
   

 

 

 

Volume 43, Issue 1

 

Are unit root tests useful for univariate time series forecasts with different

orders of integration? A Monte Carlo study

 

Adam J. Check 

U.S. Bank

Ming Chien Lo 

Metropolitan State University

Kwok Ping Tsang 

Virginia Tech

Abstract
In this paper, we consider univariate forecasts made when using stationary, near unit root, and unit root data. Like

Diebold and Kilian (2000), we conduct a Monte Carlo experiment investigating the usefulness of unit root tests prior to

forming univariate forecasts. In our experiment, we consider more than one unit root test and also vary the order of

integration in the time series. We find that unit root tests are indeed useful for forecasting, especially when the series

has a large number of in-sample observations. However, the choice of unit test matters. Using root mean square error

as a criterion for forecast performance, we find that the Philips-Perron test has an edge over the augmented Dickey-

Fuller test and the Kwiatkowski–Phillips–Schmidt–Shin test. We recommend practitioners to be mindful of the choice

of test, as the KPSS test is the default used in the forecast package in R, following Hyndman and Khandakar (2008),

but the Philips-Perron test is available as an option in that package.
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Section 1: Introduction 

Unit root tests have been used for decades to determine if a given time-series is stationary.1 

There are several reasons why econometricians want to know if a time-series is stationary. First, 

stationarity implies mean reversion, a feature that is often implied by economic theory. For 

example, purchasing power parity implies that the real exchange rate is stationary. Second, 

distinguishing between stationary and non-stationary data matters for applied time-series 

analysis. For example, using non-stationary data in linear regression may result in spurious 

regression (Ventosa-Santaulària (2009)). 

 Distinguishing between stationary and non-stationary data also matters for forecasters. 

Forecasting under the assumption of stationarity will lead to different forecasts than those made 

under the assumption of non-stationarity. Therefore, researchers like Diebold and Kilian (2000) 

have suggested the use of unit root tests prior to forecasting. They propose a pre-test method in 

which, prior to forecasting, a series is tested for a unit root. In a Monte-Carlo study, they find 

that the augmented Dickey-Fuller (ADF) test reliably informs forecasters when the data should 

be first-differenced. This process was later extended by Hyndman and Khandakar (2008, 

hereafter HK). HK first use a unit root test— Kwiatkowski–Phillips–Schmidt–Shin (KPSS) by 

default, or ADF or Philips-Perron (PP) as alternatives—before applying an ARIMA model.  

 Our paper extends the idea of Diebold and Kilian (2000) to compare which unit root test 

results in better forecasting performance.2 We conduct a Monte Carlo exercise assuming linear 

data generating processes (DGP) ranging from �(0) to �(2), and use these simulated series to 

compare the HK approach against a model averaging approach (AVG) that assumes an I(0), I(1), 

or I(2) process with equal probability.3 Our choice to use HK is partially a matter of 

convenience, as its creators have developed and maintained the popular and widely used forecast 

package in R, which includes the HK algorithm. Therefore, our results also provide guidance for 

the effective use of the forecast package.4  

 We find that each of the three unit root tests improve forecast performance over the 

model average, but not equally so. Additionally, we find that using a unit root test is more 

valuable when the sample size is large. We also find that the PP test more reliably improves 

forecast performance compared to the default KPSS used in the R package. Therefore, 

practitioners should be mindful of the choice of unit root test when following HK.  

 

Section 2: The Models 

The HK approach is standard, and details can be found in Hyndman and Athanasopoulos (2018). 

To approximate the experience of most practitioners, we keep the default HK settings from the R 

 
1 See Wolters and Hassler (2006) for an overview of the history. 
2 Diebold and Kilian (2000) is more limited; they explicitly try to capture the features of U.S. real GDP, including the presence of 
a linear time trend. 
3 Therefore, unit root tests are absent in AVG. 
4 To get a sense of the popularity, albeit somewhat unscientifically, we conducted several Google searches on June 15, 2021. 
Keywords “forecast package” generates 85.6 million results and “forecast package in R” 39.3 million. The specific function that 
executes the HK algorithm is auto.arima. Keywords “auto.arima” generates 2.7 million. 



  

package, with a few exceptions.5 The HK algorithm first uses a unit root test to determine the 

order of integration, and then applies an ARIMA model with the appropriate level of 

differencing. Based on the results of the unit root test, the HK algorithm fits an ARMA(p,q) 

model to data that has been differenced 0, 1, or 2 times. Given the results from the unit root test, 

HK commits fully—that is, a 100% weight—on one of these three levels of differencing. Next, 

an information criterion is used to select the order of autoregression (�) and moving average (�). 

 The HK approach in R includes three built-in unit root tests: KPSS, ADF and PP. The 

ADF and PP tests are built around the same basic premise. For simplicity, consider the AR(1) 

model6 without trend: 

�! = � + ��!"# + �! 
Both the PP and ADF use a t-test to test a null hypothesis of a unit root, � = 1, with a one-sided 

stationary alternative, � < 1.7 If the residuals from this simple AR(1) model are white noise, 

then the PP and ADF tests are identical. However, in practice the residuals will never be perfect 

white noise, so the results of the PP and ADF tests can differ. 

 In the presence of remaining residual autocorrelation, the PP and ADF tests account for it 

differently. The PP test never alters the test equation above. Instead, it always uses robust 

standard errors to adjust the standard error of the point-estimate of �, which changes the value of 

the t-statistic. In contrast, if the level of remaining residual autocorrelation is statistically 

significant, the ADF test includes additional lags in the test equation (e.g., it may use an AR(4) if 

appropriate). After controlling for these extra lags, both the point-estimate and the standard error 

of � can differ from their values in the simple AR(1) model, changing the value of the t-statistic. 

 Due to the low power of the ADF test (Hassler and Wolters, 1994; Paparoditis and 

Politis, 2018), and due to the poor performance of the PP test in small samples (Davidson and 

McKinnon, 2004), the KPSS test was developed as an alternative. In the KPSS test, the null 

hypothesis is flipped – the null is that the data is stationary, while the alternative is that it 

contains a unit root. 

 Differencing after pre-testing for a unit root is a convenient but only sometimes 

appropriate method of rendering a non-stationary series stationary.8 Size distortion, lack of 

power, presence of outliers or structural breaks, etc., can all affect the results of unit root tests. 

For example, even on a single simulated AR(1) time-series, we find that the unit root tests can 

behave erratically as the sample length increases (i.e., as time progresses). One possible 

alternative to pre-testing, which we explore, is to not rely on any unit root test. Our AVG 

approach consists of first imposing each level of differencing (0, 1, or 2) and then, conditional on 

the difference, using the second step of the HK algorithm to determine the order of 

 
5 When forecasters approach real-world data, the default settings are likely to be deployed. Later research can further investigate 
whether results are robust against changes to the default settings. 
6 In practice, the ADF test is typically applied to an AR(1) model for the differenced data: Δ�! = � + �Δ�!"# + �! where � =

� − 1. This alternative specification is functionally identical and leads to the same p-value. 
7 The critical values under both tests are non-standard.  
8 Differencing the data may result in introducing unnecessary components or misspecification to a model that is trend-stationary. 

For example, if �! = �� + ��!"# + �!, ∆�! = � + �∆�!"# + �! − �!"# with a moving average error term. However, in an 
exploratory exercise, we found that differencing trend-stationary data as a detrending method did not lead to underperformance of 
the HK algorithm against the AVG even when a trend component is not explicitly added to the unit root tests. 



  

autoregression (�) and moving average (�). Finally, we assign 1/3 weight to each of the forecasts 

from these three ARIMA models. 

