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Abstract
J.E. Stovall showed that continuity, N-continuity, bilateral consistency, intrapersonal consistency, and resource

monotonicity characterize division rules with continuous parametric representations. He also showed that none of the

first four properties can be omitted in the characterization. In this note we continue this discussion by showing that

there exists a division rule which satisfies the first four properties but not resource monotonicity. Thus these properties

are independent and the formulation of Stovalĺ s result is optimal.
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1. INTRODUCTION

A claims problem is a 3-tuple (N, c, E), where N ⊂ N is a nonempty set of claimants, c =
(ci)i∈N , where ci > 0 for every i ∈ N , is a vector of claims, and E ≥ 0 is the endowment

to be divided among the claimants from the set N , which satisfies E ≤
∑

i∈N ci. An awards

vector for a claims problem (N, c, E) is a vector (xi)i∈N such that xi ∈ [0, ci] for every i ∈ N
and

∑

i∈N xi = E. A division rule is a function S that maps every claims problem to an awards

vector. Let us provide an example.

Example 1.1 (proportional division rule). Let (N, c, E) be a claims problem. Then Si(N, c, E) =
λci, i ∈ N , where λ = E/

∑

j∈N cj .

Stovall (2014a) characterized a special class of division rules having a continuous parametric

representation; see (Stovall, 2014a) for the precise definition. Informally speaking, for each

claimant i there is a continuous monotone function, which depends on two variables; on ci and

on a parameter λ. For a given claims problem, a common parameter λ is chosen such that all

of the good is distributed and the functions determine awards of each claimants. The choice of

a common parameter implies that the claimants are being treated equitably with respect to this

standard of fairness (Stovall, 2014a). This makes this class of division rules worth studying.

Properties used in the characterization also reveal importance of this class.

The properties used in the formulation of the theorem are defined as follows and the definitions

are followed by their informal descriptions. Interested readers are referred to (Stovall, 2014a) for

motivations of the definitions below as well as for related examples.

Let S be a division rule.

Continuity. We say that S is continuous if for every claims problems (N, c, E), (N, ck, Ek), k ∈
N, with (ck, Ek) → (c, E) we have S(N, ck, Ek) → S(N, c, E).

Intrapersonal consistency. We define

Y =
{

(i, ci, xi) ∈ N× (0,∞)× [0,∞); xi ∈ [0, ci]
}

.

Let (i, ci, xi) ∈ Y , i, j ∈ N, j 6= i, and cj > 0. We define

G
(

(i, ci, xi), j, cj
)

= inf
{

E; Si

(

{i, j}, (ci, cj), E
)

≥ xi
}

.

The relation P1 on Y is defined as follows. We have (i, ci, xi)P1(j, cj, xj), whenever we have

G
(

(i, ci, xi), j, cj
)

< G
(

(j, cj, xj), i, ci
)

.

We say that S satisfies intrapersonal consistency if for every (i, ci, xi), (i, c′i, x
′
i), (j, cj, xj),

(j, c′j, x
′
j) ∈ Y such that i 6= j and (i, ci, xi)P1(j, cj, xj)P1(i, c

′
i, x

′
i), it is not true that

(i, c′i, x
′
i)P1(j, c

′
j, x

′
j)P1(i, ci, xi).

Non-comparability continuity in claims at priority points (N-continuity). We say that S
gives priority to (i, ci, xi) ∈ Y if the following two conditions are satisfied:

• xi ∈ (0, ci) and

• there exists ε > 0 such that for every (N, ĉ, E) where i ∈ N, ĉi = ci, and Si(N, ĉ, E) =
xi, we have Si(N, ĉ, E + α) = xi + α whenever α ∈ (−ε, ε).



The relations R1, R2, and NC on Y are defined as follows. We have

• (i, ci, xi)R1(j, cj, xj), whenever

G
(

(i, ci, xi), j, cj
)

≤ G
(

(j, cj, xj), i, ci
)

.

• (i, ci, xi)R2(i, c
′
i, x

′
i) if there exists (j, cj, xj) ∈ Y such that j 6= i and

(i, ci, xi)R1(j, cj, xj)R1(i, c
′
i, x

′
i).

• (i, ci, xi)NC(i, c
′
i, x

′
i) if it is neither true (i, ci, xi)R2(i, c

′
i, x

′
i) nor (i, c′i, x

′
i)R2(i, ci, xi).

