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Abstract
Geometric programming (GP) has several attractive features: it is tractable in large-scale problems, requires no initial

guess or tuning of solver parameters, guarantees the convergence to a global optimum and can deal with kinks. In this

note, I argue that GP is a potentially promising tool in economics. First, I show that a stylized finite-horizon growth

model can be mapped into a GP format by using simple transformations. Second, I show that GP methods produce

accurate and reliable solutions including the case of occasionally binding constraints which cannot be easily treated

with conventional solvers. Examples of MATLAB codes are provided.
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1. Introduction

Dynamic models arise in every field of economics and there is a variety of numerical methods
which can be used to find their optimal solutions; see Judd (1998), Rust (2008), Maliar and
Maliar (2014) and Fernández-Villaverde et al. (2016) for reviews. In this note, I argue that
the geometric programming approach is a potentially promising alternative for analyzing dy-
namic economic models. Geometric programming (GP) is a field of mathematical optimiza-
tion which studies problems in which the objective function and constraints are formulated
in terms of monomial and posynomial functions. The main motivation for using geometric
programming in engineering is the efficiency and robustness with which geometric programs
can be solved. Interior-point algorithms developed for geometric programming solve large
problems very quickly, require no initial guess or tuning of solver parameters, guarantee the
convergence to a global optimum and can deal with kinks and nondifferentiabilities; see Boyd
et al. (2007).

To illustrate the geometric programming approach, I use a simple finite horizon deter-
ministic neoclassical growth model with non-negative constraint on investment. In general,
such a model does not have the exact GP representation, however, I show that it can still
be well approximated by a geometric program. I assess the numerical properties of the so-
lution delivered by geometric programming methods, and I find that they produce accurate
and reliable solutions to models, including those with kinks and nondifferentiabilities which
cannot be easily treated with conventional solvers.

My analysis focuses on a deterministic version of the model, however, it can be easily
extended to stochastic problems by using a certainty equivalence approach, which essentially
requires constructing multiple deterministic paths under different realizations of shocks. In
particular, the proposed GP method can be used in the context of path solving methods
such as those of Fair and Taylor (1983), Grüne et al. (2015) and Cai et al. (2017); including
challenging nonstationary and unbalanced growth problems that cannot be studied with
conventional solution methods; see Maliar et al. (2015) for discussion of such problems.

The remainder of this note is organized as follows. In Section 2, I describe a geometric
program. In Section 3, I show how the neoclassical growth model can be reformulated as
a geometric program. In Section 4, I provide numerical results and finally, in Section 5 I
conclude.

2. Geometric Program

A geometric program is an optimization problem specified in terms of monomial and posyn-
omial functions.

Definition 1 (Monomial function) A function f : Rn
++ → R++ is a monomial if it can be

written as:
f(x1, . . . , xn) = cxa1

1 xa2
2 · · · xan

n ,

where c > 0 and ai ∈ R, i = 1, . . . , n are coefficients and exponents of the monomial,
respectively.



Examples of monomial functions in economics are a Cobb-Douglas production function and
a utility function, accordingly,

f(k, l) = kαl1−α and u(c, l) =
(cµ(1− l)1−µ)1−η

1− η
,

where c, k and l, are consumption, capital and labor, respectively; α, µ, η ∈ (0, 1).

Definition 2 (Posynomial function) A function f : Rn
++ → R++ is called a posynomial if f

is a finite sum of monomials on R
n
++:

f(x1, . . . , xn) =
K
∑

k=1

ckx
a1k
1 xa2k

2 · · · xank
n ,

where ck > 0 and aik ∈ R, i = 1, . . . , n, k = 1, . . . , K are coefficients and exponents of the
posynomial, respectively.

Posynomials differ from polynomials as the exponents of a polynomial must be nonnegative
integers while its coefficients and variables can take on any real number. In contrast, posyn-
omial’s exponents can take on any real number while its coefficients and variables must be
positive.

Posynomial functions can often be found in economic models, for example,

c+ i and f(k, l) + (1− δ)k,

where i is investment and δ ∈ (0, 1) is depreciation rate.

Definition 3 (Geometric program) A geometric program is an optimization problem of the
form:

min f0(x) (1)

s.t. fi(x) ≤ 1, i = 1, ...,m, (2)

gi(x) = 1, i = 1, ..., p, (3)

where x is a vector of optimization variables, fi(x) are posynomial functions and gi(x) are
monomials.

The optimization problem (1)–(3) is known in the literature as a geometric program in
standard form. A distinctive feature of GP analysis is that the optimization variables in
vector x are restricted to be positive by construction – this is a useful property for economic
problems with kinks and inequality constraints. Many optimization problems can be either
reduced to or approximated by the form (1)–(3); for examples in engineering and economics
see Brightler and Philips (1976), Boyd et al. (2007) and Liu (2006).