 

Section 3: The Monte Carlo and Out-of-Sample Forecast Design 

Subsection 3.1: Data generating processes 

We use an AR(1) model as the baseline, since it is a relatively common and simple model that 

allows for highly persistent I(0) series. Therefore, our first DGP is an AR(1) process that is 

highly persistent, becoming a unit root process when � = 1 

   �! = � + ��!"# + �!. (1) 

For simplicity, we restrict � = 0. We allow � ∈ {0.90, 0.95, 0.975, 0.99, 1.00}. Focusing on � ≥
0.9 covers the area in which a unit root test may have either size distortion or lack of power. 

Many macroeconomic series that exhibit slow mean reversion behavior, such as the 

unemployment rate or the real exchange rate, can be represented by this DGP. When � = 0.975 

or 0.99, we have a so-called “near unit root” process. 

 The second DGP assumes a similar structure, but for the first difference, 

   ∆�! = � + (� − 1)∆�!"# + �! (2) 

which can be written as  

  �! = � + ��!"# − (� − 1)�!"$ + �!. (3) 

We restrict � = 0 and allow � ∈ {1.50, 2.00}. When � = 2, the series is �(2). When � = 1.5, the 

series is fractionally integrated between �(0) and �(2). Note that if � = 1, both (1) and (3) result 

in a random walk model without drift. 

 DGP’s (1) and (2) with the set of possible values of � cover a plausible range for many 

financial and economic data sets. While economic data has traditionally been assumed to be I(0) 

or I(1), Caporale, Gil-Alana and Plastun (2019) and Hartl, Tschernig and Weber (2021) both find 

that series with an order of integration above one are more common than previously thought. 

 To simulate data from either DGP, for each number of observations �, we simulate 

1.1 × � observations yt according to (1) and (2) respectively and trim off the first 10%. We fix 

the conditional standard deviation of the processes, by setting the standard deviations of the 

shocks �! and �! to 1.  For both DGPs, we consider � ∈ {50, 200, 500}.	 For each choice of �, 

we perform an expanding window forecasting exercise and consider various �-period-ahead 

point-forecasts, where � ∈ {1,3,6,12}. 9   
 We conduct an expanding window pseudo-out-of-sample forecasting exercise like that of 

Meese and Rogoff (1983). For any simulated series, we start with an estimation period that starts 

at the first observation and includes the first 60% of the sample. Then, we form the �-period-

ahead point forecast from each model. Next, we add one additional observation and repeat this 

process. We expand the number of observations for estimation by one at each iteration until all 

 
9 Because the number of observations is small when � = 50, we do not consider � = 12 for that case. 



  

data points are exhausted. The set of �-horizon point forecasts are then compared against the 

actual data using root mean squared errors (RMSE). 

Subsection 3.2: The Monte Carlo design and ARIMA settings 

Given the varying values of the ��(1)	parameter, �; the sample length, �; and forecast horizon, 

�, we have 77 parameterizations of the DGPs.10 For each, 1,000 series are simulated. To get a 

sense of our simulated data, Figure 1 shows the series generated from DGP (1) and (2) for each 

possible value of � when � = 500. We use the following settings when estimating the ARIMA 

models: 

• We use the following default options: 

o The maximum possible order of integration is 2. 

o The level of significance for the unit root tests in auto.arima() is five percent.11 

o The information criterion used when selecting the ARMA(p,q) order is the 

corrected Akaike Information Criterion (AICc). 

• Since we know we are using a (possibly integrated) AR(1) model, we set: 

o The combined maximum order of p and q to 3 for auto.arima(); i.e. max.order=3. 

o We do not consider seasonal ARIMA models; i.e. we set seasonal=FALSE. 

 

Figure 1: Sample Simulated Series from AR(1) 

 

b = 0.900 

 

b = 0.950 

 

 
10 Appendix Table A1 shows the values of the parameters. 
11 Also assumed in Hyndman and Athanasopoulos (2018). In recent years, such a default has been questioned (e.g. Ziliak and 
McCloskey, 2007; Wasserstein and Lazar, 2016; Amrhein, Greenland and McShane, 2019). 



  

b = 0.975 

 

b = 0.990 

 
b = 1.000 

 

b = 1.500 

 

b = 2.000 

 

 

 

Section 4: Results for Baseline DGP of AR(1) 

We summarize the results in two ways. First, we generate aggregate statistics from each of the 77 

sets of simulations. After simulating data and forming forecasts for each of the 77 sets, we 

compare forecast accuracy across four models: (1) HK with the KPSS test (default), (2) HK with 

the ADF test, (3) HK with the PP test, (4) the model average (“AVG”) described in section 2. To 

measure forecast accuracy, we compute the Monte Carlo mean RMSE from the 1,000 

simulations for each model: 

   ����HHHHHHHH
% = ∑ '()*!,#

$%%%
#&$

#+++
 (4) 



  

and rank them to determine the winner in each set, where i is the �-th simulation in the set and � 

denotes the model. Models resulting in a lower mean RMSE have a better forecast performance. 

 To get a sense of relative difference in RMSEs, we compute a few additional measures. 

Since we fix the conditional SD of the error terms in the simulations, the unconditional SD, 

which also depends on the value of �, differs across different generated time-series. To make it 

easier to compare relative performance across different simulations and forecast horizons, we 

first compute the relative mean RMSE for each simulation which is given by:  

   ��������	���� = '()*,,,,,,,,
!

'()*,,,,,,,,
'#(()*

 (5) 

where Winner denotes the model with the lowest absolute RMSE (given in equation (4)). Next, 

for a given experiment, we compute the average of the relative RMSE across each of the 1,000 

simulations: 

   ����	����� = 	∑ '()*!,#

'()*'#(()*,#

#+++
-.# . (6) 

 Further, we can compute a �-value based on ����%,-/����0-1123,-, 

   � − ����� = ∑ �#+++
-.# T '()*!,#

'()*'#(()*,#

≤ 1V 1000W . (7) 

The mean ratio and its corresponding �-value may result in different rankings that the mean 

RMSE given in (4). For example, a model may have a low RMSE in most simulations, but a very 

high RMSE in a handful. This could result in the model having the best mean ratio or p-value, 

but a higher mean RMSE compared to alternative models. 

 The ranking based on (4) and other statistics are reported in detail in Appendix Table 

A2A. From the table, we observe that: 

(i) Using the PP test to determine the order of integration results in the lowest mean 

RMSE in 33 out of the 77 sets, followed by KPSS with 30 and ADF with 12. AVG only has the 

best mean RMSE in 2 of the test sets. In fact, each of the three HK models considered (i.e., HK 

with any unit root test) beats AVG in 75 of the 77 sets. Using this criterion, we can conclude that 

the unit root tests result in better forecast performance than using a simple model average. These 

results also suggest that using the PP test generates slightly better forecast performance than does 

using the default KPSS test. These results are summarized in Table 1(a). 

(ii) The �-values among the top three models in any given set is generally high. When 

� = 500, the RMSEs from the last place model is consistently larger than that from the winner. 

Because AVG results in the worst forecast performance in 64 out of 77 test sets, we can conclude 

– perhaps unsurprisingly – that the unit root tests are especially useful in large samples.  

(iii) We observe larger gaps in relative RMSE (5) and mean ratio (6) between models 

when the order of integration increases. Therefore, it seems that as the order of integration 

increases, it becomes more important to identify the presence of integration accurately. 

 As an alternative form of summary, we analyze the 77 outcomes using a multinomial 

logit model where the dependent variable is the winning model (KPSS, ADF, PP, and model 

averaging) and the independent variables are the sample size, horizon, and the integration order. 

Here, the winning model is not determined by lowest mean RMSE, which is an aggregate 

statistic from the 1,000 simulations. Instead, the winning model is the one that garners the largest 



  

number of wins (i.e. lowest RMSE) out of the 1,000 simulations in each of the 77 test sets. 

