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Abstract
This study proposes new multi-episode count data models for health care analysis. Using the Pólya-Aeppli distribution,
a Poisson process for seeking medical care and a geometric process for the number of treatments are specified.
Moreover, this paper introduces unobserved heterogeneities to both Poisson and geometric processes. Using the
National Medical Expenditure Survey, the proposed models demonstrate good performance and the large differences
in estimated coefficients compared with conventional hurdle and finite mixture count data models. It is useful to apply
the multi-episode count data models proposed in this paper.
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1. Introduction

When analyzing health care demand using count data, econometricians usu-
ally compare the performance of the two most common approaches, a hurdle
(two-part) model and a finite mixture (FM) model. The hurdle model, first
discussed by Mullahy (1986), distinguishes the decision to seek care from
the level of utilization, focusing on the difference between users and non-
users, and is occasionally regarded as an approximation of the principal-agent
hypothesis. Pohlmeier and Ulrich (1995) and Gerdtham (1997) apply this
method to analyze health care demand.

FM models assume that data consist of a finite number of subpopulations
and that each element is drawn from one of these latent subpopulations.
These approaches are widely used in health econometrics given that they
are semi-parametric and flexible (Heckman and Singer, 1984). Since FM
models capture unknown health status and estimate ex post behaviors of
both healthy and non-healthy individuals, many authors estimate health care
demand using both hurdle and FM models. Deb and Trivedi (1997, 2002);
Deb and Holmes (2000); and Gerdtham and Trivedi (2001) find the FM
model to be a more desirable approach. Jemernéz-Mart́ın et al. (2002) assert
that the FM model is not based on economics but on statistical reasoning,
and observe a good performance of the hurdle model in EU countries. Using
panel FM and panel FM hurdle models, Bago d’Uva (2005, 2006) analyze
demand for health care in Britain. Winkelmann (2004) expands the hurdle
model based on bivariate normally distributed heterogeneity and compares
the performance of the two models.

The third approach to estimate health care demand is the multi-episode
model, first proposed by Santos Silva and Windmeijer (2001). This model
conceptualizes a “spell” of illness as a set of consecutive medical services
received by an individual patient by request. The total amount of medical
services in a given period are broken down into two different decision-making
process that include the individual’s decision to seek medical care and the
length of treatments by professionals (i.e., doctors, dentists, nurse practi-
tioners, etc.). The consecutive processes of the medical treatment from the
beginning to end is referred to as an episode. Although hurdle models distin-
guish non-users and users, a multi-episode model distinguishes the number
of individuals seeking care and the number of treatments.

Although a multi-episode model enables better understanding of the pa-
tients’ behavior, it has had limited use in health economics because the
model’s performance is inadequate compared to the hurdle and FM models.
Santos Silva and Windmeijer (2001) assume a Poisson distribution for seek-
ing medical care and a logarithmic distribution for treatments, demonstrat-



ing these compound process results in a negative binomial (NB) distribution.
This model requires perfect specification because there is not unobserved het-
erogeneity. This assumption is relaxed in this study, introducing a log-normal
distributed unobserved heterogeneity for the Poisson distribution. Moreover,
as logarithmic distribution is difficult to interpret, a geometric distribution
with a probit specification for treatments processes is also introduced. Thus,
this paper proposes a new model, the Pólya-Aeppli (geometric-Poisson) dis-
tribution with normal distributed heterogeneities. Using the National Med-
ical Expenditure Survey (Deb and Trivedi, 1997), the performance of the
proposed model, hurdle models, and FM models are compared and the esti-
mated results are examined.

This study is organized as follows: Section 2 discusses multi-episode count
data models with unobserved heterogeneities. Section 3 presents the infor-
mation criteria, model specification tests, and estimated results using the
National Medical Expenditure Survey. Section 4 concludes the paper.

