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Abstract
The one-parameter family of S-Gini indices is the most representative of generalized Gini indices. This paper proposes

a variant of the S-Gini index, called the level-adjusted S-Gini index (abbreviated as the aS-Gini index), together with its

complementary one-parameter index, called the complementary level-adjusted S-Gini index (caS-Gini index). The

relation of the new indices to the original index corresponds to that of the generalized entropy (GE) index to the

Atkinson index, in a sense. The complementary index is introduced to overcome an issue arising from the failure of the

aS-Gini index to satisfy some properties exhibited by the GE index. The combination of the aS-Gini and caS-Gini

indices enables us to measure the extent of inequality in size distributions containing small portions of negative values,

such as net wealth distributions, by different levels of sensitivity to higher values than to lower values. The caS-Gini

index, as well as the S-Gini and aS-Gini indices, is also a generalization of the standard Gini index because the index is

geometrically expressed as the area of a figure enclosed by a transformed egalitarian curve and a transformed Lorenz

curve with a constant multiplier. For a specific parameter value, its expression coincides with the well-known

geometrical expression of the standard Gini index.
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1. Desirable properties of sensitivity-adjustable relative inequality 
indices 

The S-Gini index proposed by Kakwani (1980), Donaldson and Weymark (1980, 1983) and 

Yitzhaki (1983) is, like the Atkinson index, able to measure the extent of inequality under 

different inequality aversions by tuning a parameter value. However, there is also a need for 

measuring inequality with a different sensitivity to higher values than to lower values, i.e., a 

need for sensitivity-adjustable inequality indices, depending on users’ interests in inequality in 

higher and lower classes; c.f., Subramanian (2010, 2015, 2019). The generalized entropy (GE) 

index is used for this reason, despite its order equivalency to the Atkinson index. As the GE 

index is inapplicable to distributions containing negative values, it would be useful to 

investigate sensitivity-adjustable relative inequality indices for such distributions. 

I consider that the following properties are desirable for a one-parameter family of relative 

inequality indices as a family of sensitivity-adjustable indices: 

A: For a distribution with a heavier left/right tail relative to the right/left tail, the index value 

monotonically decreases/increases as the parameter value goes in a certain direction. 

B: When the left/right tail becomes heavier, (the index exhibits an increase, and) the marginal 

increase rate monotonically falls/rises as the parameter value goes in the same direction as 

that in A, irrespective of the heaviness of both tails. 

The fulfilment of A and B can be interpreted as that the relative sensitivity to higher/lower 

values weaken/strengthen as the parameter goes in the direction in A. The family of GE indices 

practically satisfies both properties at least for a certain class of distributions such as the Pareto 

and reciprocal Pareto distribution (or, equivalently, the power-function distribution); in contrast, 

the family of S-Gini indices fails to satisfy both properties, as shown in subsequent sections. 

To overcome this failure, this paper proposes alternative properties for a pair of one-parameter 

families of relative inequality indices with a common parameter: one (the main index) is 

sensitive to higher values, and the other (the complementary index) is sensitive to lower values. 

C: For the base parameter value, both indices coincide. 

D: For a distribution with a heavier left/right tail relative to the right/left tail, i) the main index 

is smaller/larger than the complementary index except for the base parameter value, and ii) 

the ratio of the main index to the complementary index monotonically decreases/increases 

as the parameter value moves far from the base parameter value. 

E: When the left/right tail becomes heavier, (both indices exhibit increases,) i) the marginal 



increase rate of the former is lower/higher than that of the latter except for the base 

parameter value, and ii) the marginal increase rate of the former relative to that of the latter 

monotonically falls/rises as the parameter moves far from the base value, irrespective of the 

heaviness of both tails. 

The fulfilment of D and E can be interpreted as that the sensitivity of the main index to 

lower/higher values weaken/strengthen relative to that of the complementary index as the 

parameter value moves far from the base value. Considering analytical tractability, this paper 

employs the Pareto/reciprocal Pareto distributions as the ‘reference’ distributions for A - E with 

heavier right/left tails relative to left/right tails to address issues in the domain of positive 

distributions and employs the reciprocal Pareto-negative uniform distribution instead of the 

reciprocal Pareto distribution for distributions containing small portions of negative values to 

show that the newly introduced pair of a variant of the S-Gini index and its complementary 

index practically satisfy properties C, D and E. 

2. Level-adjusted S-Gini index 

This paper assumes that the size distribution of a numerical variable � such as wealth has the 

positive finite mean ߤ, the probability density function (pdf) ݂ሺݔሻ except for a point mass at 

zero, the cumulative distribution function (cdf) ܨሺݔሻ, the (possibly negative) finite infimum ܽ = inf � ሺ= inf ଵሻ , and the (possibly infinite) supremumିܨ  ܾ = sup � ሺ= sup  ଵሻ . Weିܨ

frequently identify a distribution with its cdf. The S-Gini index with parameter <ሺߥ  ͳሻ 

proposed by Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) is ܵܩఔሺܨሻ = ͳ − ߥሺߥ − ͳሻ ׬ ሺͳ − ଵ଴݌ሻ݀݌ிሺܮሻఔିଶ݌  (Kakwani 1980) = ߥሺߥ − ͳሻ ׬ ሺͳ − ݌ሻఔିଶሾ݌ − ଵ଴݌ሻሿ݀݌ிሺܮ   = ߥ ׬ ቂ൫ͳ − ሻ൯ఔିଵ݌ிሺܮ − ሺͳ − ሻఔିଵቃ݌ ሻଵ଴݌ிሺܮ݀   

(1)

(2)= ͳ − ߥ ׬ ௫ఓ ௕௔ݔሻ݀ݔሻఔିଵ݂ሺݔതሺܨ = ଵఓ ׬ ሾܨതሺݔሻ − ௕௔ݔሻఔሿ݀ݔതሺܨ  (Yitzhaki 1983), (3)
where ሻ݌ிሺܮ  ≔ ଵఓ ׬ ሻிషభሺ௣ሻ଴ݔሺܨ݀ݔ  , ሻ݌ଵሺିܨ  = inf௫ ሼܨሺݔሻ ൒ ሽ , and݌ ሻݔതሺܨ  ≔ ͳ −  ,ሻ . In (1)ݔሺܨ

(2) and Kakwani’s formula, ܵܩఔሺܨሻ is expressed using only the Lorenz curve of ܩܵ .ܨଶሺܨሻ 

coincides with the standard Gini index ܩ���ሺܨሻ. As mentioned by Donaldson and Weymark 

(1980, 1983) and Yitzhaki (1983), ߥ specifies the degree of inequality aversion, ranging from 

indifference to inequality (ܵܩఔሺܨሻ →0 as ߥ → ͳ) to the relative maxmin rule (ܵܩఔሺܨሻ → ͳ −ܽ ⁄ߤ  as ߥ → ∞). In this regard, the S-Gini index resembles the Atkinson index (Atkinson 1970). 

Here, we numerically compare the S-Gini and Atkinson indices using the Pareto distribution 



�௖,ఈ, which has the pdf ܿߙఈିݔఈିଵ and Lorenz curve ܮ௉೎,ഀሺ݌ሻ = ͳ − ሺͳ − ሻሺఈିଵሻ݌ ఈ⁄ , ܿ ൑ ݔ ߙ , ∞> > ͳ ; and the reciprocal Pareto distribution ܴ�௖,ఉ , which has the pdf ݔߚఉିଵ ܿఉ⁄   and 

Lorenz curve ሻ݌ோ௉೎,ഁሺܮ  = ሺఉାଵሻ݌ ఉ⁄  ,  Ͳ < ݔ ൑ ܿ , ߚ  > Ͳ .  ܴ�௖,ఉ  is generated by a random 

variable ܿଶ�ିଵ ,  �~�௖,ఉ . As this paper addresses relative (or equivalently scale-invariant) 

indices, �௖,ఈ and ܴ�௖,ఉ are abbreviated as �ఈ and ܴ�ఉ, respectively, hereafter. The S-Gini 

indices for �ఈ and ܴ�ఉ are expressed as  ܵܩఔሺ�ఈሻ = ఔିଵఈఔିଵ (Donaldson and Weymark 1983) and ܵܩఔ൫ܴ�ఉ൯ = ͳ − ߥ ఉାଵఉ ܤ ቀߥ, ఉାଵఉ ቁ, where ܤሺ݌, ,݌ ,ሻݍ ݍ > Ͳ, denotes the beta function. 