Winning counts calculated this way are reported in Table 1(b). Defining the best model this way 

results in model rankings that are similar to those obtained when using mean RMSE, but results 

in an even larger number of wins by PP (37) over KPSS (23). 

 Without loss of generality, we use KPSS as the baseline model for the logit analysis. The 

results are reported in Table 2(a), and they are consistent with our earlier findings.  First, when 

we control for the sample size, the forecast horizon and the order of integration, PP is frequently 

superior to KPSS. In the second row, we see that the estimate on the order of integration is 

relatively large, at -1.051. While the �-value is also high (above 10%), the large point estimate 

suggests that the advantage from using the PP test (rather than the KPSS test) may decline 

somewhat when the order of integration is high.  

 Second, the ADF test also has a large and significant constant term. However, with an 

estimate of -3.766, the integration term offsets the positive constant (3.987) when the order of 

integration is one, and more than offsets it when the order of integration is 1.5 or 2.  

 Finally, our model average of I(0), I(1), and I(2) models, i.e. AVG,  is clearly inferior to 

the default KPSS test. Even though the constant term is estimated at a positive value of 3.715, it 

is offset by the negative estimate for the parameter for �—even when � = 50 which is the 

smallest in our Monte Carlo, the product of -0.111 and 50 is -5.55, more than offsetting the 

positive constant. When � is 200 or 500, the negative impact would become even larger. This 

result once again implies that using unit root tests to determine the order of integration is 

superior to using a simple model average. This is increasingly true as the sample size increases.  

 

Table 1: Number of Sets Won by Models 

 

(a) Baseline AR(1) 

 KPSS ADF PP AVG 

(1) Lowest mean RMSE 

among sets 

30 12 33 2 

(2) Most wins in each set 23 14 37 3 
 

These tables report the number of sets won by a model out of the 77 sets. We count the number of wins in two ways. 

Method (1) is based on mean RMSE in (4). A model wins a set when it has the lowest mean RMSE. Detailed results 

under method (1) can be found in Appendix Table A2A. For example, for set #1 (N=50, k=1, b=0.9), PP has the 

lowest mean RMSE. Method (2) is simply based on the winning counts out of the 1,000 simulations. A model wins 

a set when it has the largest number of wins (lowest RMSE) out of the 1,000 simulations. For example, for set #1 

(N=50, k=1, b=0.9), AVG has the largest number of wins in terms of RMSE. It is possible to have different winning 

model in the same set when a different method is used. 

 

(b) ARMA Specification 

 KPSS ADF PP AVG 

(1) Lowest mean RMSE 

among sets 

24 16 27 10 

(2) Most wins in each set 25 15 30 7 

 

 



  

(c) Structural Breaks 

 KPSS ADF PP AVG 

(1) Lowest mean RMSE 

among sets 

1 2 5 3 

(2) Most wins in each set 0 0 0 11 

 

 

Table 2: Summary Results from a Multinomial LOGIT Regression 

 

(a) Baseline AR(1) 

 Constant Sample Size � Horizon � Coefficient � 

ADF 3.987*** 

(1.200) 

-0.002 

(0.019) 

0.047 

(0.095) 

-3.766*** 

(0.656) 

PP 2.266** 

(1.081) 

-0.002 

(0.002) 

0.030 

(0.071) 

-1.051 

(0.676) 

AVG 3.715** 

(1.638) 

-0.111*** 

(0.007) 

0.024 

(0.336) 

1.076 

(0.971) 

Pseudo �$ 0.118 
Robust standard errors reported in parentheses. *** p-value below 1% with null hypothesis that the parameter is equal to zero. 

 

 

(b) ARMA Specification 

 Constant Sample Size � Horizon � Coefficient � 

ADF 2.876** 

(1.145) 

0.002 

(0.019) 

0.029 

(0.092) 

-3.906*** 

(0.681) 

PP 0.875 

(1.038) 

0.001 

(0.002) 

0.003 

(0.070) 

-0.705 

(0.687) 

AVG 14.424*** 

(4.887) 

-0.125*** 

(0.007) 

-2.021** 

(1.027) 

-2.721 

(2.826) 

Pseudo �$ 0.241 
Robust standard errors reported in parentheses. *** p-value below 1% with null hypothesis that the parameter is equal to zero. 

 

  



  

Section 5: Deviations from the Baseline 

Subsection 5.1: ����(�, �) 

We extend our DGP by allowing higher order of AR and MA terms such that the ARMA(p,q) 

where p can vary from 1 to 3 and q from 0 to 3. Our program randomly chooses a value for p and 

q in each simulation. In each simulation, we ensure that the values of the AR coefficients are set 

appropriately so that they imply the order of integration specified for each set. For the auto.arima 

procedure used when assessing model performance, we set max.p=3 and max.q=3. 

 Comparing Table 1(a) and 1(b), unit root testing is still superior to simple model 

averaging, but less so than in the baseline case. When examining the details in Appendix Table 

A2B, we find that AVG improves its performance when both the sample size (N) and the 

forecast horizon (k) are small. This observation is supported by our subsequent analysis. In Table 

2(b), we replicate our Table 2(a) by conducting a logit regression. The results for AR(1) and 

ARMA are mostly the same except that when the forecast horizon (k) is small, AVG’s 

performance improves. Among the unit root tests, PP still dominates over KPSS and ADF. 

Subsection 5.2: Structural breaks 

Real-world data may be more complicated than the linear ARMA processes studied above. Here, 

we attempt to offer some insights on what may happen in the presence of structural breaks. We 

have chosen to allow for structural breaks in each series with some randomization: 

o We vary the number of breaks depending on series length. If N=50 we allow one break; if 

N=200, we allow either one or two breaks; if N=500, we allow one, two or three breaks. 

o There are 11 sets of Monte Carlo designs with varying N (50, 200, 500) and horizon (1, 

3, 6, 12)—for N=50, we do not include cases of k=12. 

o Break points are chosen randomly. If there is more than one break, there must be at least 

15 data points between break points. 

o In each stationary regime, the sum of the AR parameters ranges from 0.9000 (less 

persistent) to 0.9999 (highly persistent), and we allow for one random walk regime with 

80% probability. 

Our AVG forecast is composed of equally weighted forecasts from I(0) and I(1) models only, 

since we only consider breaks in equation (1). We also do not conduct any logit analysis since 

the number of sets has been reduced to 11 and therefore the degree of freedom is poor. 

 Table 1(c) reports the winning counts and Appendix Table A3 reports the details. In this 

case, the results under the two forecast scores do not agree. Using lowest mean RMSE as a 

criterion, the HK algorithm tends to dominate. However, when using winning counts within a 

set, AVG wins in all 11 sets. Upon closer examination, we find that these results are driven by a 

few extremely large outlier RMSEs in AVG, giving this model a larger mean RMSE even though 

its RMSE is smallest in a majority of simulations. Table 3 shows that the maximum RMSE of 

AVG in each set is 1.87 to 7.71 times larger than the maximum RMSE of the winner model. 

 

  



  

Table 3: Maximum RMSE for Each Model and AVG’s Outlier RMSE 

 

N Horizon KPSS ADF PP AVG 

Relative 

Difference 

# of 

Outliers 

50 1 1.725485 1.722987 2.759139 3.222901 1.87 12 

50 3 5.004424 4.808418 4.808418 28.317883 5.89 6 

50 6 9.648729 8.374953 8.374953 14.935339   

200 1 1.933442 1.463256 1.470875 6.663352 4.53 22 

200 3 3.785853 3.785853 3.785853 13.633259 3.60 14 

200 6 9.832408 9.832408 9.832408 19.789169   

200 12 18.0332 18.0332 18.0332 20.18657   

500 1 1.374264 1.374264 1.374264 10.592159 7.71 39 

500 3 6.943965 5.585818 5.594647 12.241989 2.19 13 

500 6 7.350329 8.143947 7.90799 21.423266 2.71 15 

500 12 15.77235 15.77235 15.77235 87.94463 5.58 1 
Column 2-4 reports the maximum RMSE out of the 1,000 simulations in each set. 