2. Multi-episode count data modeling

Let V be the total number of visits to medical facilities in all episodes; S be
the total number of episodes (or spells of illness); Rj, j = 1, 2, . . . , S, be the
number of visits in jth episode. Then, the total number of visits describes
V = S +

∑S

j=1 (Rj − 1). Santos Silva and Windmeijer (2001) identified S as
the number of first treatments of medical professionals and Rj as the number
of visits for that treatment. Given covariates x ∼ Kx× 1, if the data of both
Rj and S are observable, the conditional expectation of Rj and S can be
easily estimated. However, in actuality, only the total number of medical
care visits in a given period can be observed; that is, only V is available.
Santos Silva and Windmeijer (2001) introduced a compound Poisson process
to analyze multi-episode health care demand. Given the assumptions of
conditional independence of Rj and S, and of E [Rj | x] = E [R | x], V follows
a compound Poisson distribution (also called a stopped-sum distribution).
Using the law of iterated expectations, the following relation is obtained:

E [V | x] = ES [S × ER [Rj | S,x]] = E [S | x] E [R | x] . (1)

When V takes discrete positive values, the probability mass function
(PMF) of V elicits

Pr (V = v) = Pr (S = 0) +
∞∑

j=1

Pr (S = j) p(j) (v) , (2)



where p(j) (v) = p ∗ · · · ∗ p (v)︸ ︷︷ ︸
j

is jth convolution of distributions of indepen-

dent random variables v =
∑

j Rj that satisfies

p(1) (v) = Pr (R1 = v) ,

p(j) (v) = Pr (R1 + · · ·+Rj = v) ,

p(0) (v) =

{
0, v ̸= 0,

1, v = 0.

In the maximum likelihood estimation, the log-likelihood obtained by (2) is
complicated and does not always have an explicit solution. The parameters
are estimated by specifying the distributions of S and R that have moment
generating functions and using the method of moments of (1).

Assuming specific distributions for S and R, V follows a simple distribu-
tion. For example, when S follows the Poisson distribution with a param-
eter λ and R = 1, 2, . . . follows the logarithmic (series) distribution with a
parameter 0 < θ < 1, then V follows a NB distribution with parameters
(θ,−λ/ ln (1− θ)). In a regression, the parameters λ and θ are usually speci-
fied as λ = exp (x′β1) and θ = Φ (x′β2), where β1 and β2 are Kx× 1 vectors
of parameters and Φ (·) is a cumulative distribution of the standard normal.
Santos Silva and Windmeijer (2001) term this the NegbinX model. The max-
imum likelihood method easily estimates parameters of the NegbinX model
since it is essentially the NB distribution.

If S follows a Poisson distribution with a parameter λ, and R follows
a shifted geometric distribution Pr (R = r) = qr−1 (1− q) for r = 1, 2, . . . ,
where 0 < q < 1 is a parameter for the geometric distribution, the PMF is
directly obtained by

Pr (V = 0) = exp (−λ) , (3)

Pr (V = v) =
v∑

j=1

e−λλj

j!

(
v − 1
j − 1

)
qv−j (1− q)j . (4)

Eqs. (3) and (4) are termed the Pólya-Aeppli distribution (Johnson et al.,
1992, Ch. 9, p. 378) or geometric-Poisson distribution. In a regression con-
text, the parameter q is specified as q = Φ (x′β2). In the Pólya-Aeppli
distribution, using the latent variable j and the weighted sums of Poisson
distribution, the calculation of this PMF is also feasible.

Although the Pólya-Aeppli distribution is not tractable, this distribution
has a memoryless property. In acute treatment, if the doctor decides to end



the treatment based only on the current diagnosis, this assumption is rea-
sonable to interpret the behavior of health care demand. On the contrary,
although the assumption of the logarithmic distribution for R is based mainly
on mathematical tractability, this distribution is not memoryless. In chronic
treatment, if the doctor provides treatments based on both the present diag-
nosis and on previous ones, the time-dependent assumption of the logarithmic
distribution is more desirable for analyzing the total number of treatments.