The S-Gini and Atkinson indices for �ଶ, �ଵ.ହ, ܴ�ଵ and ܴ�଴.ହ are listed in Tables I and II. The 

formulas of the Atkinson index ܣఌ with parameter � for �ఈ and ܴ�ఉ are listed in Appendix 1. 

When ߥ  → ͳ  and  � → Ͳ , i.e., inequality aversion approaches inequality-neutrality, the 

indices decrease, and simultaneously, their sensitivity to higher values becomes stronger. The 

higher sensitivity (partly) causes higher ratios ܵܩఔሺ�ଵ.ହሻ ⁄ఔሺ�ଶሻܩܵ   and ܣఌሺ�ଵ.ହሻ ⁄ఌሺ�ଶሻܣ   for 

smaller ߥ and �. The generalized entropy (GE) index ܧܩఋ  with parameter �, order-equivalent 

to the Atkinson index ܣଵିఋ, more clearly exhibits sensitivity to higher values because when � 

becomes higher (� becomes lower), the index value ܧܩఋሺ�ఈሻ, ߙ = ʹ and ʹ.ͷ (see Appendix 2) 

and the ratio ܧܩఋሺ�ଵ.ହሻ ⁄ఋሺ�ଶሻܧܩ   become higher in line with A and B. Furthermore, by 

extension to � ൒ ͳ, ܧܩఋ  encompasses higher sensitivity to higher values than ܣఌ. 

 

 

Table I. S- and aS-Gini indices for the Pareto and reciprocal Pareto distributions. 

Index  Distribution
model 

Parameter ߥ 

0.8 1 1.2 1.5 1.8 2 3 4 

ܩܵ ఔ 

�ଶ.ହ n.a. n.a. 0.100 0.182 0.229 0.250  0.308  0.333�ଶ n.a. n.a. 0.143 0.250 0.308 0.333  0.400  0.429�ଶ �ଶ.ହ⁄  n.a. n.a. 1.43 1.38 1.35 1.33  1.30  1.29ܴ�ଵ.ହ n.a. n.a. 0.066 0.147 0.213 0.250  0.386  0.474ܴ�ଵ n.a. n.a. 0.091 0.2000 0.286 0.333  0.500  0.600 ܴ�ଵ ܴ�ଵ.ହ⁄  n.a. n.a. 1.38 1.36 1.34 1.33  1.29  1.27

ܩܵܽ ఔ 

�ଶ.ହ 1.000  0.667 0.500 0.364 0.286 0.250  0.154  0.111�ଶ 1.667  1.000 0.714 0.500 0.385 0.333  0.200  0.143�ଶ �ଶ.ହ⁄  1.67  1.50 1.43 1.38 1.35 1.33  1.30  1.29ܴ�ଵ.ହ 0.394  0.343 0.330 0.294 0.266 0.250  0.193  0.158ܴ�ଵ 0.556  0.480 0.455 0.400 0.357 0.333  0.250  0.200ܴ�ଵ ܴ�ଵ.ହ⁄  1.41  1.40 1.38 1.36 1.34 1.33  1.29  1.27



Table II. Atkinson and GE indices for the Pareto and reciprocal Pareto distributions. 

Index Distribution
model 

Parameter � for the GE Index 

-0.4 0 0.2 0.5 0.8 1 1.4 

Parameter � for the Atkinson Index   

1.4 1 0.8 0.5 0.2     

ܣ ఌ 

�ଶ.ହ 0.130  0.105 0.090 0.063 0.028 n.a. n.a.�ଶ 0.211  0.176 0.153 0.111 0.053 n.a. n.a.�ଶ �ଶ.ହ⁄  1.62  1.67 1.71 1.78 1.88 n.a. n.a.ܴ�ଵ.ହ 0.232  0.144 0.109 0.063 0.023 n.a. n.a.ܴ�ଵ 0.442  0.264 0.196 0.111 0.041 n.a. n.a. ܴ�ଵ ܴ�ଵ.ହ⁄  1.90  1.83 1.81 1.78 1.76 n.a. n.a.

ܧܩ ఋ 

�ଶ.ହ 0.103  0.111 0.116 0.127 0.142 0.156  0.199�ଶ 0.178  0.193 0.205 0.229 0.267 0.307  0.470�ଶ �ଶ.ହ⁄  1.73  1.74 1.76 1.80 1.88 1.97  2.36ܴ�ଵ.ହ 0.199  0.156 0.142 0.127 0.116 0.111  0.103ܴ�ଵ 0.470  0.307 0.267 0.229 0.205 0.193  0.178 ܴ�ଵ ܴ�ଵ.ହ⁄  2.36  1.97 1.88 1.80 1.76 1.74  1.73

 

We define the level-adjusted S-Gini (aS-Gini) index as ܽܵܩఔሺܨሻ ≔ ሻܨఔሺܩܵ ሺߥ − ͳሻ⁄ ; then, 

the smaller ߥ becomes, the higher ܽܵܩఔሺ�ఈሻ becomes (see Table I). Furthermore, by extension 

to Ͳ < ߥ ൑ ͳ as in (4) and (5), ܽܵܩఔ encompasses higher sensitivity to higher values than ܵܩఔ. ܽܵܩఔ is equivalent to ͳ ߥ| − ͳ|⁄  times the Extended S-Gini index (Gisbert et al. 2010) except 

for ߥ = ͳ. The lower limit of ߥ depends on the heaviness of the upper tail; e.g., ߥ > ሻܨఔሺܩܵܽ .ଵ for �ఈିߙ = ቐ ଵఔିଵ ሻܨఔሺܩܵ = ߥ ׬ ሺͳ − ݌ሻఔିଶሾ݌ − ଵ଴݌ሻሿ݀݌ிሺܮ , Ͳ < ߥ ≠ ͳ׬ ௣ି௅ಷሺ௣ሻଵି௣ ଵ଴݌݀ = − ଵఓ ׬ ሻݔതሺܨ log ሻݔതሺܨ ௕௔ݔ݀ , ߥ = ͳ . 
(4)

(5)

3. Complementary level-adjusted S-Gini index for positive 
distributions 

However, Table I shows that the smaller ߥ becomes, the higher ܽܵܩఔ becomes for ܴ�ఉ as well 

as for �ఈ, and the higher its marginal increase rate becomes for a change of ܴ�ఉ to a heavier 

left tail as well as for a change of �ఈ to a heavier right tail; hence, ܽܵܩఔ violates A and B. In 

contrast, Table II indicates that ܧܩఋ is in line with A and B. In fact, ܧܩఋ, Ͳ ൑ � ൑ ͳ, satisfies 

A and B except for particularly heavy-tailed distributions. For such heavy-tailed  �ఈ 

and  ܴ�ఉ , ఋܧܩ    possibly violates both properties near  � = Ͳ  and near  � = ͳ , respectively; 

e.g., Ͳ ൑ � ൑ Ͳ.Ͳͺ for �ଵ.ହ, and Ͳ.ͻʹ ൑ � ൑ ͳ for ܴ�଴.ହ. Nevertheless, ܧܩఋ  can be regarded as 

practically satisfying A and B. This fact relates to the following property of ܧܩఋ: 



Consider Lorenz curves ܮி   and ீܮ   of positive distributions ܨ  and ܩ , respectively; ܮி  and ீܮ   are mutually symmetric with respect to a diagonal other than the equality diagonal, as 

illustrated in Figure 1. Hereafter, I call this symmetric relation between ܨ and ܩ 'L-symmetry'. 