We say that S satisfies non-comparability continuity in claims at priority points if for every

(i, ci, xi) such that S gives priority to it, there exists ε > 0 such that for every c′i ∈ (ci− ε, ci+ ε)
we have (i, c′i, xi)NC(i, ci, xi).

Bilateral consistency. We say that S satisfies bilateral consistency if for every claims problem

(N, c, E) and every two-point set N ′ ⊂ N , we have

Si(N, c, E) = Si

(

N ′, c↾N ′,
∑

i∈N ′

Si(N, c, E)
)

, i ∈ N ′.

The symbol c↾N ′ denotes restriction of c to the coordinates from N ′.

Resource monotonicity. We say that S satisfies resource monotonicity if for every claims prob-

lems (N, c, E) and (N, c, E ′) with E < E ′ we have Si(N, c, E) ≤ Si(N, c, E
′) for every i ∈ N .

Remark 1.2. Intrapersonal consistency states that the relation between different versions of

claimant i will not change when the go-between’s claim cj changes. N-Continuity states that

at certain situations the non-comparability of two allocations is a continuous relation with re-

spect to small changes in the claim. Bilateral consistency states that if a division rule chooses

an allocation for a set of claimants, then the awards with respect to any two-point subset does

not change when considered as a separate problem. Resource monotonicity states that if the

endowment E increases, then no claimant’s award should decrease.

Now the characterization reads as follows.

Theorem 1.3 (Stovall (2014a)). A division rule S has a continuous parametric representation if

and only if S satisfies continuity, N-continuity, bilateral consistency, intrapersonal consistency,

and resource monotonicity.

Stovall also showed that none of the first four properties in the above theorem can be omitted

in the characterization of continuous parametric representations and posed a problem whether

one can omit resource monotonicity in the formulation of his result. The next theorem states

that this is not the case. Consequently, it shows that the formulation of the characterization is

optimal.

Theorem 1.4. There exists a division rule satisfying continuity, N-continuity, bilateral consis-

tency, intrapersonal consistency, but not resource monotonicity.

In the next section the desired division rule is constructed and the verification of the required

properties is presented in Section 3.



2. CONSTRUCTION

First we construct a division rule for problems with N = {1, 2}. Then we extend this rule to

any claims problem. We define an auxiliary function ψ : (0,∞)2 → (0, 1) by

ψ(x, y) =
2x+ y

2x+ 2y
.

For x, y ∈ (0,∞) we define points in R
2 by

A(x, y) = [0, 0], B(x, y) =
[

1

2
x, 1

12
y
]

,

C(x, y) =
[

1

2
x · ψ(x, y), 1

2
y · ψ(x, y)

]

, D(x, y) =
[

1

2
x, 1

2
y
]

,

E(x, y) = [x, y], F (x, y) = [0, y],

G(x, y) = [x, 0].

For every x, y ∈ (0,∞) we define a mapping ϕx,y : [0, 1] → R
2 by

ϕx,y(t) =











4 · B(x, y) · t, t ∈ [0, 1
4
],

4 ·
(

C(x, y)− B(x, y)
)

· (t− 1

4
) + B(x, y), t ∈ (1

4
, 1
2
],

2 ·
(

E(x, y)− C(x, y)
)

· (t− 1

2
) + C(x, y), t ∈ (1

2
, 1].

The vector function ϕx,y = [ϕx,y
1 , ϕx,y

2 ] is a curve in the plane passing through points A(x, y),
B(x, y),C(x, y),D(x, y), andE(x, y). See Figure 1. Observe that the function Φx,y : [0, 1] → R

FIGURE 1

defined for any x, y ∈ (0,∞) by Φx,y(t) = ϕx,y
1 (t) + ϕx,y

2 (t), t ∈ [0, 1], is strictly increasing

on [0, 1]. Indeed, Φx,y is continuous on [0, 1] and a straightforward computation gives that the

derivative

(Φx,y)′(t) =











2x+ 1

3
y, t ∈ (0, 1

4
),

2

3
y, t ∈ (1

4
, 1
2
),

x+ 3

2
y, t ∈ (1

2
, 1],



is positive for every t ∈ (0, 1) \ {1

4
, 1
2
}.

