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Abstract
We consider a model where leader firms strategically use demand-enhancing investments to gain a better market

position. Our setup is characterized by multiple heterogeneous leaders, free entry of followers, and quantity

competition. Moreover, unlike previous studies under endogenous entry, we suppose that investments directly affect

rival firms' profits. This formalizes that, all else equal, competition is tougher when goods are more appealing. By

comparing the solutions of a simultaneous-moves and sequential-moves game, we show that each leader varies its

investment to restrict entry of followers and increase its profit. Nonetheless, the rest of the outcomes are

indeterminate. Due to this, we state conditions in terms of model primitives to ensure that leaders limit entry by

investing more, and whether this increases or decreases each leader's revenue, quantity, and price. We conclude by

applying our results to the case of a quality-augmented inverse CES demand.
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1. Introduction

Models where leader firms make commitments to gain a better market position have been
commonly represented in two ways: settings à la Stackelberg and setups with strategic
use of investments. In the standard case with one leader and one follower, outcomes
are indeterminate and crucially depend on whether prices/quantities display strategic
substitutability or complementarity. Thus, firms could end up behaving more aggressively
or accommodating entry (Fudenberg and Tirole, 1984).

Etro (2006; 2008) and Anderson et al. (2020) have recently shown that the conclu-
sions of this model differ when there is free entry of followers. Their main insight is
that, irrespective of whether prices/quantities are strategic substitutes or complements,
a leader always behaves more aggressively and limits entry of followers. In particular,
Etro (2006) is the first study to characterize strategic investments under endogenous
entry by considering investments that do not directly impact rivals’ profits.

In this paper, we characterize an endogenous-entry model à la Etro where demand-
enhancing investments additionally affect the competitive environment, and so directly
impact rivals’ profits. This characterization of investments makes it possible to reflect
that, if we compare two identical economies, competition is tougher in the one whose
products are more appealing in non-price dimensions.

Our framework allows for an arbitrary number of possibly-heterogeneous leaders. This
enables us to accommodate a rich set of scenarios, where not all leaders have the same
profitability or importance for aggregate outcomes. Furthermore, we consider that com-
petition is in quantities, in contrast to the analysis in Alfaro and Lander (2020) performed
under price competition. The study of the Cournot-competition case is relevant since the
type of competition is ultimately industry-dependent and most of the outcomes in our
model are indeterminate. Consequently, our findings extend results to markets better
characterized by quantity competition.

With the goal of isolating the strategic motives to invest, we follow the traditional
approach by Fudenberg and Tirole (1984). This requires comparing the outcomes emerg-
ing in two games. In the first one, which we refer to as a sequential-moves game, leaders
choose demand-enhancing investments prior to the entry decisions of followers and the
market stage. The second one is referred to as a simultaneous-moves game. It constitutes
a non-strategic benchmark, where a leader’s investment decision is not observed by fol-
lowers and hence cannot be used strategically. The comparison of both games identifies
the strategic use of investments, along with its impact on market outcomes.

Our results indicate that each leader strategically chooses its investment to strengthen
competition and restrict entry, allowing each to garner greater profit. Nonetheless, unlike
Etro (2006), the specific way to increase competition, along with the rest of the outcomes,
is indeterminate. Due to this, we provide conditions in terms of demand primitives
to ensure that each leader strengthens competition by product innovating more (i.e.,
increasing its investments) and to know whether quantities, revenues, and prices increase
or decrease by deploying such strategy.

We conclude the analysis by illustrating how the conditions to identify outcomes can
be applied to a specific case: a quality-augmented CES demand. Under this demand,
our results establish that each leader over-invests, sells more units at a higher price, and
increases its revenue.



2. Model Setup

There is an industry comprising a horizontally differentiated good.1 Each firm produces
a unique variety ω ∈ Ω, where Ω denotes the set of all conceivable varieties. Thus, we
refer to a firm or variety indistinctly. Moreover, Ω is partitioned into subsets L and F ,
which are mnemonics for “leaders” and “followers”, respectively.