This symmetry is equivalent to the fulfillment of the simultaneous equations (eqs.) in (6). ܧܩఋ  exhibits property (7) regarding L-symmetry (see the appendix of Okamoto 2021): ܮிሺ݌ሻ = ͳ − ݌ and ݍ = ͳ − are mutually L-symmetric ܩ and ܨሻ. (6)ݍሺீܮ ⟹ ሻܨఋሺܧܩ = ሻ. (7)ܩଵିఋሺܧܩ
From (7), for � > �ᇱ > Ͳ.ͷ , if ܧܩఋሺܨሻ > ሻܨఋᇲሺܧܩ > ሻܨଵିఋᇲሺܧܩ > ሻ  and ீாഃሺிమሻீாഃሺிభሻܨଵିఋሺܧܩ >ீாഃᇲሺிమሻீாഃᇲሺிభሻ > ீாభషഃᇲሺிమሻீாభషഃᇲሺிభሻ > ீாభషഃሺிమሻீாభషഃሺிభሻ, then, the inequalities hold in reverse order for ܩ ,ܩଵ, and ܩଶ. 

As  �ఈ  and  ܴ�ఈିଵ  have L-symmetry, property (7) relates to GE’s fulfilment of A and B 

regarding both left and right tails. 

Unlike ܧܩఋ, ܽܵܩఔ does not satisfy (7). Then, to complement ܽܵܩఔ’s failure to satisfy A and 

B, we create an index in the domain of positive distributions using an L-symmetric counterpart: ܽܵܩ௖ ఔሺܨሻ ≔ ሻ. (8)ܩఔሺܩܵܽ

Define the curve ሻ  implicitly for a given positive distributionݍሺܮ   using eqs. (6) (after  ܨ 

replacement of ሻ  withݍሺீܮ  ሻ ). Asݍሺܮ   ሻ  is strictly convex and strictly monotonicallyݍሺܮ 

increasing in addition to fulfilling conditions ܮሺͲሻ = Ͳ and ܮሺͳሻ = ͳ, an underlying positive 

distribution  .ሻ  exists uniquely except for scale-transformation (Thompson 1976)ݍሺܮ for  ܩ 

Hence, the relative index ܽܵܩ௖ ఔሺܨሻ is uniquely determined. Note that ܩ also has its pdf (see 

Appendix 4). From the definition, the sensitivity of ܽܵܩ௖ ఔ to the right/left tail is regarded as 

equivalent to that of ܽܵܩఔ  to the left/right tail if we assume equivalence of the heaviness of the 

right tail of �ఈ to that of the left tail of ܴ�ఈିଵ. From (2) and (6), ܽܵܩ௖ ఔሺܨሻ is expressed as ܽܵܩ௖ ఔሺܨሻ = ൝ ఔఔିଵ ׬ ሾ݌ఔିଵ − ଵ଴݌ሻሿ݀݌ிఔିଵሺܮ , Ͳ < ߥ ≠ ͳ׬ ሾlog ݌ − log ଵ଴݌ሻሿ݀݌ிሺܮ = −ͳ − ׬ log ሻ݌ிሺܮ ଵ଴݌݀ , ߥ = ͳ . 

(9)

(10)

The lower limit of ߥ  depends on the heaviness of the left tail of the distribution; e.g., ߥ >ሺߚ + ͳሻିଵ  for ܴ�ఉ . ܽܵܩ௖ ఔ  is qualified as a relative inequality measure from (9) and (10). 

Clearly, ܽܵܩ௖ ଶሺܨሻ = ሻܨଶሺܩܵܽ = ሻܨଶሺܩܵ =  .ሻܨሺ���ܩ

Theorem 1: For a positive distribution ܨ and its L-symmetric counterpart ܩ, assume that ܮி 

and ீܮ  cross each other only once at their common Kolkata index ݌௄ (Chatterjee et al. 2017), 

defined as ݌௄ s.t. ݌௄ + ௄ሻ݌ுሺܮ = ͳ for ܪ = ,ܨ ሻ݌ிሺܮ and ,(see Figure 1) ܩ ⋚ ݌ ,ሻ݌ሺீܮ ⋚  ,௄݌

i.e., / ிܮ  ீܮ   exhibits imbalance toward the lower/higher classes. 1  Then, ሻܨఔሺܩܵܽ  ⋚
 

1  Relations of a L-symmetric pair of distributions with the Kolkata, Gini (and some other symmetric) indices have been 



௖ܩܵܽ ఔሺܨሻ, ߥ ⋚ ʹ. (The proof is given in Appendix 5.) 

As a pair ܴ�ఈିଵ and �ఈ satisfy the prerequisites in Theorem 1 (see Appendix 6), Theorem 1 

indicates that a pair ܽܵܩఔ  and ܽܵܩ௖ ఔ  satisfy D-(i) for ߥ < ʹ and for ߥ > ʹ (if their roles are 

mutually interchange). As the index values of ܽܵܩఔ in the rows for ܴ�ଵ.ହ and ܴ�ଵ in Table I 

coincide with those of ௖ܩܵܽ  ఔ   for  �ଶ.ହ  and  �ଶ , respectively, the table can be regarded as 

illustrating the order relations between ܽܵܩఔ and ܽܵܩ௖ ఔ in Theorem 1. However, the table also 

shows that the ratio ఔሺ�ଶሻܩܵܽ  ⁄ఔሺ�ଶ.ହሻܩܵܽ   is higher than ௖ܩܵܽ  ఔሺ�ଶሻ ௖ܩܵܽ ఔሺ�ଶ.ହሻ⁄   even 

if ߥ > ʹ, indicating that the pair fails to satisfy E for ߥ > ʹ. Hence, we should be cautious about 

the uses of the pair with ߥ > ʹ as a pair of sensitivity-adjustable measures. Numerical analysis 

shows that a pair ܽܵܩఔ and ܽܵܩ௖ ఔ satisfy D-(ii) for ߥ < ʹ. This pair also satisfies E except for 

particularly heavy-tailed  �ఈ  with ߙ  ൑ ͳ.͸͹  and  ܴ�ఉ  with ߚ  ൑ Ͳ.͸͹  for ߥ  < ʹ . In such 

exceptional cases, the pair can violate E near ߥ  = ʹ;  e.g.,  ͳ.ͺͳ ൑ ߥ < ʹ  for  �ଵ.ହ  and ܴ�଴.ହ (see Figure 2). Nevertheless, the pair can be regarded as practically satisfying D and E. 2 

Fig. 1. Mutually symmetric 
Lorenz curves. 

 
Fig. 2. Increase rate of ܽܵܩఔ relative to that of ܽܵܩఔ௖  when �ఈା∆ఈ changes to �ఈ, ߙ = ͳ.ͷ or ͵, ∆ߙ = Ͳ.Ͳͳ. 

Note. The relative increase rate is calculated as 
௔ௌீഌሺ௉ഀ ሻ ௔ௌீഌሺ௉ഀ శ∆ഀሻ⁄௔ௌீഌ೎ ሺ௉ഀ ሻ ௔ௌீഌ೎ ሺ௉ഀ శ∆ഀሻൗ .

4. Extension to distributions containing nonpositive values 
The S- and aS-Gini indices are naturally extended to distributions containing negative values. 