Now we define a solution S̃ for the claims problems
(

{1, 2}, c1, c2, E
)

as follows

S̃1(c1, c2, E) = ϕc1,c2
1 (t∗), S̃2(c1, c2, E) = ϕc1,c2

2 (t∗),

where t∗ ∈ (0, 1] is the unique real number satisfying Φc1,c2(t∗) = E. Such a t∗ exists since

Φc1,c2 is strictly increasing, continuous on [0, 1], and Φc1,c2(0) = 0 ≤ E ≤ c1 + c2 = Φc1,c2(1).
Now we extend S̃ to S which will be defined on the domain of all claims problems. Let

(N, c, E) be a claims problem. If 1, 2 /∈ N , then we use the proportional rule from Example 1.1.

If this is not the case, then the rule S satisfies first the claims of claimants 1 and 2, whereas S̃
is used if 1, 2 ∈ N , and then the reminder of the endowment is split among the other claimants

using the proportional rule again.

The core of the counterexample is captured in the definition of S̃. Willing to break resource

monotonicity we define a path connecting [0, 0] and [c1, c2] in such way that the path contains

points B and C placed as in Figure 1 and the rest of the path is chosen as simple as possible,

i.e., it is piecewise-affine. The position of the points B and C is arranged using the function ψ
so that if the point [u, v] follows the path then the function u+ v is increasing despite of the kink

among points B, C, and D. This property enables us to split the endowment uniquely in the

claims problem
(

{1, 2}, (c1, c2), E
)

.

3. PROOF

We stepwise verify that the above define division rule S satisfies continuity, N-continuity,

bilateral consistency, intrapersonal consistency and does not satisfy resource monotonicity.

Continuity of S. First we check continuity of S̃. Then the continuity of S easily follows. Sup-

pose that (ck1, c
k
2, E

k) → (c1, c2, E), where ({1, 2}, (ck1, c
k
2), E

k), k ∈ N, and ({1, 2}, (c1, c2), E)
are claims problems. Find tk, k ∈ N, and t∗ from [0, 1] such that

S̃i(c
k
1, c

k
2, E

k) = ϕ
ck
1
,ck

2

i (tk), S̃i(c1, c2, E) = ϕc1,c2
i (t∗), i ∈ {1, 2}.

We may assume without any loss of generality that

(a) either for every k ∈ N we have tk ∈ (0, 1
4
] or

(b) for every k ∈ N we have tk ∈ (1
4
, 1
2
) or

(c) for every k ∈ N we have tk ∈ (1
2
, 1].

We discuss these cases separately.

(a) In this case we have

tk =
Ek

2ck1 +
1

3
ck2

→
E

2c1 +
1

3
c2

= t∗ ∈ (0, 1
4
].

Consequently,

S̃i(c
k
1, c

k
2, E

k) = ϕ
ck
1
,ck

2

i (tk) → ϕc1,c2
i (t∗) = S̃i(c1, c2, E), i ∈ {1, 2}.



(b) Using continuity of ψ we have

tk =
Ek − 1

2
ck1 −

1

12
ck2

2(ck1 + ck2)ψ(c
k
1, c

k
2)− 2ck1 −

1

3
ck2
+
1

4
→

E − 1

2
c1 −

1

12
c2

2(c1 + c2)ψ(c1, c2)− 2c1 −
1

3
c2
+
1

4
= t∗ ∈ [1

4
, 1
2
].

Consequently,

S̃i(c
k
1, c

k
2, E

k) = ϕ
ck
1
,ck

2

i (tk) → ϕc1,c2
i (t∗) = S̃i(c1, c2, E), i ∈ {1, 2}.

(c) This case can be handled in the same way as in (b).

N-continuity of S.

Lemma 3.1. The rule S gives priority to no (i, ci, xi) ∈ Y .

Proof. Let (i, ci, xi) ∈ Y be such that xi ∈ (0, ci). If i = 1, then we find ĉ2 > 0 and E > 0 such

that S1({1, 2}, ĉ, E) = xi = x1, where ĉ = (c1, ĉ2). For every sufficiently small α > 0 we have

S1({1, 2}, ĉ, E + α) < x1 + α. Thus there is no (1, c1, x1) such that S gives priority to it. The

reasoning for i = 2 is similar.