In a compound Poisson distribution, the most important assumption is
the conditional independence of S and R. Applying the techniques of Heck-
man and Singer (1984), Santos Silva and Windmeijer (2001) restricted the
same coefficient parameters and modeled FM constant terms for correlated S
and R. This method is difficult to estimate but is robust for the conditional
independence assumption. However, it is not adequate for unobserved hetero-
geneity other than covariates, and full specification is required for λ and q (or
θ). In this paper only unobserved heterogeneity is introduced to parameters,
maintaining the conditional independence assumption. Since q (or θ) is spec-
ified as a probit model, the binary decision-making for whether the doctor
continues treatment includes the normal distributed unobserved heterogene-
ity.1 As in Winkelmann (2004), it is reasonable to introduce a normally dis-
tributed unobserved heterogeneity for λ.2 That is, λ (ε1) = exp (x′β1 + σ1ε1),
where ε1 follows a standard normal distribution and σ1 is a parameter for
standard deviation. In this case, maintaining conditional independence, the
PMF of the Pólya-Aeppli distribution takes the following form:

Pr (V = 0) =

∫
∞

−∞

exp (−λ (ε1))φ (ε1) dε1, (5)

Pr (V = v) =

∫
∞

−∞

v∑

j=1

e−λ(ε1)λ (ε1)
j

j!

(
v − 1
j − 1

)
qv−j (1− q)j φ (ε1) dε1, (6)

where φ (·) is a probability density function of a standard normal distribution.
The above PMFs are easily evaluated using the Gauss-Hermite integration.

1Let d∗
r̃,r̃+1

, 1 ≤ r̃ ≤ r be a latent variable representing the decision to go to the
(r̃ + 1)-th visit. The hospital visit is determined by d∗

r̃,r̃+1
= x

′β2+ε2, and the unobserved
heterogeneity ε2 follows a standard normal distribution. The latent variable d∗

r̃,r̃+1
cannot

be observed, and instead dr̃,r̃+1 = 1 is observable when d∗
r̃,r̃+1

> 0; otherwise, dr̃,r̃+1 = 0.
Corresponding to the geometric distribution, the termination condition dr,r+1 = 0 and
dr̃,r̃+1 = 1 for 1 ≤ r̃ ≤ r − 1 always hold. Therefore, the PMFs of (5) and (6) contain
error terms that follow independent normal distributions.

2Dhaene and Santos Silva (2012) proposed a Poisson model that has more general
unobservable heterogeneity, including the normal distribution as a special case. In this
paper, the unobservable heterogeneity is restricted to the normal distribution because it
does not converge when applied to the multi-episode model with log-normal heterogeneity.



3. Empirical application

This section uses the same data from the National Medical Expenditure Sur-
vey (NMES) of the United States in 1987 and 1988 that was analyzed by Deb
and Trivedi (1997) to examine the estimated results of the proposed models.
The NMES interviews include health insurance coverage, services, and costs
quarterly of more than 38,000 individuals. This analysis examines a subsam-
ple of females over 66 years of age, all of whom are covered by Medicare and
not covered by Medicaid. The number of observations examined is 2,308.

As noted by Deb and Trivedi (1997), although the data contain six count
variables, the outcome of visits to a physician’s office (OFP) is used. The mean
of OFP is 5.86, standard deviation is 6.504, maximum value is 61, and the
proportion of 0 is 13.52%. The covariates are the dummy variable for whether
self-perceived health is excellent (EXCLHLTH, with an average of 7.84%); the
dummy variable for whether self-perceived health is poor (POORHLTH, with
an average of 10.96%); the number of chronic conditions (NUMCHRON, with an
average of 1.488 and a standard deviation of 1.300); the dummy variable for
whether the individual is covered by private health insurance (PRIVINS, with
an average of 84.62%).

Following Deb and Trivedi (1997), Santos Silva and Windmeijer (2001)
and Winkelmann (2004), various models are estimated to specify the model:
conventional count data models, such as, NB1 and NB2 models, a Poisson log-
normal (PLN) model; hurdle count data models, such as hurdle NB1 and NB2
(HNB); a probit Poisson log-normal (PPLN) model; FM count data models,
such as, two components FM NB1 and NB2 (FM2-NB) models; multi-episode
count data models, such as the NegbinX (NBX) model, the NegbinX with log-
normal distributed unobserved heterogeneity (NBX-LN), the Pólya-Aeppli
(geometric-Poisson, GP) model, and the Pólya-Aeppli model with log-normal
distributed unobserved heterogeneity (GP-LN).