If the infimums are finite, the Atkinson and GE indices also become applicable by adding an 
 

essentially mentioned or illustrated in the literature frequently although most of them did not particularly pay attention to the 
Kolkata index. Banerjee et al. (2020) exceptionally focused on properties of this characteristic point of the Lorenz curve. 
2 The double-Pareto distribution ݀�ఈ,ఉ  (Reed 2003), or, equivalently, log-asymmetric Laplace distribution can also be used as 
the reference distribution instead of a pair �ఈ  and ܴ�ఉ. ݀�ఈ,ఉ  is generated by a product of two mutually independent random 
variables following �ఈ  and ܴ�ఉ. ݀�ఈ,ఉ  and ݀�ఉାଵ,ఈିଵ have L-symmetry, and the pair satisfies the prerequisites in Theorem 1. 
The same conclusion is drawn for ܽܵܩఔ  and ܽܵܩ௖ ఔ  from the use of ݀�ఈ,ఉ  as the reference distribution. 
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appropriate constant value to the variables; however, it is practically difficult to employ this 

simple method if the infimums vary depending on the distributions or a suitable common 

constant value is not definite. Here, we extend the caS-Gini index for ߥ > ͳ to distributions 

containing negative values as in (11). The rates of change of ܽܵܩ௖ ఔሺܨሻ in (11) by an increase 

in the constant value  ܿ  depend on the distributions even if the means are the same; in 

contrast, ܽܵܩఔሺܨሻ is reduced by ܿ ሺߤ + ܿሻ⁄ × ͳͲͲ% for any distribution. ܽܵܩ௖ ఔሺܨሻ = ఔఔିଵ ׬ ሾ݌ఔିଵ − sgn ሻ݌ிሺܮ ∙ ଵ଴݌ሻሿ݀݌ி|ఔିଵሺܮ| ߥ , > ͳ, 3 (11)

where sgn ݍ ≔ ͳ for ݍ > Ͳ, Ͳ for ݍ = Ͳ, and −ͳ for ݍ < Ͳ. Extension (11) retains the index 

properties required as a relative inequality measure and the equality ܽܵ௖ ሻܨଶሺܩ = ሻܨଶሺܩܵܽ ሻܨଶሺܩܵ= = ,ሻ . Note that, from (11)ܨሺ���ܩ ௖ܩܵܽ  ఔሺܨሻ  can be geometrically expressed as ߥ ሺߥ − ͳሻ⁄  times the area of a figure enclosed by the transformed egalitarian curve ݌ఔିଵ and 

transformed Lorenz curve sgn ሻ݌ிሺܮ ∙ ߥ ሻ . The expression for݌ி|ఔିଵሺܮ| = ʹ  coincides with 

the well-known geometric expression of . ሻܨሺ���ܩ  ௖ܩܵܽ  ఔሺܨሻ → Ͳ  as ߥ  → ∞ . ௖ܩܵܽ  ఔሺܨሻ →∞  as ߥ  → ͳ  if ܨ  has a point mass at zero or negative values.  ሺߥ − ͳሻ ∙ ௖ܩܵܽ ఔሺܨሻ ிିଵሺͲሻ  ifܮ→ → is nonnegative and  ܨ  ிିଵሺͲሻ  otherwise asܮʹ ߥ  → ͳ , where ிିଵሺͲሻܮ  ≔max௣ ሼܮிሺ݌ሻ ൑ Ͳሽ. Hence, if both ܨ and ܩ contain negative values, ܽܵܩ௖ ఔሺܨሻ ௖ܩܵܽ ఔሺܩሻ⁄ ிିଵሺͲሻܮ→ ⁄ଵሺͲሻିீܮ  as ߥ → ͳ. The limiting cases indicate that 'zero' has a particular meaning as a 

threshold value for ሺߥ − ͳሻ ∙ ௖ܩܵܽ ఔ  if ߥ is close to 1. The following theorem holds: 

Theorem 2: Assume that ி  satisfiesܮ ,contains nonpositive values  ܨ   ͳ − ݌ ൒ , ሻ݌ிሺܮ−  Ͳ ݌> < ͳ , and ሻ݌ிశሺܮ  ≔ maxሼͲ,  ;ሻሽ  crosses its L-symmetric counterpart only once݌ிሺܮ

then, ሻܨఔሺܩܵܽ  ⋚ ௖ܩܵܽ ఔሺܨሻ  for ߥ  ⋚ ʹ . Furthermore, if ሻܨఔሺܩcontains negative values, then หܽܵ  ܨ  − ௖ܩܵܽ ఔሺܨሻห > หܽܵܩఔሺܨାሻ − ௖ܩܵܽ ఔሺܨାሻห, where ܨା is an underlying distribution 

of ܮிశ; i.e., ܨାሺݔሻ ≔ ݔ ሻ forݔሺܨ ൒ Ͳ and Ͳ otherwise. (The proof is given in Appendix 7.) 

Regarding distributions containing small portions of negative values such as household net 

wealth distributions, there exist neither standard models for size distributions nor established 

definitions of the heaviness of the left tails. Here, we adopt the three-parameter reciprocal 

Pareto-negative uniform distribution  ܴ���ఉ,௣బ,௫బ , as a reference distribution with an 

adjustable heaviness of the left tail, in addition to the Pareto distribution �ఈ, as one with an 

 
3  Some researchers have proposed transformations of net wealth to ease difficulties in processing data for statistical and 
analytical purposes such as graphical representations and measurements of inequality. The variant of the log-transformation of 
Biewen et al. (2021) has a form resembling that of the transformation of the Lorenz curve in (11). The concave log-like 
transformation of Ravallion (2017) is for inequality measurements. Unlike those transformations, ܽܵܩ௖ ఔ employs a power 
function to transform the Lorenz curve (instead of the original variable) for inequality measurements. 



adjustable heaviness of the right tail. ܴ���ఉ,௣బ,௫బ   is defined as a distribution that has the 

pdf  ݂ሺݔሻ = ଴݌ ⁄|଴ݔ|   for ଴ݔ  ൑ ݔ ൑ Ͳ  and  ሺͳ − ఉିଵ  forݔߚ଴ሻ݌  Ͳ < ݔ ൑ ͳ , where ߚ  > Ͳ ,  Ͳ ଴݌> ൑ Ͳ.ʹ , and  −Ͳ.ͳ ൑ ଴ݔ < Ͳ . We regard the changes  ܴ���ఉ,௣బ,௫బ → ܴ���ఉ,௞௣బ,௫బ  and ܴ���ఉ,௣బ,௫బ → ܴ���ఉ,௞௣బ,௞ᇲ௫బ , ͳ < ݇ᇱ ൑ ݇ , as changes to heavier left tails. The formulas 

of ܽܵܩఔ and ܽܵܩ௖ ఔ  for ܴ���ఉ,௣బ,௫బ   are given in Appendix 3. Table III presents numerical 

examples. Regarding the right-tail, a pair ఔ  andܩܵܽ  ௖ܩܵܽ  ఔ , ߥ  < ʹ , practically satisfy 

properties D and E, as explained in the previous section. The Lorenz curve of ܴ���ఉ,௣బ,௫బ  is 

proven to satisfy the conditions in Theorem 2 in a similar manner as that of ܴ�ఉ. Hence, a 

pair ܽܵܩఔ  and ܽܵܩ௖ ఔ , ߥ < ʹ , satisfy D-(i). Numerical calculation shows that the pair also 

satisfies D-(ii), as does E, if the condition ିܮଵሺͲሻ < Ͳ.ͷ is imposed, unless positive values are 

intensively concentrated near zero as with ߚ < Ͳ.Ͷ for E-(i) and unless ߥ < ͳ.ʹ for E-(ii); e.g., 

the relative marginal increase rate of ܽܵܩఔ௖ ൫ܴ���ఉ,௣బ,௫బ൯ for ߥ ൑ ͳ.ͳ obtained by a change 

to a heavier left tail is possibly slightly lower than the corresponding rate for ߥ = ͳ.ʹ if ߚ >Ͷ.ͺ  and ݌଴  is relatively large (near 0.2) (see Figure 3). Still, the indices are considered to 

practically satisfy D and E although further elaboration may be desirable for the relevant 

reference distributions. 