Each leader ω has marginal costs cω, which we suppose are common knowledge. Also,
followers have a symmetric marginal cost cF , where cω < cF for each ω ∈ L , and have
to pay a fixed sunk cost F to become active and serve the market.

In any equilibrium considered, we suppose there is a set of followers that are active,
which entails that all leaders are active too. The subset of firms serving the market is
denoted by Ω, where M denotes the number of followers that are active in the market.
We simplify the analysis by assuming that M is a real number, so that a zero-profits
condition emerges given free entry of followers.

If firm ω is active, it decides on quantities qω and investments zω. Furthermore,
zω entails sunk expenditures fz (zω), where fz is convex and satisfies fz (0) = 0. We
denote a strategy for ω by xω := (qω, zω), and a profile of strategies for active firms by
x := (xω)ω∈Ω.

As for demand, each firm ω has an inverse-demand function p (xω,A), where
∂p(xω ,A)

∂A
<

0, ∂p(xω ,A)
∂qω

< 0, and ∂p(xω ,A)
∂zω

> 0. Following Acemoglu and Jensen (2013), we refer to A

as an aggregate, which corresponds to a value in the range of the aggregator A (x) :=

H
[
∑

ω′∈Ω h (xω′)
]

that satisfies H ′ > 0,
∂h(xω′ )

∂qω′
> 0, and

∂h(xω′ )

∂zω′
> 0. Higher values of A

represent tougher competition, since greater quantities and investments increase A, which
in turn decreases each firm’s demand. Examples of demands satisfying this functional
form are augmented versions of the linear and CES inverse demands.

The fact that the demand system depends on a firm’s own strategy and a function
aggregating the strategies of all firms entails that the game is aggregative in the sense of
Cornes and Hartley (2012).2 In such games, a firm’s profits function and its derivatives
can be described by its own strategy and a scalar that is a function of all firms’ strategies.
This allows for a parsimonious way to express equilibrium conditions, which we exploit
throughout the paper.

3. Equilibrium

To isolate the strategic motive to invest, we follow the standard approach by Fuden-
berg and Tirole (1984). This requires comparing the outcomes in two scenarios. We
respectively denominate them as a simultaneous-moves and sequential-moves game.

The timing of the sequential-moves game is such that leaders make investment choices
at the first stage. Followers observe these decisions and make an entry choice. At the final

1Cournot has traditionally been considered more appropriate for commodity-like products, such as
agricultural goods (Vives, 2001). Nonetheless, following the discussions in studies such as Hortaçsu
and Syverson (2004) and Foster et al. (2008; 2016), seemingly homogeneous goods are actually highly
differentiated. In particular, Foster et al. (2016) consider markets with physically homogeneous goods
such as boxes, carbon black, ready-mixed concrete, and ice. They show that, even when these goods
are commodity-like products, differences in the profitability of firms are due to demand-related features,
rather than productivity.

2Aggregative games have been recently put forth by Acemoglu and Jensen (2013), Nocke and Schutz
(2018), and Anderson et al. (2020). For a survey, see Jensen (2018).



stage, both types of firms compete in the market by choosing quantities, while followers
additionally decide on investments. As for the simultaneous-moves game, it constitutes
a non-strategic benchmark. Its timing is similar to the sequential-moves game, with
the only difference that leaders choose their investments concurrently with quantities at
the market stage. By comparing the outcomes in both scenarios, we identify a leader’s
incentive to modify its investment when a group of firms condition their decisions on it.

In this section, we derive the equilibrium for each of these scenarios. In the next
one, we establish the main results of the paper. For each game, we suppose that the
equilibrium exists, is unique, and interior. Furthermore, we consider that each leader’s
profit function evaluated at optimal quantities is strictly quasi-concave in investments.