Geometric programs are solved by interior point methods for convex optimization prob-
lems. Such methods does not require providing initial guess or tuning of solver parameters
and can find a global optimum of a large GP problem quickly. Efficient primal-dual interior
point methods for GPs are available in the MOSEK software package, the Python package
GPkit, and the MATLAB toolboxes CVX and GGPLAB.



3. Formulating the neoclassical growth model as a GP

To illustrate the geometric programming approach, I consider a simple finite horizon deter-
ministic neoclassical growth model with non-negative constraint on investment

max
{kt+1,ct}

T
t=0

T
∑

t=0

βt c
1−γ
t − 1

1− γ
(4)

s.t. ct + kt+1 ≤ (1− δ) kt + f (zt, kt) , (5)

(1− δ) kt ≤ kt+1, (6)

where ct > 0 and kt > 0 denote consumption and capital, respectively; zt is the productivity
level and a representative agent has perfect foresight about its future evolution; f (zt, kt) =
ztk

α
t is the Cobb-Douglas production function with α ∈ (0, 1); β ∈ (0, 1) is the discount

factor; δ ∈ [0, 1] is the depreciation rate; initial and terminal conditions for capital are given,
k0 and kT+1, respectively. I solve for paths of capital and consumption that maximize the
objective function (4) and satisfy the budget constraint (5) and the non-negative constraint
on investment (6).1

In general, problem (4)–(6) is not a GP in standard form: first, a representative agent
maximizes its utility while the geometric program in definition (3) requires minimization;
second, the utility function is generally not a posynomial; and finally, the left and right hand
sides of (5) are posynomials and their ratio is not a posynomial.

Nonetheless, problem (4)–(6) can be approximated by a geometric program using simple
transformations and term rearrangements. As an example, consider a version of the model
with the coefficient of risk aversion greater than one. First, when γ > 1, the objective
function in (4) is a sum of monomials of which the coefficients are negative because 1−γ < 0.
I reformulate the problem of a representative agent to minimize

∑T

t=0
βtc

1−γ
t (γ−1)−1 and the

resulting objective function becomes a posynomial2. Second, to construct an approximation
of the budget constraint (5) I use a condensation method. The basic underlying principle of
condensation is to construct a monomial approximation to a posynomial function by using
a set of auxiliary weights. The right hand side of the resource constraint (5) is a posynomial
and in each time period it can be approximated by the monomial function

M(kt)
.
=

(

(1− δ)kt
ω1,t

)ω1,t
(

ztk
α
t

ω2,t

)ω2,t

,

where

ω1,t =
(1− δ)kt

ztk
α
t + (1− δ)kt

and ω2,t =
ztk

α
t

ztk
α
t + (1− δ)kt

(7)

are positive weights,
∑

2

i=1
ωi,t = 1, t = 0, ..., T . This allows me to rewrite the resource

constraint in a way suitable for geometric programming

ctM(kt)
−1 + kt+1M(kt)

−1 ≤ 1. (8)

1The turnpike literature shows that a solution to a finite horizon economy approximates well the solution
to an infinite horizon economy in the first periods as time horizon increases, see McKenzie (1976). Hence,
the results of the discussion presented in this note also apply to the infinite horizon economies.

2Note that a constant term
∑T

t=0
βt/(1− γ) is dropped since it does not affect the optimal solution.



The non-negative constraint on investment can be trivially reformulated in terms of
monomial function

(1− δ)ktk
−1

t+1 ≤ 1. (9)

Using the simple transformations described above we obtain a geometric program

min
{kt+1,ct}

T
t=0

T
∑

t=0

βt c
1−γ
t

γ − 1
(10)

s.t. ctM(kt)
−1 + kt+1M(kt)

−1 ≤ 1, (11)

(1− δ)ktk
−1

t+1 ≤ 1. (12)

The procedure which finds an accurate approximated solution to the original model
consists of three steps: Step 1, guess a sequence of weights {ω1,t, ω2,t}

T
t=0; Step 2, solve the

optimization problem formed by (10)–(12); Step 3, using the solution obtained on Step 2
and equations in (7) recompute the weights and return to Step 1. The iteration stops when
the difference between the weights from two successive iterations is small. By iterating on
weights {ω1,t, ω2,t}

T
t=0 one can solve the condensed problem (10)–(12) and obtain a solution

which is in the feasible set of solutions to the original problem. Rosenberg (1979) shows that
the condensation method converges from any arbitrary initial guess to a solution under mild
conditions.

4. Numerical Analysis

In this section, I evaluate the performance of the interior-point methods developed for geo-
metric programming in the context of the finite horizon growth model.