Bold numbers indicate the winning model (i.e. Winner) when the lowest mean RMSE is used. 

Relative difference is calculated from 1 + (RMSEAVG – RMSEWinner)/RMSEWinner. 

The last column reports the number of outlier RMSEs in AVG that exceeds the maximum RMSE of the winner.  

 

 

Section 6: Empirical Data 

We have chosen three exchange rate series and four CPI inflation rates to investigate model 

performance on real-world economic series. The DGP of these real-world series is unknown, but 

these series may be reasonably approximated by a highly persistent AR process, an integrated 

process, or a persistent process with changes in regime (possibly moving into RW regimes), as 

studied in our Monte Carlo experiments. To investigate the performance of the HK algorithm 

and simple model averaging, we perform a pseudo-out-of-sample exercise like that performed in 

our Monte Carlo exercises. 

The results are reported in Table 4. The successes of the HK algorithm are mixed. The HK 

algorithm outperforms the AVG clearly in three series (Canadian-U.S. dollar exchange rates, 

yen-dollar exchange rates and Canada inflation rates) and moderately in two (pound-dollar 

exchange rates and U.K. inflation rates). However, AVG dominates in the other two series (U.S. 

and Japan inflation rates). Given the relative performance of simple model averaging in the 

Monte Carlo exercises, this suggests that there may be structural breaks in these latter two series, 

but more research should be conducted on this topic. 

  



  

Table 4: Results from Empirical Data 

 

Horizon KPSS ADF PP AVG 
 

CAD-USD Exchange Rate 

1 0.026349 0.026349 0.026349 0.034443 

3 0.044612 0.044612 0.044612 0.056078 

6 0.063801 0.063801 0.063801 0.069279 

12 0.086554 0.086554 0.086554 0.084905 
 

JPY-USD Exchange Rate 

1 0.026099 0.026099 0.026099 0.035481 

3 0.048439 0.048439 0.048439 0.118566 

6 0.071906 0.071906 0.071906 0.200592 

12 0.102003 0.102003 0.102003 0.208055 
 

GBP-USD Exchange Rate 

1 0.025968 0.026100 0.026032 0.025998 

3 0.047362 0.047910 0.047719 0.047436 

6 0.072141 0.073685 0.072980 0.072055 

12 0.096422 0.100591 0.099227 0.096105 
 

U.S. CPI Inflation Rate 

1 0.415851 0.415851 0.415851 0.414161 

3 1.033206 1.033206 1.033206 1.019044 

6 1.547637 1.547637 1.547637 1.500432 

12 2.331053 2.331053 2.331053 2.193044 
 

Canada CPI Inflation Rate 

1 0.448788 0.448788 0.448788 0.902221 

3 0.811803 0.811803 0.811803 1.107497 

6 1.129578 1.129578 1.129578 1.343380 

12 1.609507 1.609507 1.609507 1.741674 
 

Japan CPI Inflation Rate 

1 0.326511 0.326511 0.326511 0.332093 

3 0.663813 0.663813 0.663813 0.658711 

6 0.968618 0.968618 0.968618 0.954919 

12 1.509350 1.509350 1.509350 1.471567 
 

U.K. CPI Inflation Rate 

1 0.270144 0.270144 0.270144 0.270081 

3 0.533370 0.533370 0.533370 0.534177 

6 0.885464 0.885464 0.885464 0.885666 

12 1.487474 1.487474 1.487474 1.485325 

RMSEs reported here. The smallest ones at a specific forecast horizon are in bold. If two or more unit root tests result in the same 
detection of unit root or its absence at every step, their RMSEs will be identical. 



  

Section 7: Conclusion 

We use the forecast package in R, specifically the auto.arima() function, to examine the 

forecasting performance of various approaches to unit-root testing in a Monte Carlo exercise in 

which the data has varying degrees of persistence and integration. We are particularly interested 

in the performance of the Hyndman-Khandakar algorithm, which uses unit root tests to 

determine the appropriate number of differences to ensure stationarity before selecting an 

ARMA model. We find that both the HK algorithm and the unit root tests improve forecasting 

performance relative to a simple model average across stationary, I(1), and I(2) models. Our 

results are qualitatively similar when the data are simulated from an AR(1) model or from more 

complicated ARMA(p,q) models. 

 Our results constitute an important contribution to this literature. Previously, Diebold and 

Kilian (2000) examined the performance of the ADF test for forecasting in a relatively narrow 

context. Our study includes other unit root tests as well as a model-averaging alternative that 

represents ignorance of the test results. We also generalize the Monte Carlo exercise by 

considering different orders of integration, as well as near unit root processes. Our results imply 

that the Philips-Perron test may generate better forecast than the KPSS or ADF tests when the 

DGP is linear and the errors are normally distributed.  

 For forecast practitioners, our results suggest that relying solely on the KPSS test may 

result in worse forecast performance for near-unit root, I(1), fractionally integrated, or I(2) 

processes, and that using the PP test for these types of series would lead to an increase in 

expected forecast accuracy. Of course, while the patterns of integration listed above capture 

many real-world time-series, many other real-world series feature nonlinearities or outliers in 

addition to (or in lieu of) these patterns of integration. The Monte Carlo exercise using data 

simulated from a structural break specification is not as conclusive. While the HK algorithm 

performs well when using mean RMSE, model averaging has a lower RMSE on a larger fraction 

of simulated series. Finally, when applying these methods to empirical data, the success of the 

HK algorithm is apparent but not overly dominating. We leave the study of the performance of 

unit root tests and the HK algorithm in these more complicated environments to future research. 
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APPENDIX 

Table A1: Our Monte Carlo Design 

The constant � is set to 0 and the standard deviation of the error term is set to 1 for all sets 

Set # N (Sample Size) Horizon b values 

1-7 50 1  

 

 

 

 

0.9,0.95,0.975,0.99,1,1.5,2  

8-14 50 3 

15-21 50 6 

22-28 200 1 

29-35 200 3 

36-42 200 6 

43-49 200 12 

50-56 500 1 

57-63 500 3 

64-70 500 6 

71-77 500 12 

  

Table A2A: Summary Statistics for Baseline AR(1) 

 
Set #1: N=50 | Horizon=1 | b=0.9 

  

Rank 1st 2nd 3rd 4th 

Model PP AVG KPSS ADF 

Relative RMSE 1 1.003455 1.007998 1.008445 

Mean Ratio 1 1.004195 1.008908 1.008584 

p-value -- 0.432 0.61 0.745 

  
    

Set #2: N=50 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.00739 1.011537 1.015381 

Mean Ratio 1 1.008005 1.011393 1.016112 

p-value -- 0.383 0.736 0.575 

  
    

Set #3: N=50 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.010008 1.010488 1.018991 

Mean Ratio 1 1.011175 1.010755 1.019539 

p-value -- 0.378 0.777 0.596 

  
    

Set #4: N=50 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 



  

Model PP AVG ADF KPSS 

Relative RMSE 1 1.00991 1.010072 1.018807 

Mean Ratio 1 1.011323 1.010149 1.019439 

p-value -- 0.393 0.769 0.596 

  
    

Set #5: N=50 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF AVG KPSS 

Relative RMSE 1 1.008752 1.01594 1.016253 

Mean Ratio 1 1.009168 1.017499 1.016387 

p-value -- 0.767 0.421 0.623 

  
    