If i > 2 then we consider a claim problem (N, ĉ, E) defined by N = {i, i + 1}, E = 2xi,
ĉi = ĉi+1 = ci. Then Si(N, ĉ, E) = xi. If α > 0 is sufficiently small then Si(N, ĉ, E + α) =
1

2
(E + α) = xi +

1

2
α < xi + α. Thus also in this case S does not give priority to (i, ci, xi). �

From Lemma 3.1 it follows that S satisfies N-continuity trivially.

Bilateral consistency of S. Let (N, c, E) be a claims problem and N ′ = {i, j} ⊂ N be a

two-point set. We distinguish several possibilities.

The case N ′ = {1, 2}. We have

Sk(N, c, E) = S̃k(c1, c2,min{c1 + c2, E}), k ∈ {1, 2},

Sk(N
′, (c1, c2), S1(N, c, E) + S2(N, c, E)) = Sk(N

′, (c1, c2),min{c1 + c2, E})

= S̃k(c1, c2,min{c1 + c2, E}), k ∈ {1, 2}.

Thus we have the desired equality

Sk(N, c, E) = Sk(N
′, (c1, c2), S1(N, c, E) + S2(N, c, E)), k ∈ {1, 2} = N ′.

The case i = 1 ∈ N ′ and 2 /∈ N ′. We have

S1(N, c, E) = min{c1, E},

Sj(N, c, E) = λcj, where λ ·
∑

l∈N,l 6=1

cl = E −min{c1, E},

S1(N
′, (c1, cj),min{c1, E}+ λcj) = min{c1,min{c1, E}+ λcj} = min{c1, E},

Sj(N
′, (c1, cj),min{c1, E}+ λcj) = λcj.

Thus we get

Sk(N, c, E) = Sk

(

N ′, (c1, cj), S1(N, c, E) + Sj(N, c, E)
)

, k ∈ {1, j}.

The other cases can be handled in the same way and we will not present them explicitly.



Intrapersonal consistency of S. We start with the following notation.

Notation 3.2. LetX, Y ∈ R
2. Then the symbol [X, Y ] denotes the line segment in the plane with

endpoints X and Y , the symbol (X, Y ] stands for the line segment [X, Y ] \ {X}. The meaning

of the symbols [X, Y ) and (X, Y ) is now obvious.

Lemma 3.3. Let c1, c2 > 0. Then the set

Q1(c1, c2) =
{

(x1, x2) ∈ [0, c1]× [0, c2]; G
(

(1, c1, x1), 2, c2
)

< G
(

(2, c2, x2), 1, c1
)}

is the polygon with the vertices A(c1, c2), B(c1, c2), D(c1, c2), E(c1, c2), and F (c1, c2) such

that the line segments (B(c1, c2), D(c1, c2)], (E(c1, c2), F (c1, c2)], and [F (c1, c2), A(c1, c2)) are

subsets of Q1(c1, c2) and other points of the boundary of Q1(c1, c2) do not belong to Q1(c1, c2).
See Figure 2.
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Lemma 3.4. Let c1, c2 > 0. Then the set

Q2(c1, c2) =
{

(x1, x2) ∈ [0, c1]× [0, c2]; G
(

(1, c1, x1), 2, c2
)

> G
(

(2, c2, x2), 1, c1
)}

is the polygon with the vertices A(c1, c2), B(c1, c2), D(c1, c2), E(c1, c2), and G(c1, c2) such that

the line segments (E(c1, c2), G(c1, c2)], and [G(c1, c2), E(c1, c2))] are subsets of Q2(c1, c2) and

other points of the boundary of Q2(c1, c2) do not belong to Q2(c1, c2). See Figure 3.

Both Lemmas can be inferred by discussing position of points (x1, x2) in the rectangle [0, c1]×
[0, c2]. We omit these straightforward proofs.

Lemma 3.5. Let c1, c2 > 0. If (x1, x2) ∈ Q1(c1, c2) and (x1, x
′
2) ∈ Q2(c1, c2), then x′2 < x2.

Proof. Using Lemma 3.3 we have that for every x1 ∈ [0, c1] the set
{

z ∈ [0, c2]; (x1, z) ∈

Q1(c1, c2)
}

is an interval of the form (α, c2]. This implies the assertion. �

Lemma 3.6. Let c1, c2 > 0 and α > 0. If (x1, x2) ∈ Q1(c1, c2), then (x1, αx2) ∈ Q1(c1, αc2).
Similarly, if (x1, x2) ∈ Q2(c1, c2), then (x1, αx2) ∈ Q2(c1, αc2).