Table III. aS- and caS-Gini indices for the reciprocal Pareto-negative uniform distribution. 

Index Distribution 
model 

Parameter ν 

1 1.2 1.5 1.8 2 3 4 

ܩܵܽ ఔ 

ܴ���ଵ,଴.ଵ,ି଴.ଵ 0.623 0.566 0.498 0.445 0.415  0.311  0.249ܴ���ଵ,଴.ଶ,ି଴.ଵ 0.766 0.693 0.607 0.539 0.501  0.369  0.291ܴ���ଵ,଴.ଶ,ି଴.ଶ 0.810 0.736 0.646 0.576 0.537  0.401  0.319ܴ���ଵ,଴.ଶ,ି଴.ଵ ܴ���ଵ,଴.ଵ,ି଴.ଵ⁄  1.23 1.22 1.22 1.21 1.21  1.19  1.17 ܴ���ଵ,଴.ଶ,ି଴.ଶ ܴ���ଵ,଴.ଵ,ି଴.ଵ⁄  1.30 1.30 1.30 1.29 1.29  1.29  1.28 

ܩܵܽ ఔ௖
 

ܴ���ଵ,଴.ଵ,ି଴.ଵ n.a. 1.798 0.743 0.498 0.415  0.234  0.164ܴ���ଵ,଴.ଶ,ି଴.ଵ n.a. 2.761 1.000 0.619 0.501  0.268  0.185 ܴ���ଵ,଴.ଶ,ି଴.ଶ n.a. 3.244 1.139 0.677 0.537  0.276  0.190 ܴ���ଵ,଴.ଶ,ି଴.ଵ ܴ���ଵ,଴.ଵ,ି଴.ଵ⁄  1.68# 1.54 1.35 1.24 1.21  1.15  1.13 ܴ���ଵ,଴.ଶ,ି଴.ଶ ܴ���ଵ,଴.ଵ,ି଴.ଵ⁄  1.94# 1.80 1.53 1.36 1.29  1.18  1.16 
# Ratios of ିܮଵሺͲሻ for ܴ���ଵ,଴.ଶ,ି଴.ଵ and ܴ���ଵ,଴.ଶ,ି଴.ଶ to that for ܴ���ଵ,଴.ଵ,ି଴.ଵ. 

5. Empirical example 

As an empirical application, I apply the aS- and caS-Gini indices to measure inequalities in the 

1995-2016 US per-adult net wealth distributions obtained from public-use microdata of the 

triennial Survey of Consumer Finances. The net wealth owned by a two-parent family is 



equally divided between the parents for the calculations. The index formulas for the sample 

survey data are given in Appendix 8. The estimates for 1995 and 2016 are listed in Table IV. 

The Lorenz curve for 2016 is lower than that for 1995 except for the lowest 0.1%; hence, the 

distribution in 1995 'almost' Lorenz dominates that in 2016. 

The per-adult net wealth distributions in years after the 2007-2008 financial crisis satisfy the 

conditions in Theorem 2, whereas the earlier distributions fail to satisfy the conditions. 

Nevertheless, the order relation ܽܵܩఔ ⋚ ௖ܩܵܽ ఔ  for ߥ ⋚ ʹ holds even before 2008. Although a 

substantial expansion of the share of the wealthiest 5% of adults draws attention (see Table V), 

the higher increase rate of ௖ܩܵܽ  ఔ   relative to that of ఔܩܵܽ    for ߥ  < ʹ  indicates that the 

distributional change on the lower tail contributed to the inequality rise more than that on the 

higher tail. Figure 4 illustrates the increases in ܽܵܩଵ.ହ and ܽܵܩ௖ ଵ.ହ and the standard Gini index 

from 1995 for each survey year. A drastic increase in adults holding excess debt caused a surge 

in ௖ܩܵܽ  ଵ.ହ  after the outbreak of the financial crisis (see also Table VI), whereas 

neither ܽܵܩଵ.ହ nor the standard Gini index shows the corresponding clearly visible indication.4 

Figure 4 also implies that we should care about differences in the level of sensitivity to 

distributional changes between the pair ܽܵܩఔ  and ܽܵܩ௖ ఔ and the standard Gini index. 

Table IV. aS- and caS-Gini indices for US per-adult net wealth distributions. 

Index Year 
Parameter ߥ 

1 1.2 1.5 1.8 2 3 4 

ܩܵܽ ఔ 1995 2.847  1.900 1.239 0.913 0.777 0.445  0.313  
2016 3.217  2.127 1.373 1.002 0.846 0.473  0.327  

2016/1995 1.13  1.12 1.11 1.10 1.09 1.06  1.05  

ܩܵܽ ఔ௖
 1995 n.a. 2.625 1.288 0.917 0.777 0.445  0.311  

2016 n.a. 3.445 1.502 1.018 0.846 0.464  0.319  
2016/1995 1.53# 1.31 1.17 1.11 1.09 1.04  1.02  

# Ratio of ିܮଵሺͲሻ for 2016 to that for 1995. 

Table V. Share of net wealth by rank-group of per-adult net wealth in the US. 

Year Bottom10% 10-50% 50-90% 90-95% Top5% 

1995 -0.003 0.045 0.296 0.114 0.547  
2016 -0.005 0.021 0.233 0.120 0.631  

2016−1995 -0.002 -0.024 -0.064 0.006 0.084  
2016/1995 1.68 0.46 0.79 1.05 1.15  

 
4 The Zanardi index, a skewness measure for the Lorenz curve studied by Clementi et al. (2019a, 2019b), decreased from 
+0.003 for 1995 to -0.011 for 2016. This recent inclination to imbalance toward the lower classes also indicates that a drastic 
increase in adults holding excess debts contributed to the rising inequality in the US net wealth distribution more than a 
substantial expansion of the wealthiest’ share. However, this example appears to contradict the views of Clementi et al. on the 
inequality measurement. 



Table VI. Summary statistics for adults holding zero or negative net wealth in the US. 

Year 

Zero net 
wealth 

 
 
 

Negative net wealth (excess debt) ିܮଵሺͲሻ 
Population* 

share 
Population* 

Share 
Ratio to# 

ave. income
Ratio to## 

ave. wealth

1995 0.019  0.062 -0.230 -0.048 0.228  

2016 0.004  0.100 -0.340 -0.050 0.350  
* Population shares in all adults. # Ratio of the average excess debt to the average disposable 
income of all adults. ## Ratio of the average excess debt to the average net wealth of all adults. 

 
Fig. 3. Increase rate of ܽܵܩఔ௖  relative to 

that of ܽܵܩఔ  when ܴ���ఉ,଴.ଵ,ି଴.ଵ
changes to ܴ���ఉ,଴.ଶ,ି଴.ଵ, ߚ = ʹ or ͳͲ.

Note. The relative increase rate is calculated 
as ௔ௌீഌ೎ ൫ோ௉ே௎ഁ,బ.మ,షబ.భ൯ ௔ௌீഌ೎ ൫ோ௉ே௎ഁ,బ.భ,షబ.భ൯ൗ௔ௌீഌ൫ோ௉ே௎ഁ,బ.మ,షబ.భ൯ ௔ௌீഌ൫ோ௉ே௎ഁ,బ.భ,షబ.భ൯ൗ . 

 

Fig. 4. Inequality in US per-adult net wealth
distributions, 1995–2016 (1995 = 1.0). 