Set #6: N=50 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.006233 1.006234 1.178944 

Mean Ratio 1 1.013271 1.012991 1.187369 

p-value -- 0.509 0.647 0.573 

  
    

Set #7: N=50 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.283366 1.725714 18.013551 

Mean Ratio 1 1.826307 2.447705 25.531011 

p-value -- 0.783 0.779 0.055 

  
    

Set #8: N=50 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS ADF AVG 

Relative RMSE 1 1.014197 1.02857 1.029255 

Mean Ratio 1 1.016384 1.02886 1.03785 

p-value -- 0.634 0.766 0.388 

  
    

Set #9: N=50 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.024744 1.025368 1.026721 

Mean Ratio 1 1.025463 1.025392 1.034516 

p-value -- 0.779 0.605 0.363 

  
    

Set #10: N=50 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 



  

Relative RMSE 1 1.020786 1.028209 1.033499 

Mean Ratio 1 1.027397 1.028273 1.034006 

p-value -- 0.381 0.779 0.631 

  
    

Set #11: N=50 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.020928 1.030178 1.037587 

Mean Ratio 1 1.026761 1.030633 1.038427 

p-value -- 0.385 0.762 0.615 

  
    

Set #12: N=50 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.018256 1.026702 1.029974 

Mean Ratio 1 1.025036 1.02768 1.031179 

p-value -- 0.397 0.776 0.65 

  
    

Set #13: N=50 | Horizon=3 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS PP ADF 

Relative RMSE 1 1.021028 1.035996 1.075434 

Mean Ratio 1 1.036793 1.048971 1.090565 

p-value -- 0.441 0.393 0.293 

  
    

Set #14: N=50 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.04513 1.217764 6.691965 

Mean Ratio 1 1.160229 1.329423 7.722637 

p-value -- 0.772 0.768 0.1 

  
    

Set #15: N=50 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.008203 1.067561 1.106316 

Mean Ratio 1 1.032556 1.097093 1.170762 

p-value -- 0.632 0.562 0.306 

  
    

Set #16: N=50 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS ADF AVG 

Relative RMSE 1 1.030387 1.071168 1.083631 



  

Mean Ratio 1 1.036245 1.078841 1.122675 

p-value -- 0.652 0.749 0.308 

  
    

Set #17: N=50 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.033409 1.050179 1.052459 

Mean Ratio 1 1.037028 1.080774 1.060603 

p-value -- 0.649 0.358 0.753 

  
    

Set #18: N=50 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.034117 1.054336 1.066677 

Mean Ratio 1 1.041564 1.087769 1.07436 

p-value -- 0.679 0.334 0.772 

  
    

Set #19: N=50 | Horizon=6 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG KPSS ADF 

Relative RMSE 1 1.036764 1.039198 1.055246 

Mean Ratio 1 1.070475 1.039129 1.059355 

p-value -- 0.371 0.689 0.793 

  
    

Set #20: N=50 | Horizon=6 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS PP ADF 

Relative RMSE 1 1.077021 1.125792 1.191732 

Mean Ratio 1 1.08255 1.126867 1.199453 

p-value -- 0.42 0.363 0.279 

  
    

Set #21: N=50 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.06112 1.061748 3.385059 

Mean Ratio 1 1.079697 1.109213 3.782588 

p-value -- 0.854 0.662 0.166 

  
    

Set #22: N=200 | Horizon=1 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.001331 1.003139 1.018882 

Mean Ratio 1 1.001364 1.003239 1.019073 



  

p-value -- 0.578 0.477 0.233 

  
    

Set #23: N=200 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.000231 1.000367 1.012075 

Mean Ratio 1 1.000257 1.000415 1.01217 

p-value -- 0.665 0.664 0.26 

  
    

Set #24: N=200 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000136 1.000477 1.012846 

Mean Ratio 1 1.000147 1.000538 1.012959 

p-value -- 0.861 0.763 0.271 

  
    

Set #25: N=200 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000212 1.00131 1.02109 

Mean Ratio 1 1.000223 1.001347 1.021117 

p-value -- 0.897 0.734 0.253 

  
    

Set #26: N=200 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.002107 1.004663 1.095962 

Mean Ratio 1 1.002178 1.004744 1.097244 

p-value -- 0.892 0.893 0.243 

  
    

Set #27: N=200 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.009022 1.015799 1.497889 

Mean Ratio 1 1.009265 1.016105 1.497451 

p-value -- 0.839 0.867 0.325 

  
    

Set #28: N=200 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 17.514322 22.3747 206.219115 

Mean Ratio 1 17.661532 22.452207 207.663668 

p-value -- 0.76 0.753 0.034 



  

  
    

Set #29: N=200 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.004018 1.01004 1.072952 

Mean Ratio 1 1.004356 1.011122 1.076298 

p-value -- 0.562 0.445 0.13 

  
    

Set #30: N=200 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.003267 1.003627 1.045195 

Mean Ratio 1 1.003422 1.003875 1.047766 

p-value -- 0.655 0.662 0.2 

  
    

Set #31: N=200 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000433 1.001184 1.040103 

Mean Ratio 1 1.000425 1.001253 1.041947 

p-value -- 0.857 0.769 0.216 

  
    

Set #32: N=200 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000898 1.004076 1.049168 

Mean Ratio 1 1.000855 1.004568 1.051306 

p-value -- 0.887 0.727 0.225 

  
    

Set #33: N=200 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.001348 1.002966 1.166385 

Mean Ratio 1 1.002148 1.003567 1.169493 

p-value -- 0.871 0.865 0.233 

  
    

Set #34: N=200 | Horizon=3 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model ADF KPSS PP AVG 

Relative RMSE 1 1.000855 1.002552 1.30796 

Mean Ratio 1 1.005708 1.002836 1.3132 

p-value -- 0.589 0.943 0.251 

  
    



  

Set #35: N=200 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 3.936626 5.165677 58.140174 

Mean Ratio 1 3.955202 5.270147 60.395285 

p-value -- 0.809 0.792 0.046 

  
    

Set #36: N=200 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.007786 1.018622 1.177918 

Mean Ratio 1 1.008572 1.022926 1.195531 

p-value -- 0.573 0.442 0.086 

  
    

Set #37: N=200 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.002809 1.003512 1.108704 

Mean Ratio 1 1.004235 1.004793 1.118641 

p-value -- 0.669 0.663 0.112 

  
    

Set #38: N=200 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000654 1.004005 1.08688 

Mean Ratio 1 1.000687 1.004904 1.096328 

p-value -- 0.871 0.76 0.165 

  
    

Set #39: N=200 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000472 1.00808 1.094193 

Mean Ratio 1 1.000564 1.008029 1.102115 

p-value -- 0.892 0.725 0.176 

  
    

Set #40: N=200 | Horizon=6 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.001265 1.004112 1.172762 

Mean Ratio 1 1.002015 1.005701 1.184114 

p-value -- 0.92 0.753 0.192 

  
    

Set #41: N=200 | Horizon=6 | b=1.5 
  



  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000495 1.01563 1.209008 

Mean Ratio 1 1.0025 1.018147 1.214299 

p-value -- 0.913 0.609 0.258 

  
    

Set #42: N=200 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 2.434667 2.483053 24.943324 

Mean Ratio 1 2.442281 2.559736 25.547177 

p-value -- 0.81 0.792 0.04 

  
    

Set #43: N=200 | Horizon=12 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.012226 1.030499 1.433694 

Mean Ratio 1 1.01438 1.040967 1.490443 

p-value -- 0.571 0.443 0.02 

  
    

Set #44: N=200 | Horizon=12 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.004164 1.004608 1.253157 