3.1. Simultaneous-Moves Equilibrium

The simultaneous-moves game comprises two stages. In the first one, each follower decides
whether to enter the industry by paying F or remain inactive. After this, leaders and
active followers decide on quantities and investments at the market stage. We characterize
the equilibrium by utilizing an aggregative-games approach, which requires expressing all
the solutions in terms of the aggregate.

A firm ω has gross profits given by

πω [xω,A (x)] := qω [p (xω,A (x))− cω]− fz (zω) . (1)

The first-order conditions that characterize optimal quantities and investments for an
active firm ω are

∂πω (xω,A)

∂qω
+

∂πω (xω,A)

∂A

∂A (x)

∂qω
= 0, (2)

γsim
ω (xω;A) :=

∂πω (xω,A)

∂zω
+

∂πω (xω,A)

∂A

∂A (x)

∂zω
= 0. (3)

This system determines ω’s best-response functions. Alternatively, ω’s optimal strategy
can be characterized as a function of the aggregate, consistent with an aggregative view
of the game. Specifically, we express ω’s optimal strategy by xω (A) := [qω (A) , zω (A)],
where xF (A) denotes the optimal strategy of a firm ω with marginal cost cF .

By expressing optimal strategies in this way, the Nash equilibrium at the market stage
requires that the firms’ optimal decisions self-generate the value A. Formally,

Asim (A,M) = A, (NE-sim)

where Asim corresponds to A evaluated at the backward-response functions and is given
by

Asim (A,M) := H

{

Mh [xF (A)] +
∑

ω∈L

h [xω (A)]

}

. (4)

Furthermore, the zero-profits condition is

πF (A) = F, (ZP)

where πF (A) is the optimal profit of a firm with marginal cost cF , i.e. (1) evaluated at
xF (A).

Overall, the aggregative-games approach determines that the equilibrium can be iden-
tified through values M sim and Asim that satisfy conditions (NE-sim) and (ZP). In partic-
ular, once that Asim is obtained, the equilibrium decisions of any firm can be determined.
They include investments, quantities, and prices.

Additionally, through inspection of (NE-sim) and (ZP), we can appreciate that Asim

is completely determined by (ZP). This reflects that there is only one equilibrium ag-



gregate that is consistent with zero profits. Thus, interpreting the aggregate as a scalar
that captures the level of competition, (ZP) identifies the competitive environment in
equilibrium. The relevance of this is that, since the aggregate is a sufficient statistic for
a firm’s decisions, we do not need to solve for (NE-sim) if our goal is to characterize a
leader’s equilibrium investment, quantity, or price.

3.2. Sequential-Moves Equilibrium

The timing of the sequential-moves scenario is the same as in the simultaneous-moves
case. The only difference is that leaders decide on investments at the beginning of the
game.

For the equilibrium characterization of this game, we also follow an aggregative-games
approach. Unlike the simultaneous-move game, the solution of the market stage defines
a class of subgames for each vector of leaders’ investments, zL := (zω)ω∈L

. Nonetheless,
this does not affect the characterization of optimal decisions. Thus, xF (A) is still char-
acterized by (2) and (3) with marginal cost cF . Moreover, leader ω’s optimal quantities
are still given by (2), which determines a function qω (zω,A).

Given these optimal choices, the condition for a Nash equilibrium at the market stage
is akin to that in the simultaneous-moves scenario. Specifically, given zL , there is a Nash
equilibrium at the market stage when A constitutes a fixed point of Aseq:

Aseq
(

A,M, zL
)

= A, (NE-seq)

where

Aseq
(

A,M, zL
)

:= Mh [xF (A)] +
∑

ω∈L

h [qω (zω,A) , zω] . (5)

As for free entry, the zero-profits condition is still given by (ZP). Therefore, the
same equilibrium aggregate holds in each scenario, Aseq = Asim, which we refer to as A∗.
Intuitively, it reflects that any variation in zω by leader ω triggers changes in M such
that the aggregate does not vary.