FIGURE 3

Proof. Fix α > 0. Let L : R2 → R
2 be the mapping defined by L(x, y) = (x, αy). We want

to prove that L(Q1(c1, c2)) = Q1(c1, αc2). The mapping L is linear and maps points A(c1, c2),
B(c1, c2), D(c1, c2), E(c1, c2), and F (c1, c2) to the points A(c1, αc2), B(c1, αc2), D(c1, αc2),
E(c1, αc2), and F (c1, αc2) respectively. By Lemma 3.3 this easily implies the desired equality.

The reasoning in the case of Q2(c1, c2) is analogous. �

Now we verify intrapersonal consistency of S. Towards contradiction assume that

(i, ci, xi)P1(j, cj, xj)P1(i, c
′
i, x

′
i) and (i, c′i, x

′
i)P1(j, c

′
j, x

′
j)P1(i, ci, xi). (1)

We distinguish several possibilities.

The case i = 1, j = 2. From (1) we have

(x1, x2) ∈ Q1(c1, c2), (2)

(x′1, x2) ∈ Q2(c
′
1, c2), (3)

(x′1, x
′
2) ∈ Q1(c

′
1, c

′
2), (4)

(x1, x
′
2) ∈ Q2(c1, c

′
2). (5)

Using Lemma 3.6, (4), and (5) we get

(

x′1,
c2
c′
2

x′2
)

∈ Q1(c
′
1, c2), (6)

(

x1,
c2
c′
2

x′2
)

∈ Q2(c1, c2). (7)

Using Lemma 3.5, (3), and (6) we get x2 < c2
c′
2

x′2. Using Lemma 3.5, (2), and (7) we get

x2 >
c2
c′
2

x′2, a contradiction.



The case i = 2, j = 1. We have

(x1, x2) ∈ Q2(c1, c2), (8)

(x1, x
′
2) ∈ Q1(c1, c

′
2), (9)

(x′1, x
′
2) ∈ Q2(c

′
1, c

′
2), (10)

(x′1, x2) ∈ Q1(c
′
1, c2). (11)

Using Lemma 3.6, (9), and (10) we get

(x1,
c2
c′
2

x′2) ∈ Q1(c1, c2), (12)

(x′1,
c2
c′
2

x′2) ∈ Q2(c
′
1, c2). (13)

Using Lemma 3.5, (8), and (12) we get x2 <
c2
c′
2

x′2. Using Lemma 3.5, (11), and (13) we get

x2 >
c2
c′
2

x′2, a contradiction.

The case i ∈ {1, 2} and j /∈ {1, 2}. Then we have xj = 0 or (i, c′i, x
′
i)P1(j, cj, xj). Both

possibilities lead to a contradiction with the assumption.

The case j ∈ {1, 2} and i /∈ {1, 2}. Then we have xi = 0 or (j, cj, xj)P1(i, ci, xi). Both

possibilities lead to a contradiction with the assumption.

The case i /∈ {1, 2} and j /∈ {1, 2}. The first part of (1) gives xi

ci
<

xj

cj
<

x′

i

c′i
. The second part

gives
x′

i

c′i
<

x′

j

c′j
< xi

ci
. Together we have xi

ci
< xi

ci
, a contradiction.

Falsity of resource monotonicity for S. We haveB(1, 1) = [1
2
, 1

12
] andC(1, 1) = [3

8
, 3
8
]. There-

fore S1

(

{1, 2}, (1, 1), 7

12

)

= B(1, 1)1 =
1

2
and S1

(

{1, 2}, (1, 1), 6
8

)

= C(1, 1)1 =
3

8
. This shows

that S does not satisfy resource monotonicity.

Remark 3.7. Stovall (2014b, Appendix B) constructed a special division rule which satisfies

certain axioms but does not satisfy resource monotonicity. This division rule provides another

counterexample. Stovall’s division rule is defined using a family of functions, which all but one

satisfy the properties required in the definition of asymmetric parametric division rule. The ex-

ceptional function is not even monotone, and therefore the division rule does not satisfy resource

monotonicity. On the other hand the other axioms from Stovall’s characterization can be verified.

In this paper, we presented an approach which is rather geometrical than analytical and pro-

vides another intuitive insight into the behaviour of the relation P1.
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