* The α-Gini index (Chameni 2006) with α=1.3. This index 
is sensitive to distributional changes at low- and upper-
ends. 

** The ܧܩ଴-like index of Ravallion (2017) with the scale-
adjustment para. set to a reciprocal of 10 times the 
average net wealth. This scale-dependent index is 
particularly sensitive to the existence of large negative 
values. 

Note. Changes of the E-Gini index (Chakravrty 1988) with 
para.൑ Ͷ are close to the Gini index. 

6. Concluding remarks 

As mentioned above, for applications of a pair of the aS- and caS-Gini indices as sensitivity-

adjustable indices, it would be better to set ߥ < ʹ. 5 The empirical example illustrates a notable 

difference between the two indices when applied to distributions containing negative values. 

References 

 
5  If users place importance on specific properties such as the principle of positional transfer sensitivity (Mehran 1976, 
Kakwani 1980, Zoli 1999), it might be better to set ߥ > ʹ. 
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Appendices 

Appendix 1. Atkinson indices for the Pareto and reciprocal Pareto distributions: ܣఌሺ�ఈሻ = ቐͳ − ఌߙ ሺଵିఌሻ⁄ ఈିଵሺఈିଵାఌሻభ ሺభషഄሻ⁄ , Ͳ < � ≠ ͳͳ − ఈିଵఈ ݁ భഀ ,                               � = ͳ ఌ൫ܴ�ఉ൯ܣ , = ቐͳ − ఌߚ ሺଵିఌሻ⁄ ఉାଵሺఉାଵିఌሻభ ሺభషഄሻ⁄ ,   Ͳ < � ≠ ͳͳ − ఉାଵఉ ݁ିభഁ ,                             � = ͳ . 

Appendix 2. GE indices for the Pareto and reciprocal Pareto distributions: 

ఋሺ�ఈሻܧܩ =
۔ۖەۖ
ۓ ଵఋሺఋିଵሻ ቀఈభషഃሺఈିଵሻഃఈିఋ − ͳቁ , � ≠ Ͳ, ͳ− ଵఈ + log ఈఈିଵ ,                   � = Ͳଵఈିଵ − log ఈఈିଵ ,                   � = ͳ , 



ఋ൫ܴ�ఉ൯ܧܩ =
۔ۖەۖ
ۓ ଵఋሺఋିଵሻ ቀఉభషഃሺఉାଵሻഃఉାఋ − ͳቁ , � ≠ Ͳ, ͳଵఉ − log ఉାଵఉ ,                       � = Ͳ− ଵఉାଵ + log ఉାଵఉ ,               � = ͳ . 

Appendix 3. aS- and caS-Gini indices for the reciprocal Pareto-negative uniform distribution ܴ���ఉ,௣బ,௫బ, ߚ > Ͳ, Ͳ < ଴݌ < ͳ, −ʹ ଵି௣బ௣బ ఉఉାଵ < ଴ݔ < Ͳ: 

ఔ൫ܴ���ఉ,௣బ,௫బ൯ܩܵܽ = ቊ ଵఔିଵ ሺͳ + ଵܫ + ߥ   ,ଶሻܫ ≠ ͳܬଵ + ଶܬ + ߥ            ,ଷܬ = ͳ,  

where ܫଵ = ߥሺߥ − ͳሻ ௦బ௣బమ ቂሺʹ݌଴ − ͳሻ ଵିሺଵି௣బሻഌషభఔିଵ + ʹሺͳ − ଴ሻ݌ ଵିሺଵି௣బሻഌఔ − ଵିሺଵି௣బሻഌశభఔାଵ ቃ;  ܫଶ = ଴ሺͳ�ߥ − ଴ሻఔିଵ݌ − ሺͳߥ + �଴ሻሺͳ − ଴ሻఔିଵ݌ ఉାଵఉ ܤ ቀߥ, ͳ + ଵఉቁ;  ܬଵ = ቂ−ͳ + ௦బ௣బమ ሺͳ − ଴ሻቃ݌ʹ logሺͳ − ଴ሻ݌ + ௦బ௣బ ቀͳ − ଷଶ ଴ቁ݌ − ଶܬ  ;଴݌ = �଴ሺͳ − ଷܬ ,଴ሻ݌ = ሺͳ + �଴ሻ ቀ� ቀʹ + ଵఉቁ − �ሺͳሻ − ͳ + ଴ቁ;  �଴݌ = ଴݌− ௫బଶ ቀ݌଴ ௫బଶ + ሺͳ − ଴ሻ݌ ఉఉାଵቁൗ , i.e., the absolute share of negative values; �ሺݔሻ = Ȟᇱሺݔሻ Ȟሺݔሻ⁄ , i.e., the digamma function, ܽܵܩఔ௖ ൫ܴ���ఉ,௣బ,௫బ൯ = ଵఔିଵ ሺͳ + ଵܭ + ଶܭ −   ,ଷሻܭ

where ܭଵ = ଵܤ଴݌ଶఔିଵ�଴ఔିଵʹߥ ଶ⁄ ሺߥ, ଶܭ ;ሻߥ = ሺͳߥ − ଴ሻ�଴ఔିଵ݌ ቀ �Ͳͳ+�Ͳቁߚ ሺߚ+ͳሻ⁄ ͳ+ߚߚ ܤ ቀ ͳ+ߚߚ , ଷܭ  ;ቁߥ = ߥ ଵି௣బଵା௦బ ఉఉାଵ ∑ ሺଵ ሺఉାଵሻ⁄ ሻ೔௜! ଵሺଵା௦బሻ೔ ,ߥሺܤ � + ͳሻஶ௜ୀ଴  , ቀ ଵఉାଵቁ௜ = ଵఉାଵ ቀ ଵఉାଵ + ͳቁ ⋯ ቀ ଵఉାଵ +� − ͳቁ for � = ͳ,ʹ, ⋯ or ͳ for � = Ͳ. 

Appendix 4. Proof that if the positive distribution ܩ is mutually L-symmetric with the positive 

distribution ܨ that has pdf ݂, then ܩ also has its pdf: 

Proof: From (6), ܮி൫ܨሺݔሻ൯ = ͳ − ሻݔሺܨ ;ሻݕሺܩ = ͳ − ሻ൯;  ௫ఓಷݕሺܩ൫ீܮ ሻݔሺܨ݀ = ሻݔሺܨ݀ ;ሻݕሺܩ݀− = − ௬ఓಸ ݕ ,ሻ; and henceݕሺܩ݀ = ி೎ߤிߤ ⁄ݔ ሻݕሺܩ݀ , = − ௫ఓಷ ݂ሺݔሻ݀ݔ = ఓಷఓಸమ௬య ݂ ቀఓಷఓಸ௬ ቁ  .ݕ݀

Thus, ܩ has pdf ݃ሺݕሻ = ଶீߤிߤ ⁄ଷݕ ∙ ݂ሺߤிீߤ ⁄ݕ ሻ, identical to Taguchi’s formula (1968).         ฀ 

Appendix 5. Proof of Theorem 1: 

Apply Theorem A1 (with a slight modification as explained below the theorem) to a pair ܨ and ܩ . Note that ሻܩఔሺܩܵܽ  = ௖ܩܵܽ ఔሺܨሻ  and ሻܨଶሺܩܵܽ  = ௖ܩܵܽ ଶሺܨሻ =  ሻ , the Kolkataܨሺ���ܩ

indices for ܨ and ܩ are identical, and ܮி crosses ீܮ  at least at the Kolkata index.       ฀ 

Theorem A1 (Yitzhaki 1983): Assume that ி  crossesܮ  ீܮ    once at  Ͳ < ଴݌ < ͳ , ܮிሺ݌ሻ ݌ ሻ for݌ሺீܮ⋛ ⋚ ሻܨఔబሺܩܵ .଴ s.tߥ∃ ଴, and݌ = ሻܨఔሺܩܵ ,ሻ thenܩఔబሺܩܵ ⋚ ߥ ሻ forܩఔሺܩܵ ⋚  .଴ߥ



Theorem A1 can be applied to ܽܵܩఔ, ߥ > Ͳ, with a slight modification of the proof. 