Given A∗, optimal investments of leader ω are determined as the solution that max-
imizes πω [qω (zω;A

∗) , zω;A
∗]. Therefore, they can be characterized by the first-order

condition of this problem, which is

γseq
ω (xω;A) :=

∂πω [qω (zω;A
∗) , zω;A

∗]

∂zω
−

∂πω [qω (zω;A
∗) , zω;A

∗]

∂qω

∂qω (zω,A
∗)

∂zω
= 0. (6)

4. Results

The following proposition states how leaders strategically vary their investment choices
when followers condition on them. This is done by comparing the equilibrium in the
simultaneous-moves and sequential-moves games. Proofs of all the propositions are rele-
gated to the appendix.

Proposition 4.1. Relative to the simultaneous-moves equilibrium, in the sequential-moves

equilibrium each leader varies its investment to strengthen competition. Additionally, each

leaders increases its profit and the number of followers decreases.

The fact that leader ω strengthens competition means that ω chooses its investments
to increase the term h (xω). Nonetheless, the strategy to increase h is setup-specific
and gives rise to various possible outcomes regarding the rest of its variables. Thus,



next, we establish assumptions in terms of demand primitives to ensure that leaders
product innovate more (i.e., over-invest). Conditional on over-investing, we also identify
conditions to know whether each leader increases or decreases its revenue, quantity, and
price.

With this goal, let εq (xω,A) := −d ln pω(xω ,A)
d ln qω

be the quantity elasticity of the inverse

demand. Moreover, let ξq (xω,A) := −∂ ln pω(xω ,A)
∂ ln qω

and ξz (xω,A) := −∂ ln pω(xω ,A)
∂ ln zω

be the
quantity and investments elasticity when the impact on A is ignored, respectively. Finally,
denote

λ (xω,A) :=

1−εq(xω ,A)
εq(xω ,A)

ξz (xω,A)−
∂ ln εq(xω ;A)

∂ ln zω

1− εq (xω,A) +
∂ ln εq(xω ;A)

∂ ln qω

,

whose relevance comes from that ∂ ln qω(zω ;A)
∂ ln zω

= λ [qω (zω;A) , zω,A].

Proposition 4.2. Relative to the simultaneous-moves equilibrium, in the sequential-moves

equilibrium each leader ω over-invests if λ (xω,A) > −∂ lnh(xω)
∂ ln zω

(

∂ lnh(xω)
∂ ln qω

)−1
. If addition-

ally λ (xω,A) >
ξz(xω ,A)

ξq(xω ,A)−1 then ω increases its revenues, and if the inequality is reversed

it decreases its revenues. If additionally λ (xω,A) <
ξz(xω ,A)
ξq(xω ,A)

then ω increases its prices,

and if the inequality is reversed it lowers its prices. If additionally the numerator of λ is

positive then ω increases its quantities, and otherwise it lowers its quantities.

The implications of these propositions can be illustrated through a quality-augmented
CES inverse demand for variety ω. This is given by

p (xω,Q) := E (qω)
ρ−1 (zω)

δ
Q−ρ, (7)

where 0 < ρ < 1, 0 < δ < 1, Q :=
[

∑

ω∈Ω (qω)
ρ (zω)

δ
]

1
ρ

is the quantity index, and E > 0

is the industry expenditure. For this demand, our characterization of outcomes implies
the following.

Corollary 4.3. Suppose the quality-augmented CES inverse demand given in (7). Rela-

tive to the simultaneous-moves equilibrium, in the sequential-move equilibrium each leader

strengthens competition and garners greater profits, whereas the number of followers is

lower. Additionally, each leader over-invests, increases its revenue, sells greater quantities,

and charges a higher price.

In words, this determines that all the results for a quality-augmented CES inverse
demand are determined: leaders product innovate more, increase their revenues, and sell
more units at a higher price.