4.1. Methodology

I parametrize model (4)–(6) with γ = {0.1, 1, 10}, α = 0.36, β = 0.99, δ = 0.025, T =
{50, 100, 150}. The productivity level follows the AR(1) process with ρ = 0.95 and σ =
{0.02, 0.2}. To solve GPs I use a MATLAB based toolbox GGPLAB for specifying and
solving geometric programs. I compare the solution computed by geometric programming
techniques to the benchmark solutions obtained by conventional nonlinear solution methods.
Specifically, I use Matlab’s function “fmincon” to construct benchmark solution. The nu-
merical results are not sensitive to a specific choice of the solver. I use MATLAB R2014b
software on a MacBook Pro laptop with Intel Core i7 (2,9GHz) and 8 GB RAM. Examples
of MATLAB codes are provided on https://sites.google.com/site/innatsener/codes.

4.2. Results

In the left and right panels of Figure 1, I plot the solution for investment produced by solving
the neoclassical growth model with slack and occasionally binding non-negative constraint
on investment, respectively. For the model with occasionally binding investment constraint,
I construct only the GP solution but not the benchmark solution as the standard numerical
solvers are not designed to handle problems with kinks.
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Figure 1: Investment path under slack and binding constraint

My main result in the left panel is that the differences between the solution of the
condensed geometric program and the benchmark solution are negligible. Here, investment
series take on positive values in all periods which implies that the investment constraint is
always slack. This particular solution was obtained by setting γ = 1 and σ = 0.02. Table
1 reports mean and maximum (unit-free) absolute percentage differences between the two
solutions for different values of risk-aversion and different time horizons. As we can see,
the average percentage differences between two solutions for capital stay within a range of
0.0009% to 0.05%, while the maximum differences reach 0.2%. The average and maximum
percentage differences between the two solutions for investment are no higher than 0.6% and
3%, respectively, which is about the accuracy level of various solvers.

For the model with slack investment constraint, the running time for constructing both
the GP and benchmark solutions is about 15 seconds for T = 100. Thus, the GP method can
find a global optimum of dynamic economic models at a relatively modest cost. In general,
constructing a longer path requires a higher running time, however, for lower values of the
risk aversion parameter the running time is under a minute in all my experiments. Generally,
I find that solving a model with an occasionally binding constraint is slightly more expensive
than solving one without it.

In the right panel of Figure 1, I consider γ = 1 and high volatility of σ = 0.2. As a result
of this change the investment constraint binds occasionally because when a large negative
shock hits the economy, the representative agent consumes more of her capital stock in order
to smooth her consumption over time. To be specific, the investment hits the lower bound
in roughly fifty percent of times. Hence, this result suggests that geometric programming is



Table 1: Accuracy of solution obtained by geometric programming

Capital Investment

γ T emean emax emean emax CPU

0.1 50 4.81(−2) 1.02(−1) 0.63 3.23 19
100 5.03(−2) 1.42(−1) 0.64 2.57 40
150 4.24(−2) 1.46(−1) 0.58 1.87 60

1 50 1.18(−2) 1.91(−2) 3.30(−2) 5.60(−2) 5
100 3.14(−2) 5.04(−2) 5.31(−2) 9.29(−2) 10
150 1.51(−2) 3.35(−2) 2.57(−2) 5.92(−2) 18

10 50 0.09(−2) 0.15(−2) 0.27(−2) 0.65(−2) 11
100 0.25(−2) 0.42(−2) 0.54(−2) 1.49(−2) 60
150 1.21(−2) 1.96(−2) 1.73(−2) 4.13(−2) 126

Notes: emean and emax are, respectively, mean and maximum absolute percentage differences between the

solution to the condensed geometric problem and the benchmark solution; γ is the risk aversion parameter;

T is the time horizon; CPU is the time necessary to compute the solution (in seconds); ζ(−j) represents

ζ × 10−j .

capable of approximating a solution to highly nonlinear finite horizon economic models such
as this one.

5. Conclusion

In this note, I show how a simple finite horizon neoclassical growth model with non-negative
constraint on investment can be mapped into a geometric program and I evaluate numerical
properties of the solution obtained by geometric programming methods. I find that in
the absence of borrowing constraints, GP methods deliver essentially the same solution as
standard conventional solvers. In addition however, they are computationally stable when
solving the problems with kinks and nondifferentiabilitites. The proposed GP method can
be used in the context of Fair and Taylor (1983) and other similar path-solving methods.

The results shown in this note are preliminary. Extending the geometric programming
approach to more sophisticated and high-dimensional economic problems and evaluating
how numerical costs of GP methods change with the dimensionality of the problem is an
interesting direction for future research.
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