Appendix 6. Proof that a pair ܴ�ఈିଵ and �ఈ, ߙ > ͳ satisfy the prerequisite of Theorem 1: 

First, we introduce the following lemma: 

Lemma A2: Let the cdfs of positive distributions ܨ and ܩ with equal means be continuous and 

strictly increasing. If ܨ  and ܩ  (or equivalently, ିܨଵ  and ିܩଵ ) intersect twice and the sign 

sequence of ሻݔሺܨ  − ሻ  isݔሺܩ  +, −, +  (that of ିܨଵሺ݌ሻ − ሻ  is݌ଵሺିܩ  −, +, − ), then ீܮ ி  crossesܮ   once at some ݌଴, and ܮிሺ݌ሻ ⋚ ݌ ሻ for݌ሺீܮ ⋚  ଴. 6݌

Proof: Let ሻ  and݌ଵሺିܨ  ሻ  cross at݌ଵሺିܩ   ܽ  and  ܾ ,  Ͳ < ܽ < ܾ < ͳ ; then, ሻ݌ிሺܮ  −  ሻ݌ሺீܮ

decreases for Ͳ ൑ ݌ ൑ ܽ  and ܾ ൑ ݌ ൑ ͳ  and increases for ܽ < ݌ < ܾ  in the strict sense. 

As ܮிሺ݌ሻ − ሻ݌ሺீܮ = Ͳ at ݌ = Ͳ,ͳ, the lemma must hold.        ฀ 

Let and  ܨ  denote the cdfs of  ܩ   ܴ�ఈିଵ  and  �ఈ  normalized to have means of one; then, ିܨଵሺ݌ሻ = ఈఈିଵ ݌ భഀషభ  and ሻ݌ଵሺିܩ  = ఈିଵఈ ሺͳ − ሻିభഀ݌
 . Consider the ratio  ℛሺ݌ሻ ሻ݌ଵሺିܨ= ⁄ሻ݌ଵሺିܩ = ݌ܭ భഀషభሺͳ − ሻభഀ݌

ܭ ,  = ቀ ఈఈିଵቁଶ
 . ℛሺ݌ሻ  has an inverted U-shape in the sense 

that ℛሺ݌ሻ  attains its maximum at ݌௠ = ߙ ሺʹߙ − ͳሻ⁄  ; ℛሺͲሻ, ℛሺͳሻ = Ͳ ; and ℛሺ݌ሻ  increases 

for Ͳ ൑ ݌ ൑ ௠݌ ௠ and decreases for݌ < ݌ ൑ ͳ in the strict sense. As ℛሺ݌ሻ ranges from zero 

to a maximum larger than unity, it coincides with unity at two points. This means 

that ଵ  andିܨ  ଵ  cross twice with the sign sequenceିܩ   −, +, − . Thus, from Lemma 

A2, ܮி  crosses ீܮ  once (at the Kolkata index common to ܴ�ఈିଵ and �ఈ). 

A pair of double-Pareto distributions ݀�ఈ,ఉ and ݀�ఉାଵ,ఈିଵ, ߙ > ߚ + ͳ, ߚ > Ͳ (see footnote 

2) are also proved to satisfy the prerequisite in Theorem 1 in a similar manner.          ฀ 

Appendix 7. Proof of Theorem 2: 

First, assume that ܨ is a nonnegative distribution with a point mass at zero and, at the same 

time, ܨ satisfies the conditions in the theorem. In this case, −ܮிሺ݌ሻ ൑ Ͳ ൑ ͳ − for Ͳ ݌ < ݌ <ͳ, and ܨା = ிశܮ ,ܨ = ீܮ ி. Letܮ  and ݌௄ denote the curve symmetric to ܮி with respect to a 

diagonal other than the equality diagonal and the Kolkata index for ܨ, respectively. Define a 

Lorenz curve ܮሺ௞ሻ as follows: ܮሺ௞ሻሺ݌ሻ ≔ max ቄܮிሺ݌ሻ, ଵ௞ ݇ ,ሻቅ݌ሺீܮ = ʹ, ͵, ⋯. 

Let ሺ௞ሻ  denoteܨ  ሺ௞ሻ ’s underlying distribution. Asܮ  ሻ݌ሺ௞ሻሺܮ  բ ሻ  when݌ிሺܮ  ݇ → ∞ , 

 
6 If ܨ and ܩ intersect once, and the sign sequence of ܨሺݔሻ − ,− ሻ isݔሺܩ +, then ܮி   does not intersect with ீܮ , and ܮி > ீܮ  
(Theorem 3.A.44 of Shaked and Shanthikumar 2006). 



ሺ௞ሻ൯ܨఔ൫ܩܵܽ ա ௖ܩܵܽ ሻ andܨఔሺܩܵܽ ఔ൫ܨሺ௞ሻ൯ ա ௖ܩܵܽ ఔሺܨሻ when ݇ → ∞. From (4), for ݇ < ሺ௟ሻ൯ܨఔ൫ܩܵܽ ,݈ − ሺ௞ሻ൯ܨఔ൫ܩܵܽ = ߥ ׬ ሺͳ − ሻ݌ሺ௞ሻሺܮሻఔିଶൣ݌ − ଵ଴݌ሻ൧݀݌ሺ௟ሻሺܮ = ሺ∗ሻ. (A3)

As  ͳ − ݌ > ሻ  and݌ሺ௞ሻሺܮ ሻ݌ሺ௞ሻሺܮ  ൒ ሻ for݌ሺ௟ሻሺܮ ݌  < ሻ݌ሺ௞ሻሺܮ  , ௄݌ > ݌ ሻ  near݌ሺ௟ሻሺܮ = Ͳ , and ܮሺ௞ሻሺ݌ሻ = ݌ ሻ for݌ሺ௟ሻሺܮ ൒ ௄, for ͳ݌ < ߥ < ʹ, ሺ∗ሻ < ߥ ׬ ሻ݌ሺ௞ሻሺܮሻఔିଶൣ݌ሺ௞ሻሺܮ − ଵ଴݌ሻ൧݀݌ሺ௟ሻሺܮ   < ఔఔିଵ ׬ ሻఔିଵ݌ሺ௞ሻሺܮൣ − ଵ଴݌ሻఔିଵ൧݀݌ሺ௟ሻሺܮ = ௖ܩܵܽ ఔ൫ܨሺ௟ሻ൯ − ௖ܩܵܽ ఔ൫ܨሺ௞ሻ൯. 
(A4)

The right-most equation is derived from (9). Analogously, for ʹ < ሺ∗ሻ ,ߥ > ߥ ׬ ሻ݌ሺ௞ሻሺܮሻఔିଶൣ݌ሺ௞ሻሺܮ − ଵ଴݌ሻ൧݀݌ሺ௟ሻሺܮ   > ఔఔିଵ ׬ ሻఔିଵ݌ሺ௞ሻሺܮൣ − ଵ଴݌ሻఔିଵ൧݀݌ሺ௟ሻሺܮ = ௖ܩܵܽ ఔ൫ܨሺ௟ሻ൯ − ௖ܩܵܽ ఔ൫ܨሺ௞ሻ൯. 
(A5)