5. Conclusion

We have analyzed an endogenous-entry model under Cournot competition, with leaders
strategically investing to gain a better market position. Unlike previous studies assum-
ing free entry of followers, our framework considers multiple heterogeneous leaders and
demand-enhancing investments that directly affect rivals’ demands.

With the goal of isolating the strategic motives to invest, we have followed the stan-
dard approach by Fudenberg and Tirole (1984) and compared the outcomes in two games.



We have referred to the first one as a sequential-moves game, where leaders choose invest-
ments prior to each follower’s entry decision and the market stage. Due to this, followers
make choices condition on each leader’s investment. After this, we have derived the
equilibrium in a simultaneous-move game, which constitutes a non-strategic benchmark
where investments are not observed by followers.

Our results establish that leaders always strengthen competition, thereby restricting
entry of followers and allowing leaders to garner greater profits. Nonetheless, the rest of
the outcomes are indeterminate. Thus, we have stated conditions in terms of demand
primitives to identify when leaders innovate more, and whether this increases or decreases
the revenue, quantity, and price of each leader.

We have concluded the analysis by applying the results to the case of a quality-
augmented CES inverse demand. Under this demand, we have established that leaders
always over-invest, sell more units at a higher price, and increase their revenues.
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Hortaçsu, A. and C. Syverson (2004). Product differentiation, search costs, and competition in the mutual
fund industry: A case study of S&P 500 index funds. The Quarterly Journal of Economics 119 (2),
403–456.

Jensen, M. K. (2018). Aggregative games. In Handbook of Game Theory and Industrial Organization,

Volume I, Chapters, Chapter 4, pp. 66–92. Edward Elgar Publishing.

Nocke, V. and N. Schutz (2018). Multiproduct-firm oligopoly: An aggregative games approach. Econo-
metrica 86 (2), 523–557.

Vives, X. (2001). Oligopoly Pricing: Old Ideas and New Tools (1 ed.), Volume 1. The MIT Press.

Appendix

This appendix contains all the proofs of the paper. Regarding notation, we denote any
variable in the equilibrium of the simultaneous- and sequential-moves game with a su-
perscript “sim” and “seq”, respectively. For instance, zsimω zseqω refers to the investments
of leader ω in each equilibrium.

Lemma 1. Let q∗ω := qω (zω,A). Then,

sgn

{

∂ ln qω (zω;A)

∂ ln zω
+

∂ lnh (q∗ω, zω)

∂ ln zω

(

∂ lnh (q∗ω, zω)

∂ ln qω

)−1
}

= sgn

{

d lnh [qω (zω;A) , zω]

d ln zω

}

= sgn

{

d lnA
[

qω (zω;A) , zω; z
L
−ω,A

]

d ln zω

}

.

Proof of Lemma 1. By definition,
d lnh [qω (zω;A) , zω]

d ln zω
=

∂ lnh (q∗ω, zω)

∂ ln qω

∂ ln qω (zω;A)

∂ ln zω
+

∂ lnh (q∗ω, zω)

∂ ln zω
.



This implies that d lnh[qω(zω ;A),zω ]
d ln zω

> 0 iff ∂ ln qω(zω ;A)
∂ ln zω

> −∂ lnh(q∗ω ,zω)
∂ ln zω

(

∂ lnh(q∗ω ,zω)
∂ ln qω

)−1

, where

we have used that ∂ lnh(q∗ω ,zω)
∂ ln qω

> 0. Besides, by using that ∂ lnA(x)
∂ ln zω

=
H′[H−1(A)]

A

∂h(xω)
∂ ln zω

and

∂ lnA(x)
∂ ln qω

=
H′[H−1(A)]

A

∂h(xω)
∂ ln qω

, then

d lnA
[

qω (zω;A) , zω; z
L
−ω,A

]

d ln zω
=

H ′ [H−1 (A)]

A

[

d lnh [qω (zω;A) , zω]

d ln zω

]

.

