0.664) (0.491) (0.563)

64-128m −0.223 −1.272∗ −0.529 −0.020 1.237
(0.897) (0.747) (1.041) (0.771) (0.884)

>128m 1.316∗∗∗ 1.394∗∗∗ 1.340∗∗∗ 1.107∗∗∗ 0.945∗∗∗

(0.158) (0.131) (0.183) (0.136) (0.155)

Observations 684 684 684 684 684
R2 0.716 0.758 0.643 0.750 0.625

This table presents regressions of excess portfolio returns on the full decomposition of excess market re-
turns. Portfolios are indicated by the quintile of size (ME) and book-market-ratio (BM) – e.g. ME4.BM5
is the portfolio corresponding to the 4th size quintile and 5th BM quintile. Horizon-based components
are denoted by their associated horizons. Results are presented for illustration purposes from five of
the 100 size/BM sorted portfolios. Alternating gray and white shading is used to indicate components
grouped together by the iterated cross sectional testing procedure. Standard errors are presented in
parentheses and statistical significance is denoted by: * p < 0.1, ** p < 0.05, *** p < 0.01



Figure 2: Components of Excess Market Returns
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This figure plots components of excess market returns. To aid in visual interpretation, aggregates of
the individual components are plotted rather than the components themselves. The black line is the
original undecomposed time series. The gray line plots the time series less the first component R1 (or
equivalently, the sum of the second through the last). The pink line plots the time series less the first
three components R1, R2, and R3 (or equivalently, the sum of the fourth through the last). The cyan
line plots the time series less the first six components R1, R2, R3, R4,R5, and R6 (or equivalently, the
sum of the last two). Finally, the blue line plots the last component.



Table 2: Model Comparison Metrics

Model:

Horizon FF3 Market

SSPE 0.193 2.102 3.787

R2 0.954 0.498 0.096

Adj R2 0.951 0.477 0.077

Mean α̂ -0.011 1.141∗∗∗ 1.359∗∗∗

(0.254) (0.236) (0.289)
(0.302)† (0.546)† (0.640)†

This table present various measures of model fit for the proposed horizon-based model, the Fama-French
3 factor model, and the standard CAPM market model. SSPE is the sum of squared pricing errors,
defined as the cross-sectional sum of squared differences in the times series average of fitted and realized
returns. R2 is defined as the ratio of the cross-sectional variance of (time) average fitted returns to the
cross-sectional variance of the (time) average realized returns. The adjusted R2 corrects for the number
of parameters estimated in the cross section. The mean α̂i is the (time) average estimated intercept
from the cross sectional regressions. Fama-Macbeth standard errors are reported below in parentheses.
† Indicates Shanken-corrected standard errors (Shanken, 1992) that control for errors in the estimated
regressors. Statistical significance based on the uncorrected errors is denoted by: * p < 0.1, ** p <
0.05, *** p < 0.01. Inference based on the Shanken-corrected errors is qualitatively similar – the mean
α̂ from the Horizon model is not significant. The mean α̂ from the Fama-French and Market models are
statistically different than zero at the 5% level (rather than the 1% level).



Figure 3: Model Performance Comparison
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(and rule out additional parameters as the drivers of pricing performance), I sequentially re-estimate the
Fama-Macbeth procedure, each time increasing the extent to which excess market returns are decom-
posed. As a baseline, I consider a single component of excess market returns which corresponds to the
CAPM market model. I then decompose excess market returns into two components: a long-horizon
component R8 corresponding to horizons greater than 128 months, and a shorter-horizon component∑7

i=1
Ri which corresponds to horizons less than 128 months. I then consider three components of

excess market returns – R8, R7, and
∑6

i=1
Ri (>128 months, 64-128 months, and <64 months, respec-

tively) – four components of excess market returns – R8, R7,
∑6

i=4
Ri, and

∑3

i=1
Ri (>128 months,

64-128 months, 8-64 months, and <8 months, respectively) – and five components of excess market re-

turns which corresponds to the model identified by my iterated testing procedure – R8, R7,
∑6

i=4
Ri,∑3

i=2
Ri, and R1 (>128 months, 64-128 months, 8-64 months, 2-8 months, and <2 months, respectively).

Figure 4 demonstrates that the vast majority of improved fit comes from pricing long-run and short-run
market exposure separately, with the cross-sectional R2 jumping from 9.6% for a single component to
91.6% for two components. Clearly the improved performance is not solely arising from additional pa-
rameters as this two-factor model significantly outperforms the Fama-French three factor model with a
cross-sectional R2 of 49.8%. I document similar behavior for the mean intercept in Figure 5. The mean
intercept is no longer differentiable from zero with the separate pricing of long-horizon market exposure.
The graph further demonstrates that the point estimate of the average intercept converges to zero with
the inclusion of the remaining horizon-based market exposure factors. In sum, I interpret these findings
as evidence that the improved performance of the horizon-based model is arising from accounting for an
underlying horizon-based structure in the cross section of returns, rather than simply due to improved
fit from additional model parameters.



Figure 4: Diagnosing Model Performance – R2
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This figure plots R2 as components of excess market returns are sequenctially decomposed from longest
horizon to shortest horizon. One component corresponds to undecomposed excess market returns which is
equivalent to the standard market model. Two components corresponds to R8 (associated with horizons
> 128 months) and the sum of the remaining components (associated with horizons < 128 months).
Three components corresponds to R8 (associated with horizons > 128 months), R7 (associated with 64-
128 month horizons), and the sum of the remaining components (associated with horizons < 64 months).
Four components corresponds to R8, R7, the sum of R4-R6 (associated with 8-64 month horizons), and
the sum of the remaining components (associated with horizons < 8 months). Finally, five components
corresponds the preferred model selected by the iterated testing procedure: a component associated with
horizons > 128 months, a component associated with 64-128 month horizons, a component associated
with 8-64 month horizons, a component associated 2-8 month horizons, and a component associated with
horizons < 2 months. For comparison, R2 for the Fama-French 3 factor model and the standard CAPM
market model are included.



Figure 5: Diagnosing Model Performance – Mean α
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This figure plots the cross sectional mean α as components of excess market returns are sequentially
decomposed from longest horizon to shortest horizon. 95% asymptotic confidence intervals based on
Shanken-corrected (EIV-corrected) errors are included as well. One component corresponds to unde-
composed excess market returns which is equivalent to the standard market model. Two components
corresponds to R8 (associated with horizons > 128 months) and the sum of the remaining components
(associated with horizons < 128 months). Three components corresponds to R8 (associated with horizons
> 128 months), R7 (associated with horizons 64-128 months), and the sum of the remaining components
(associated with horizons < 64 months). Four components corresponds to R8, R7, the sum of R4-R6

(associated with horizons 8-64 months), and the sum of the remaining components (associated with
horizons < 8 months). Finally, five components corresponds the preferred model selected by the iterated
testing procedure: a component associated with horizons > 128 months, a component associated with
horizons 64-128 months, a component associated with 8-64 months, a component associated 2-8 months,
and a component associated with < 2 months. For reference, the mean α for the Fama-French 3 factor
model and the standard CAPM market model are included.
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