Table I presents the log-likelihood, Akaike’s information criteria (AIC),
Bayesian information criteria (BIC), and the number of parameters of the
above models. From Table I, the maximum log-likelihood is the GP-LN
model, the second is the NBX-LN, and the third is the PPLN model. The
minimum AIC and BIC is the GP-LN model, the second is the NBX-LN, and
the third is the PPLN (ρ = 0) model. Information criteria demonstrates that
multi-episode models with log-normal distributed unobserved heterogeneities
dominate the other models.

Next, following Santos Silva and Windmeijer (2001), a specification test
for hurdle and multi-episode models is applied. The parametric test uses a
Wald test of whether the coefficients β̂1 of the Poisson distribution part of

the multi-episode model are equal to the coefficients β̂
∗

1 estimated on the



Table I: Log-likelihood, AIC, BIC, and GoF

log-likelihood AIC BIC K GoF
Conventional models
NB1 −6,420.658 12,853.317 12,887.782 6 19.997
NB2 −6,445.669 12,903.338 12,937.803 6 41.242
PLN −6,440.570 12,893.139 12,927.604 6 82.479
Hurdle models
HNB1 −6,404.206 12,830.412 12,893.597 11 21.782
HNB2 −6,423.199 12,868.398 12,931.584 11 37.415
PPLN −6,390.570 12,805.141 12,874.070 12 28.641
PPLN (ρ = 0) -6,390.626 12,803.251 12,866.437 11 27.224
FM models
FM2-NB1 −6,391.456 12,808.912 12,883.586 13 11.447
FM2-NB2 −6,411.633 12,849.266 12,923.939 13 43.799
Multi-episode models
NBX −6,406.833 12,833.666 12,891.107 10 22.747
NBX-LN −6,389.897 12,801.794 12,864.979 11 10.732
GP −6,451.241 12,922.481 12,979.923 10 73.502
GP-LN −6,388.494 12,798.987 12,862.173 11 21.465

Notes: AIC = −2 lnL + 2K, BIC = −2 lnL + K lnT , where L is the maximized
likelihood, K is the number of parameters of maximum likelihood estimation, T is the
number of observations, and GoF indicates the goodness-of-fit test statistics.

binary data with V = 0 and V ≥ 1. The test statistics are 189.589 for
the GP-LN, 19.160 for the GP, 69.424 for the NBX-LN, and 2.771 for the

NBX. The null hypothesis β̂1 = β̂
∗

1 is rejected at the 1% significance level,
except for the NBX. Next, we test the single period hypothesis.3 This tests
E (V − E (R | x,β2) | V > 0) = 0. The test statistic is 0.755 and its p-value
is 0.000; thus, the single period hypothesis is rejected at the 1% significance
level.

Finally, the goodness-of-fit (GoF) test used in Deb and Trivedi (1997)
is performed. Since the sample with OFP greater than 12 days is 11.48% of
the total, the test was performed with each cell from 0 to 12 days and 13
days or more combined as one cell (degrees of freedom is 13), as in Deb and
Trivedi (1997). From the results in the rightmost column of Table I, for the
GP-LN, NBX-LN, NB1, HNB1, and FM-NB1, the null hypotheses are not
rejected at the 5% significance level. The results of the information criteria,

3This test is based on conditional moment tests (Newey, 1985) using the parameters
obtained by the generalized method of moments. Estimation and testing are calculated
by Aptech’s Gauss 16, but this test is only based on the calculation of the stata ado file
by Andrews et al. (2017).



Table II: Estimated results

GP-LN NBX-LN
Episodes

EXCLHLTH −0.129 (0.115) −0.158 (0.117)
POORHLTH −0.140 (0.115) −0.084 (0.107)
NUMCHRON 0.273 (0.023) *** 0.274 (0.023) ***
PRIVINS 0.765 (0.094) *** 0.738 (0.089) ***
constant 0.012 (0.092) 0.037 (0.088)
σ 0.722 (0.025) *** 0.709 (0.029) ***

Visits
EXCLHLTH −1.189 (0.751) −1.064 (0.577) *
POORHLTH 0.590 (0.162) *** 0.576 (0.192) ***
NUMCHRON −0.166 (0.053) *** −0.200 (0.063) ***
PRIVINS −0.494 (0.127) *** −0.519 (0.146) ***
constant 0.179 (0.114) 0.774 (0.134) ***

log-likelihood −6,388.494 −6,389.897

Notes: Standard errors are in parentheses; statistically significant at the 1%
(***), 5% (**), and 10% (*) levels.

the test statistic for the single period hypothesis, and the GoF test indicate
that there is no clear evidence that the GP-LN and NBX-LN are inferior
to the other models, but rather superior. Therefore, at least for this data,
multi-episode models, particularly the GP-LN model presented in this paper,
cannot be ignored.