Since H ′ > 0, the result follows. �

Lemma 2. Let qsimω := qω (z
sim
ω ;A∗) where A∗ is the equilibrium aggregate in both scenar-

ios. Case i) If
∂ ln qω(zsimω ;A∗)

∂ ln zω
< −

∂ lnh[qω(zsimω ;A∗),zsimω ]
∂ ln zω

(

∂ lnh(qsimω ,zsimω )
∂ ln qω

)−1

, then zsimω > zseqω .

Case ii) If
∂ ln qω(zsimω ;A∗)

∂ ln zω
> −

∂ lnh[qω(zsimω ;A∗),zsimω ]
∂ ln zω

(

∂ lnh(qsimω ,zsimω )
∂ ln qω

)−1

, then zseqω > zsimω .

Proof of Lemma 2. Consider leader ω. The marginal profits of investments in the
simultaneous and sequential case are respectively γsim

ω (xω;A) and γseq
ω (xω;A), as defined

in (3) and (6). Using the characterization of optimal quantities given by ∂πω(xω ,A)
∂qω

=

−∂πω(xω ,A)
∂A

∂A(xω ,A)
∂qω

, we can reexpress γseq
ω (xω;A) :=

∂πω(xω ,A)
∂zω

− ∂πω(xω ,A)
∂A

∂A(xω ,A)
∂qω

∂qω(zω ;A)
∂zω

.

Let ∆ω (zω;A
∗) := γseq

ω [qω (zω;A
∗) , zω;A

∗] − γsim
ω [qω (zω;A

∗) , zω;A
∗], which is equivalent

to

∆ω (zω;A
∗) = −

∂πω (q∗ω, zω,A
∗)

∂A

[

∂A
(

q∗ω, zω; z
L
−ω,A

∗
)

∂qω

∂qω (zω;A
∗)

∂zω
+

∂A
(

q∗ω, zω; z
L
−ω,A

∗
)

∂zω

]

,

where q∗ω := qω (zω;A
∗). Since ∂πω(·)

∂A
< 0, we have that for each (zω,A

∗),

sgn {∆ω (zω;A
∗)} = sgn

{

dA
[

qω (zω;A
∗) , zω; z

L
−ω,A

∗
]

dzω

}

= sgn

{

dh [qω (zω;A
∗) , zω]

dzω

}

,

(8)

where the second equality follows by Lemma 1.
Define ∆sim

ω := ∆ω

(

zsimω ;A∗
)

. The strict quasi-concavity of profits evaluated at op-
timal quantities determines that if we can show that ∆sim

ω > 0 then leader ω over-
invests, while if ∆sim

ω < 0 then it under-invests. Next, we show this result can be ap-
plied to the cases considered in the information of the lemma. Case i) implies that
d lnh[qω(zsimω ;A∗),zsimω ]

d ln zω
< 0, so that, by Lemma 1 and (8), ∆sim

ω < 0 and, so, zsimω > zseqω .

Case ii) implies that
d lnh[qω(zsimω ;A∗),zsimω ]

d ln zω
> 0, which determines that ∆sim

ω > 0 and, so,

zseqω > zsimω . �

Proof of Proposition 4.1. As for profits, the result follows by a revealed-preference ar-
gument. This is because the same aggregate holds under the simultaneous and sequential
equilibrium. Thus, leader ω can obtain at least the same profits as in the simultaneous
scenario by choosing zsimω .

To show that leader ω behaves more aggressively, we need to prove that ∆hω > 0
where

∆hω := h [qω (z
seq
ω ;A∗) , zseqω ]− h

[

qω
(

zsimω ;A∗
)

, zsimω

]

.

To do this, define Case i) and Case ii) as in Lemma 2. By (8), we get ∆hω =
∫ z

seq
ω

zsimω

∆ω (z;A
∗) dz. For Case i), we have proved that ∆sim

ω < 0 and, so, zsimω > zseqω .