As a pair of ܨሺ௞ሻ and its L-symmetric counterpart ܩሺ௞ሻ satisfy the conditions in Theorem 1, ܽܵܩఔ൫ܨሺ௞ሻ൯ < ௖ܩܵܽ ఔ൫ܨሺ௞ሻ൯ for ͳ < ߥ < ʹ. Hence, from (A4), ܽܵܩఔሺܨሻ = lim௟→ஶൣܽܵܩఔ൫ܨሺ௟ሻ൯ − ሺ௞ሻ൯൧ܨఔ൫ܩܵܽ + >  ሺ௞ሻ൯ܨఔ൫ܩܵܽ lim௟→ஶൣ ௖ܩܵܽ ఔ൫ܨሺ௟ሻ൯ − ௖ܩܵܽ ఔ൫ܨሺ௞ሻ൯൧ + ௖ܩܵܽ ఔ൫ܨሺ௞ሻ൯ = ௖ܩܵܽ ఔሺܨሻ. 
(A6)

Analogously, for ߥ > ʹ, from (A5), ܽܵܩఔሺܨሻ > ௖ܩܵܽ ఔሺܨሻ. (Α7)

Next, assume that ܨ is a distribution containing negative values; then, (A6) and (A7) hold 

for ܨା , an underlying distribution of ሻ݌ிశሺܮ  ≔ maxሼͲ,  ሻሽ . Then, we evaluate the݌ிሺܮ

differences between the indices for ܨ and ܨା in a similar way as (A3) - (A5), as follows: ܽܵܩఔሺܨሻ − ାሻܨఔሺܩܵܽ = ߥ ׬ ሺͳ − ሻ݌ிశሺܮሻఔିଶሾ݌ − ଵ଴݌ሻሿ݀݌ிሺܮ = ሺ∗∗ሻ. (A8)

From the assumption, ܮிశሺ݌ሻ = Ͳ  and  ͳ − ݌ ൒ ሻ|  for݌ிሺܮ| ሻ݌ிሺܮ .s.t  ݌  < Ͳ , and ሻ݌ிశሺܮ  ሻ݌ிሺܮ .s.t ݌ ሻ for݌ிሺܮ= ൒ Ͳ. Hence, for ͳ < ߥ < ʹ, ሺ∗∗ሻ < ߥ ׬ ሻ݌ிశሺܮሻ|ఔିଶሾ݌ிሺܮ| − ଵ଴݌ሻሿ݀݌ிሺܮ . < ఔఔିଵ ׬ ሾܮிశሺ݌ሻఔିଵ − sgn ሻ݌ிሺܮ ∙ ଵ଴݌ሻ|ఔିଵሿ݀݌ிሺܮ| = ௖ܩܵܽ ఔሺܨሻ − ௖ܩܵܽ ఔሺܨାሻ, 
(A9)

and for ߥ > ʹ, ሺ∗∗ሻ > ߥ ׬ ሻ݌ிశሺܮሻ|ఔିଶሾ݌ிሺܮ| − ଵ଴݌ሻሿ݀݌ிሺܮ . > ఔఔିଵ ׬ ሾܮிశሺ݌ሻఔିଵ − sgn ሻ݌ிሺܮ ∙ ଵ଴݌ሻ|ఔିଵሿ݀݌ிሺܮ| = ௖ܩܵܽ ఔሺܨሻ − ௖ܩܵܽ ఔሺܨାሻ. 
(A10)

As ܽܵܩఔሺܨାሻ < ௖ܩܵܽ ఔሺܨାሻ for ͳ < ߥ < ʹ from (A6) (after replacing ܨ with ܨା), ܽܵܩఔሺܨሻ − ௖ܩܵܽ ఔሺܨሻ = ሾܽܵܩఔሺܨሻ − ାሻሿܨఔሺܩܵܽ + ାሻ  −ሾܨఔሺܩܵܽ ௖ܩܵܽ ఔሺܨሻ − ௖ܩܵܽ ఔሺܨାሻሿ − ௖ܩܵܽ ఔሺܨାሻ < ାሻܨఔሺܩܵܽ − ௖ܩܵܽ ఔሺܨାሻ < Ͳ. 
(A11)

Analogously, for ߥ > ʹ,  



ሻܨఔሺܩܵܽ − ௖ܩܵܽ ఔሺܨሻ > ାሻܨఔሺܩܵܽ − ௖ܩܵܽ ఔሺܨାሻ > Ͳ. (A12)

Note that condition ሻ݌ிሺܮ−  ൑ ͳ − holds if both  ݌  − inf ଵିܨ < ி  andߤ ிሺͲ.ͷሻܮ  ൒ Ͳ  are 

satisfied because −ܮிሺ݌ሻ = − ׬ ிషభሺ௤ሻఓಷ ௣଴ݍ݀ ൑ ݌ ൑ ͳ − for Ͳ ݌ < ݌ ൑ Ͳ.ͷ.       ฀ 

Appendix 8. Formulas for ܽܵܩఔ and ܽܵ௖ ఔܩ  for calculation from sample survey data. 

Formulas (A13) - (A16) correspond to discretizations of (3), (5), (11) and (10), respectively, 

and are applicable to weighted discrete data ܦ  = ሼݔ௜ , , ௜ሽݓ ଵݔ  < ⋯ < , ௡ݔ ,ଵݓ  ⋯ , ௡ݓ  > Ͳ . 

Before applying the formulas, we collapse records with an identical value into a single record 

if duplicates exist in the array ሼݔ௜ሽ௜. For example, if ݔଶ < ଷݔ = ସݔ <  ହ, then we replace theݔ

weight for the 3rd record ݓଷ with ݓଷ + ሻܦఔሺܩܵܽ .ସ and remove the 4th recordݓ = ଵఔିଵ ቂͳ − ଵఓෝ ∑ ሺͳ − ܿ௜ିଵሻఔሺݔ௜ − ௜ିଵሻ௡௜ୀଶݔ ቃ; (A13)ܽܵܩଵሺܦሻ = − ଵఓෝ ∑ ሺͳ − ܿ௜ିଵሻ logሺͳ − ܿ௜ିଵሻ ∙ ሺݔ௜ − ௜ିଵሻ௡௜ୀଶݔ ; (A14)ܽܵ௖ ሻܦఔሺܩ = ଵఔିଵ ሺͳ − ∑ ȟ௜௜ ,௜ሻ݌ ȟ௜ = ߥ ∙ sgnሺ݈௜ሻ ∙ |݈௜|ఔିଵ for ݈௜ିଵ = ݈௜, 
(A15)|݈௜|ఔିଵ − |݈௜ିଵ|ఔିଵ for ݈௜ିଵ < Ͳ < ݈௜, and 

|௟೔|ഌି|௟೔షభ|ഌ௟೔ି௟೔షభ  otherwise; ܽܵ௖ ሻܦଵሺܩ = − ∑ ௟೔ ୪୭୥ ௟೔ି௟೔షభ ୪୭୥ ௟೔షభ௟೔ି௟೔షభ ௜௡௜ୀଵ݌ ; (A16)

where ߥ  ≠ ͳ  in (A13) and (A15); ߤ̂  = ∑ ௝௡௝ୀଵݔ௝ݓ ∑ ௝௡௝ୀଵൗݓ  ;  ܿ௜ = ∑ ௝௜௝ୀଵݓ ∑ ௝௡௝ୀଵൗݓ  ,  ݈௜ =∑ ௝௜௝ୀଵݔ௝ݓ ∑ ௝௡௝ୀଵൗݔ௝ݓ  , and ݌௜ = ௜ݓ ∑ ⁄௝௡௝ୀଵݓ  , � = ͳ,ʹ, ⋯ , � ; ݈଴ = Ͳ ; ݈଴ log ݈଴ = Ͳ . (A13) with 

multiplication by ߥ − ͳ is equivalent to the formula of Chotikapanich and Griffiths (2001) for 

the S-Gini index. 