Mean Ratio 1 1.006346 1.006662 1.291357 

p-value -- 0.699 0.694 0.068 

  
    

Set #45: N=200 | Horizon=12 | b=0.975 
 

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000549 1.005934 1.18933 

Mean Ratio 1 1.000678 1.006546 1.218356 

p-value -- 0.868 0.76 0.103 

  
    

Set #46: N=200 | Horizon=12 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000701 1.013709 1.151638 

Mean Ratio 1 1.001004 1.014006 1.180478 

p-value -- 0.909 0.733 0.166 

  
    

Set #47: N=200 | Horizon=12 | b=1 
  

Rank 1st 2nd 3rd 4th 



  

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000393 1.015724 1.165693 

Mean Ratio 1 1.000726 1.015536 1.197695 

p-value -- 0.925 0.755 0.204 

  
    

Set #48: N=200 | Horizon=12 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.001336 1.031803 1.087317 

Mean Ratio 1 1.00237 1.034229 1.109796 

p-value -- 0.924 0.615 0.337 

  
    

Set #49: N=200 | Horizon=12 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.402899 1.61796 9.476538 

Mean Ratio 1 1.401325 1.620361 9.822624 

p-value -- 0.799 0.761 0.07 

  
    

Set #50: N=500 | Horizon=1 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00006 1.010647 1.035855 

Mean Ratio 1 1.00006 1.010673 1.035888 

p-value -- 0.982 0.203 0.028 

  
    

Set #51: N=500 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000488 1.005006 1.025376 

Mean Ratio 1 1.000489 1.005034 1.025434 

p-value -- 0.645 0.287 0.064 

  
    

Set #52: N=500 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.000027 1.000101 1.021098 

Mean Ratio 1 1.000042 1.000117 1.021096 

p-value -- 0.693 0.688 0.062 

  
    

Set #53: N=500 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 



  

Relative RMSE 1 1.002059 1.002396 1.046412 

Mean Ratio 1 1.002083 1.00246 1.046487 

p-value -- 0.81 0.8 0.059 

  
    

Set #54: N=500 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.02052 1.020749 1.190873 

Mean Ratio 1 1.02067 1.020787 1.191166 

p-value -- 0.88 0.881 0.042 

  
    

Set #55: N=500 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.031386 1.040838 1.52338 

Mean Ratio 1 1.030264 1.038921 1.521829 

p-value -- 0.89 0.854 0.086 

  
    

Set #56: N=500 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 89.086028 163.058565 910.918427 

Mean Ratio 1 88.671228 163.740244 913.171557 

p-value -- 0.766 0.68 0.009 

  
    

Set #57: N=500 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000023 1.029878 1.129021 

Mean Ratio 1 1.000024 1.02982 1.130358 

p-value -- 0.989 0.202 0.008 

  
    

Set #58: N=500 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000696 1.014545 1.086868 

Mean Ratio 1 1.000738 1.014802 1.088264 

p-value -- 0.649 0.256 0.024 

  
    

Set #59: N=500 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.000316 1.000982 1.068573 



  

Mean Ratio 1 1.000433 1.001083 1.069678 

p-value -- 0.692 0.665 0.036 

  
    

Set #60: N=500 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.001153 1.001526 1.114964 

Mean Ratio 1 1.001078 1.001408 1.116442 

p-value -- 0.828 0.831 0.038 

  
    

Set #61: N=500 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.016588 1.02037 1.551227 

Mean Ratio 1 1.017735 1.021877 1.5525 

p-value -- 0.917 0.905 0.023 

  
    

Set #62: N=500 | Horizon=3 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.026642 1.032241 1.773309 

Mean Ratio 1 1.028144 1.033487 1.776353 

p-value -- 0.859 0.9 0.072 

  
    

Set #63: N=500 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 27.614636 54.011441 252.923501 

Mean Ratio 1 27.503982 54.042266 253.687137 

p-value -- 0.781 0.693 0 

  
    

Set #64: N=500 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00023 1.055766 1.291237 

Mean Ratio 1 1.000225 1.056004 1.296852 

p-value -- 0.98 0.201 0.002 

  
    

Set #65: N=500 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.002137 1.029398 1.19066 

Mean Ratio 1 1.002111 1.030853 1.197066 



  

p-value -- 0.655 0.264 0.013 

  
    

Set #66: N=500 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000427 1.000494 1.139901 

Mean Ratio 1 1.000458 1.000977 1.145083 

p-value -- 0.713 0.681 0.023 

  
    

Set #67: N=500 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.001171 1.001277 1.190894 

Mean Ratio 1 1.001409 1.001525 1.195424 

p-value -- 0.842 0.834 0.043 

  
    

Set #68: N=500 | Horizon=6 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.013072 1.01569 1.612353 

Mean Ratio 1 1.01485 1.017507 1.614163 

p-value -- 0.882 0.877 0.026 

  
    

Set #69: N=500 | Horizon=6 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.008913 1.038041 1.808439 

Mean Ratio 1 1.009044 1.038015 1.813686 

p-value -- 0.878 0.906 0.102 

  
    

Set #70: N=500 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 7.192764 18.427572 92.550488 

Mean Ratio 1 7.220018 18.69335 93.7945 

p-value -- 0.784 0.665 0.005 

  
    

Set #71: N=500 | Horizon=12 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00088 1.103167 1.699199 

Mean Ratio 1 1.000835 1.104449 1.719374 

p-value -- 0.973 0.178 0 



  

  
    

Set #72: N=500 | Horizon=12 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.003469 1.054778 1.439386 

Mean Ratio 1 1.00358 1.058229 1.459342 

p-value -- 0.652 0.249 0.003 

  
    

Set #73: N=500 | Horizon=12 | b=0.975 
 

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000988 1.004957 1.300484 

Mean Ratio 1 1.001117 1.00706 1.31694 

p-value -- 0.708 0.646 0.01 

  
    

Set #74: N=500 | Horizon=12 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.001016 1.001308 1.261561 

Mean Ratio 1 1.00103 1.001746 1.276623 

p-value -- 0.853 0.826 0.024 

  
    

Set #75: N=500 | Horizon=12 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.000381 1.000912 1.46093 

Mean Ratio 1 1.002492 1.003604 1.477239 

p-value -- 0.884 0.882 0.048 

  
    

Set #76: N=500 | Horizon=12 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.001179 1.008082 1.391161 

Mean Ratio 1 1.001191 1.009287 1.399122 

p-value -- 0.966 0.663 0.127 

  
    

Set #77: N=500 | Horizon=12 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 4.809006 8.634597 37.886865 

Mean Ratio 1 4.799286 8.71227 38.656192 

p-value -- 0.77 0.697 0.007 

 



  

Appendix Table A2B: Summary Statistics for ARMA Specification 

 
Set #1: N=50 | Horizon=1 | b=0.9 

  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS PP ADF 

Relative RMSE 1 1.011048 1.012487 1.023303 

Mean Ratio 1 1.012702 1.013881 1.024678 

p-value -- 0.467 0.462 0.412 

  
    

Set #2: N=50 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model AVG PP KPSS ADF 

Relative RMSE 1 1.010098 1.016091 1.020707 

Mean Ratio 1 1.012092 1.018282 1.023141 

p-value -- 0.452 0.436 0.386 

  
    

Set #3: N=50 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.005069 1.010025 1.021417 

Mean Ratio 1 1.007062 1.010866 1.023152 

p-value -- 0.518 0.695 0.639 

  
    

Set #4: N=50 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.009598 1.010329 1.043436 

Mean Ratio 1 1.010383 1.010698 1.044304 

p-value -- 0.711 0.648 0.517 

  
    

Set #5: N=50 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00778 1.012554 1.071254 