Moreover, ∆ω (z) < 0 for any z ∈
(

zseqω , zsimω

)

. This follows because γsim
ω

(

zsimω ,A∗
)

= 0,
γseq
ω (zseqω ,A∗) = 0, and γseq

ω

(

zsimω ,A∗
)

< 0. In addition, by the strict quasi-concavity of
profits and given z such that zsimω > z > zseqω , then γseq

ω (z;A∗) < 0 and γsim
ω (z;A∗) > 0.

This implies that ∆ω (z;A
∗) < 0 for any z ∈

(

zseqω , zsimω

)

. Thus, ∆hω > 0. As for Case
ii), we have shown that ∆sim

ω > 0 and, so, zseqω > zsimω . Furthermore, γsim
ω

(

zsimω ,A∗
)

= 0,
γseq
ω (zseqω ,A∗) = 0, and γseq

ω

(

zsimω ,A∗
)

> 0. Additionally, by the strict quasi-concavity of
profits and given z such that zseqω > z > zsimω , then γseq

ω (z;A∗) > 0 and γsim
ω (z;A∗) < 0.

Therefore, ∆ω (z) > 0 for any z ∈
(

zsimω , zseqω

)

and, since, zseqω > zsimω then ∆hω > 0.
As for the number of followers, M sim and M seq correspond to the solution to (4) and

(5) for a given A∗, respectively. Thus, (NE-sim) and (NE-seq) imply:

M simh [xF (A∗)] +
∑

ω∈L

h
[

pω
(

zsimω ;A∗
)

, zsimω

]

= M seqh [xF (A∗)] +
∑

ω∈L

h [pω (z
seq
ω ;A∗) , zseqω ] ,

and, so, M seq −M sim = −
∑

ω∈L
∆hω

h[xF (A∗)]
. Since we have shown that ∆hω > 0, then M seq <

M sim.�

Lemma 3. Let q∗ω := qω (zω,A). Then,

∂ ln qω (zω;A)

∂ ln zω
=

1−εq [qω(zω ;A),zω ;A]
εq [qω(zω ;A),zω ;A]

ξz [qω (zω;A) , zω;A]−
∂ ln εq [qω(zω ;A),zω ;A]

∂ ln zω

1− εq [qω (zω;A) , zω;A] +
∂ ln εq [qω(zω ;A),zω ;A]

∂ ln qω

, (9)

sgn

{

∂ ln qω (zω;A)

∂ ln zω

}

= sgn

{

1− εq [qω (zω;A) , zω;A]

εq [qω (zω;A) , zω;A]
ξz [qω (zω;A) , zω;A]−

∂ ln εq [qω (zω;A) , zω;A]

∂ ln zω

}

.

(10)

Proof of Lemma 3. The first-order condition for quantities determines that pω(xω ,A)
p(xω ,A)−cω

=
1

εq(xω ,A)
. Reexpressing this, it is determined that ln cω = ln [1− εq (xω,A)]+ ln pω (xω,A).

To streamline notation, denote εq (xω,A) by εqω. Differentiating the expression for a given
A, we obtain

(

−∂ ln ε
q
ω

∂ ln zω
εqω

1− ε
q
ω

+ ξz

)

d ln zω + εqω

(

−∂ ln ε
q
ω

∂ ln qω

1− ε
q
ω

− 1

)

d ln qω = 0,

which, rearranging the expression, gives (9).
Next, we show that (10) holds by establishing that the marginal profits of quantities

are increasing in zω for a given A. Gross optimal profits of leader ω are given by (1), so
that by differentiating it when A is affected by changes in qω,

Dqπω (xω,A) :=:
dπω (xω,A)

d ln qω
:= κ (xω,A)

[

1− p (xω,A)
εq (xω,A)

p (xω,A)− cω

]

,

where κ (xω,A) := qω [p (xω,A)− cω] and satisfies κ > 0 along the relevant range where
p (xω,A) > cω. Now, we incorporate that the aggregate is unaffected by zω. For the range
of optimal quantities and after some algebraic manipulation, it is determined that

sgn

{

∂Dqπω (xω;A)