Table II presents the estimated results of multi-episode count data models
(GP-LN and NBX-LN). In multi-episode models, the estimated coefficients
resemble one another. The most attractive feature is the interpretation of
the six models. In multi-episode models (GP-LN and NBX-LN), the vari-
able NUMCHRON (the number of chronic conditions) increases the number of
the first treatment of medical professionals (S), but decreases the number of
visits for that treatment (R). Although the estimation results are omitted
due to space limitations, in the hurdle models (PPLN with or without cor-
relation), the variable NUMCHRON positively affects the 0/1 decision-making
for an individual visiting a physician, and also positively affects the number
of visits following the first contact. In the FM models (FM2-NB1 or FM2-
NB2), the variable NUMCHRON increases the number of doctor visits of both
frequent and infrequent patients.

Similar results are found for the other variables. The variable PRIVINS



(a private health insurance dummy) increases the number of first treatments
but decreases the number of visits for that treatment. In the hurdle models,
PRIVINS significantly increases the probability of the first visit and has a
positive effect on successive visits. In the FM models, PRIVINS increases
the number of doctor visits of both frequent and infrequent patients. The
negative effect of PRIVINS is not found in the hurdle or FM models.

4. Conclusion

For the assessment of health care demand using count data analysis, this
paper proposes new multi-episode count data models. Based on Santos Silva
and Windmeijer (2001), the Pólya-Aeppli distribution, which assumes a Pois-
son distribution, is applied for seeking medical care and assumes geometric
distribution for treatments. Moreover, this paper introduces normal dis-
tributed unobserved heterogeneities for both the Poisson and geometric dis-
tributions. Using the USA NMES, the results of the information criteria,
model specification tests, and GoF tests demonstrate that the performance
of the proposed model is not inferior to conventional models, but rather supe-
rior. The estimated coefficients differ from those of the conventional models
and the number of treatments decreases in some variables. Of course, it
cannot be denied that FM, hurdle, and the multi-episode models all rely
on strong distributional assumptions, and determining which one is better
depends on the data and the application. Although it is difficult to discern
the unique model in health care demand analyses, considering that the same
variable can be interpreted differently in different models, it is useful and
informative to apply the multi-episode models proposed in this paper.

References

Andrews, D. W. K., W. Kim, and X. Shi (2017) “Commands for testing
conditional moment inequalities and equalities” The Stata Journal 17 (1),
56–72.

Bago d’Uva, T. (2005) “Latent class models for use of primary care: Evidence
from a British panel” Health Economics 14 (9), 873–892.

(2006) “Latent class models for utilisation of health care” Health

Economics 15 (4), 329–343.

Deb, P. and A. M. Holmes (2000) “Estimates of use and costs of behavioural
health care: A comparison of standard and finite mixture models” Health

Economics 9 (6), 475–489.



Deb, P. and P. K. Trivedi (1997) “Demand for medical care by the elderly:
A finite mixture approach” Journal of Applied Econometrics 12 (3), 313–
336.

(2002) “The structure of demand for health care: Latent class versus
two-part models” Journal of Health Economics 21 (4), 601–625.

Dhaene, G. and J. M. C. Santos Silva (2012) “Specification and testing of
models estimated by quadrature” Journal of Applied Econometrics 27 (2),
322–332.

Gerdtham, U. (1997) “Equity in health care utilization: Further tests based
on hurdle models and Swedish micro data” Health Economics 6 (3), 303–
319.

Gerdtham, U. and P. K. Trivedi (2001) “Equity in Swedish health care recon-
sidered: New results based on the finite mixture model” Health Economics

10 (6), 565–572.

Heckman, J. and B. Singer (1984) “A method for minimizing the impact
of distributional assumptions in econometric models for duration data”
Econometrica 52 (2), 271–320.
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