Mean Ratio 1 1.008794 1.013779 1.07467 

p-value -- 0.721 0.641 0.492 

  
    

Set #6: N=50 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS ADF AVG 

Relative RMSE 1 1.037415 1.046247 1.170455 

Mean Ratio 1 1.017646 1.022198 1.18018 

p-value -- 0.658 0.585 0.609 



  

  
    

Set #7: N=50 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS ADF AVG 

Relative RMSE 1 1.000021 2.985397 4.284066 

Mean Ratio 1 1.933221 29.036966 33.477276 

p-value -- 0.703 0.704 0.042 

  
    

Set #8: N=50 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model KPSS AVG PP ADF 

Relative RMSE 1 1.018785 1.02043 1.054325 

Mean Ratio 1 1.039073 1.025855 1.055447 

p-value -- 0.437 0.598 0.533 

  
    

Set #9: N=50 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model AVG PP KPSS ADF 

Relative RMSE 1 1.000383 1.008046 1.047664 

Mean Ratio 1 0.995736 1.006059 1.038079 

p-value -- 0.558 0.533 0.454 

  
    

Set #10: N=50 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model AVG PP KPSS ADF 

Relative RMSE 1 1.007942 1.029485 1.050003 

Mean Ratio 1 1.00285 1.023245 1.041624 

p-value -- 0.54 0.495 0.441 

  
    

Set #11: N=50 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP AVG ADF KPSS 

Relative RMSE 1 1.004179 1.023231 1.024276 

Mean Ratio 1 1.018281 1.023019 1.024659 

p-value -- 0.448 0.73 0.665 

  
    

Set #12: N=50 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.02333 1.031936 1.050286 

Mean Ratio 1 1.024844 1.043693 1.049981 

p-value -- 0.67 0.415 0.683 

  
    



  

Set #13: N=50 | Horizon=3 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS ADF PP 

Relative RMSE 1 1.019751 1.078221 1.109534 

Mean Ratio 1 1.031107 1.089852 1.101612 

p-value -- 0.441 0.289 0.3 

  
    

Set #14: N=50 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.000003 1.601731 1.653814 

Mean Ratio 1 1.253395 8.331 6.977538 

p-value -- 0.677 0.087 0.714 

  
    

Set #15: N=50 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP AVG ADF 

Relative RMSE 1 1.054277 1.102511 1.167934 

Mean Ratio 1 1.07511 1.173499 1.186033 

p-value -- 0.553 0.322 0.484 

  
    

Set #16: N=50 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP AVG ADF 

Relative RMSE 1 1.01734 1.03479 1.107172 

Mean Ratio 1 1.026739 1.103845 1.114116 

p-value -- 0.676 0.402 0.583 

  
    

Set #17: N=50 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS PP ADF 

Relative RMSE 1 1.007213 1.008295 1.10424 

Mean Ratio 1 0.995764 0.982569 1.069477 

p-value -- 0.562 0.582 0.486 

  
    

Set #18: N=50 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.014966 1.018921 1.081541 

Mean Ratio 1 1.025669 1.082831 1.096729 

p-value -- 0.667 0.387 0.69 

  
    

Set #19: N=50 | Horizon=6 | b=1 
  



  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.008941 1.01556 1.085246 

Mean Ratio 1 1.023155 1.07453 1.0985 

p-value -- 0.721 0.401 0.693 

  
    

Set #20: N=50 | Horizon=6 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model KPSS AVG ADF PP 

Relative RMSE 1 1.00529 1.121816 1.284569 

Mean Ratio 1 1.035063 1.192859 1.234813 

p-value -- 0.502 0.444 0.522 

  
    

Set #21: N=50 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS AVG ADF 

Relative RMSE 1 1.000005 1.169426 1.278283 

Mean Ratio 1 1.138399 3.722727 2.54275 

p-value -- 0.705 0.149 0.743 

  
    

Set #22: N=200 | Horizon=1 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000012 1.002443 1.009309 

Mean Ratio 1 1.000134 1.002655 1.009667 

p-value -- 0.647 0.504 0.348 

  
    

Set #23: N=200 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model ADF KPSS PP AVG 

Relative RMSE 1 1.000076 1.001046 1.004341 

Mean Ratio 1 1.000184 1.00108 1.0046 

p-value -- 0.672 0.692 0.403 

  
    

Set #24: N=200 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000562 1.004758 1.00573 

Mean Ratio 1 1.000554 1.005119 1.00603 

p-value -- 0.829 0.733 0.409 

  
    

Set #25: N=200 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 



  

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000218 1.001169 1.018333 

Mean Ratio 1 1.000196 1.001179 1.01858 

p-value -- 0.889 0.747 0.373 

  
    

Set #26: N=200 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.00018 1.002229 1.192736 

Mean Ratio 1 1.000227 1.002236 1.200115 

p-value -- 0.907 0.711 0.268 

  
    

Set #27: N=200 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG PP KPSS ADF 

Relative RMSE 1 2.177239 2.177339 2.177848 

Mean Ratio 1 0.83016 0.835098 0.835695 

p-value -- 0.773 0.726 0.738 

  
    

Set #28: N=200 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 3.249204 

Mean Ratio 1 448.848002 1.904812 348.637237 

p-value -- 0.649 0.82 0.023 

  
    

Set #29: N=200 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000865 1.005072 1.051334 

Mean Ratio 1 0.99931 1.006207 1.054955 

p-value -- 0.642 0.512 0.237 

  
    

Set #30: N=200 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.00068 1.002581 1.031577 

Mean Ratio 1 1.001111 1.002117 1.035254 

p-value -- 0.666 0.645 0.252 

  
    

Set #31: N=200 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 



  

Relative RMSE 1 1.000488 1.001478 1.024889 

Mean Ratio 1 1.000729 1.002216 1.028576 

p-value -- 0.759 0.739 0.299 

  
    

Set #32: N=200 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000083 1.005801 1.051716 

Mean Ratio 1 1.000786 1.005324 1.052053 

p-value -- 0.86 0.705 0.264 

  
    

Set #33: N=200 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000735 1.001838 1.297906 

Mean Ratio 1 1.000667 1.003913 1.253386 

p-value -- 0.9 0.742 0.195 

  
    

Set #34: N=200 | Horizon=3 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS ADF PP 

Relative RMSE 1 1.082137 1.082137 1.422378 

Mean Ratio 1 0.815108 0.815639 0.807727 

p-value -- 0.766 0.806 0.83 

  
    

Set #35: N=200 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.63204 

Mean Ratio 1 81.38863 1.188207 76.518175 

p-value -- 0.663 0.808 0.025 

  
    

Set #36: N=200 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.003368 1.011274 1.146428 

Mean Ratio 1 0.999883 1.014226 1.16171 

p-value -- 0.669 0.512 0.119 

  
    

Set #37: N=200 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.001756 1.009515 1.08026 



  

Mean Ratio 1 1.001835 1.007121 1.092965 

p-value -- 0.682 0.636 0.174 

  
    

Set #38: N=200 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.001285 1.002656 1.062141 

Mean Ratio 1 1.001931 1.003647 1.077501 

p-value -- 0.819 0.729 0.215 

  
    

Set #39: N=200 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000399 1.007229 1.063976 

Mean Ratio 1 1.001995 1.006531 1.076915 

p-value -- 0.851 0.729 0.221 

  
    

Set #40: N=200 | Horizon=6 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000317 1.013806 1.179148 

Mean Ratio 1 0.999987 1.011163 1.180176 

p-value -- 0.909 0.699 0.214 

  
    

Set #41: N=200 | Horizon=6 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000004 1.000005 1.785351 

Mean Ratio 1 0.992764 1.021713 1.260858 

p-value -- 0.928 0.588 0.206 

  
    