∂ ln zω

}

= sgn

{

ξz (xω;A) [1− εq (xω;A)]− εq (xω;A)
∂ ln εq (xω;A)

∂ ln zω

}

,

and the result follows. �

Proof of Proposition 4.2. Using Lemma 3, notice that ∂ ln qω(zω ;A)
∂ ln zω

= λ [qω (zω;A) , zω,A]

by (9). Thus, the assumption λ (xω,A) > −∂ lnh(xω)
∂ ln zω

(

∂ lnh(xω)
∂ ln qω

)−1

ensures that Case ii)

always holds.
Regarding quantities, let qsimω := qω

(

zsimω ,A∗
)

and qseqω := qω (z
seq
ω ,A∗). Using optimal



quantities, qω (zω;A), then qω (z
seq
ω ;A∗)− qω

(

zsimω ;A∗
)

=

∫ z
seq
ω

zsimω

dqω(z;A∗)
dz

dz. Using that the

right-hand side of (10) corresponds to the numerator of λ evaluated at (qω (zω;A) , zω,A),
then the result follows.

Furthermore, define leader ω’s revenue by Rω := pωqω which, given the
equilibrium aggregate A∗, can be expressed as a function of its investment:
Rω (zω;A

∗) := q [pω (zω;A
∗) , zω;A

∗] pω (zω;A
∗). Therefore, Rω (z

seq
ω ;A∗)−Rω

(

zsimω ;A∗
)

=
∫ z

seq
ω

zsimω

dRω(z;A∗)
dz

dz. Next, we show that dRω(z;A∗)
dz

> 0 for z ∈
(

zsimω , zseqω

)

. By definition,

d lnRω(zω ;A∗)
d ln zω

= ξz (q∗ω, zω;A
∗) − [ξq (q∗ω, zω;A

∗)− 1] ∂ ln qω(zω ;A∗)
∂ ln zω

,where q∗ω := qω (zω;A
∗). This

implies that d lnRω(zω ;A∗)
d ln zω

> 0 iff ∂ ln qω(zω ;A∗)
∂ ln zω

>
ξz(q∗ω ,zω ;A

∗)
ξq(q∗ω ,zω ;A

∗)−1
, which we assume.

Regarding prices, we proceed in a similar fashion to the proof for revenues, so that
d ln pω(zω ;A∗)

d ln zω
> 0 iff ∂ ln qω(zω ;A∗)

∂ ln zω
<

ξz(q∗ω ,zω ;A
∗)

ξq(q∗ω ,zω ;A
∗)
, which we assume.�

Proof of Corollary 4.3. The results regarding aggressive behavior, profits, and number
of followers are determined by Proposition 4.1. Denote εq (xω,A) by εqω. Then, given
(7), we obtain εqω := 1 − ρ (1− sω) where sω := pωqω

E
and it is given by a function

s (xω,Q) = (qω)
ρ(zω)

δ

Qρ . Moreover, λ (xω,Q) = δ(1−sω)
ε
q
ω+ρsω

> 0. Over-investment follows by

using that −∂ lnh(xω)
∂ ln zω

(

∂ lnh(xω)
∂ ln qω

)−1

= δ
ρ
and that δ(1−sω)

ε
q
ω+ρsω

> δ
ρ
. Furthermore, the result for

revenues follows since ξz(xω ,A)
ξq(xω ,A)−1

= δ
−ρ

< 0 while δ(1−sω)
ε
q
ω+ρsω

> 0, so that δ(1−sω)
ε
q
ω+ρsω

> δ
−ρ

. The

fact that δ(1−sω)
ε
q
ω+ρsω

> 0 also proves the result about quantities. Finally, regarding prices, it

can be proven that δ(1−sω)
ε
q
ω+ρsω

< δ
1−ρ

= ξz(xω ,A)
ξq(xω ,A)

.�
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