Set #42: N=200 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.121228 

Mean Ratio 1 24.557153 1.155671 28.694526 

p-value -- 0.667 0.803 0.033 

  
    

Set #43: N=200 | Horizon=12 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.00748 1.016533 1.432524 

Mean Ratio 1 1.000864 1.026203 1.472025 



  

p-value -- 0.665 0.505 0.014 

  
    

Set #44: N=200 | Horizon=12 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.008108 1.009921 1.219489 

Mean Ratio 1 1.00966 1.009014 1.257142 

p-value -- 0.657 0.651 0.067 

  
    

Set #45: N=200 | Horizon=12 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.000825 1.004537 1.145873 

Mean Ratio 1 1.002721 1.005155 1.189848 

p-value -- 0.762 0.758 0.136 

  
    

Set #46: N=200 | Horizon=12 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.003348 1.016446 1.109711 

Mean Ratio 1 1.000748 1.014383 1.155547 

p-value -- 0.888 0.741 0.178 

  
    

Set #47: N=200 | Horizon=12 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.001456 1.023113 1.14641 

Mean Ratio 1 0.999511 1.016272 1.182806 

p-value -- 0.906 0.744 0.194 

  
    

Set #48: N=200 | Horizon=12 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000206 1.000629 3.529125 

Mean Ratio 1 1.014252 1.041451 1.258368 

p-value -- 0.877 0.618 0.231 

  
    

Set #49: N=200 | Horizon=12 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.013483 

Mean Ratio 1 6.237203 1.04339 10.193978 

p-value -- 0.682 0.827 0.062 



  

  
    

Set #50: N=500 | Horizon=1 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000297 1.009685 1.025704 

Mean Ratio 1 1.000297 1.009691 1.025749 

p-value -- 0.927 0.242 0.054 

  
    

Set #51: N=500 | Horizon=1 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000397 1.005291 1.015827 

Mean Ratio 1 1.000405 1.005338 1.015862 

p-value -- 0.692 0.305 0.149 

  
    

Set #52: N=500 | Horizon=1 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF KPSS PP AVG 

Relative RMSE 1 1.000364 1.000623 1.009371 

Mean Ratio 1 1.000381 1.000634 1.009422 

p-value -- 0.635 0.642 0.229 

  
    

Set #53: N=500 | Horizon=1 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.00016 1.00023 1.031876 

Mean Ratio 1 1.000179 1.000258 1.032067 

p-value -- 0.792 0.788 0.174 

  
    

Set #54: N=500 | Horizon=1 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.012753 1.013735 1.424707 

Mean Ratio 1 1.012767 1.013687 1.423536 

p-value -- 0.864 0.88 0.078 

  
    

Set #55: N=500 | Horizon=1 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model AVG KPSS PP ADF 

Relative RMSE 1 2.437439 2.437439 2.437439 

Mean Ratio 1 0.725396 0.738947 0.74987 

p-value -- 0.927 0.926 0.904 

  
    



  

Set #56: N=500 | Horizon=1 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 3.783315 

Mean Ratio 1 3203.22064 81.894367 1930.85619 

p-value -- 0.64 0.734 0.004 

  
    

Set #57: N=500 | Horizon=3 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000736 1.029617 1.095795 

Mean Ratio 1 1.000808 1.029282 1.095958 

p-value -- 0.927 0.213 0.019 

  
    

Set #58: N=500 | Horizon=3 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000699 1.014909 1.055393 

Mean Ratio 1 1.001267 1.014744 1.057032 

p-value -- 0.667 0.268 0.078 

  
    

Set #59: N=500 | Horizon=3 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF KPSS PP AVG 

Relative RMSE 1 1.000989 1.001467 1.035496 

Mean Ratio 1 1.000809 1.001048 1.038446 

p-value -- 0.651 0.632 0.171 

  
    

Set #60: N=500 | Horizon=3 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.00059 1.000923 1.107239 

Mean Ratio 1 1.000754 1.001086 1.107975 

p-value -- 0.792 0.807 0.107 

  
    

Set #61: N=500 | Horizon=3 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.017207 1.020338 1.897285 

Mean Ratio 1 1.016055 1.018289 1.83566 

p-value -- 0.85 0.847 0.05 

  
    

Set #62: N=500 | Horizon=3 | b=1.5 
  



  

Rank 1st 2nd 3rd 4th 

Model AVG PP KPSS ADF 

Relative RMSE 1 1.432621 1.432621 1.432621 

Mean Ratio 1 0.648507 0.64579 0.656442 

p-value -- 0.95 0.949 0.934 

  
    

Set #63: N=500 | Horizon=3 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.496086 

Mean Ratio 1 347.869817 17.318701 348.361738 

p-value -- 0.621 0.719 0.007 

  
    

Set #64: N=500 | Horizon=6 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.001907 1.060076 1.232837 

Mean Ratio 1 1.001989 1.059124 1.234361 

p-value -- 0.92 0.193 0.004 

  
    

Set #65: N=500 | Horizon=6 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.002626 1.030204 1.134291 

Mean Ratio 1 1.003574 1.030516 1.141389 

p-value -- 0.66 0.255 0.036 

  
    

Set #66: N=500 | Horizon=6 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.003931 1.004519 1.082319 

Mean Ratio 1 1.002169 1.004364 1.090966 

p-value -- 0.644 0.625 0.084 

  
    

Set #67: N=500 | Horizon=6 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1.00066 1.000768 1.111767 

Mean Ratio 1 1.00117 1.001458 1.123623 

p-value -- 0.792 0.795 0.073 

  
    

Set #68: N=500 | Horizon=6 | b=1 
  

Rank 1st 2nd 3rd 4th 



  

Model KPSS PP ADF AVG 

Relative RMSE 1 1.023648 1.02399 1.622477 

Mean Ratio 1 1.014661 1.014612 1.584208 

p-value -- 0.863 0.874 0.04 

  
    

Set #69: N=500 | Horizon=6 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1 1 1.971821 

Mean Ratio 1 1.023004 1.009196 1.736087 

p-value -- 0.826 0.682 0.07 

  
    

Set #70: N=500 | Horizon=6 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.105456 

Mean Ratio 1 94.52397 7.575951 110.550226 

p-value -- 0.646 0.742 0.007 

  
    

Set #71: N=500 | Horizon=12 | b=0.9 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.002589 1.100208 1.570159 

Mean Ratio 1 1.002656 1.098883 1.576123 

p-value -- 0.933 0.22 0 

  
    

Set #72: N=500 | Horizon=12 | b=0.95 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.003349 1.057328 1.335846 

Mean Ratio 1 1.006081 1.060347 1.351585 

p-value -- 0.681 0.258 0.01 

  
    

Set #73: N=500 | Horizon=12 | b=0.975 
  

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.008518 1.009808 1.191495 

Mean Ratio 1 1.004064 1.009952 1.214116 

p-value -- 0.663 0.608 0.038 

  
    

Set #74: N=500 | Horizon=12 | b=0.99 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 



  

Relative RMSE 1 1.002403 1.00597 1.156584 

Mean Ratio 1 1.003612 1.005537 1.18671 

p-value -- 0.804 0.788 0.062 

  
    

Set #75: N=500 | Horizon=12 | b=1 
  

Rank 1st 2nd 3rd 4th 

Model PP KPSS ADF AVG 

Relative RMSE 1 1.000031 1.002534 1.420532 

Mean Ratio 1 1.00461 1.001484 1.412913 

p-value -- 0.756 0.912 0.058 

  
    

Set #76: N=500 | Horizon=12 | b=1.5 
  

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1 1 2.776953 

Mean Ratio 1 1.016203 1.032556 1.438811 

p-value -- 0.827 0.689 0.107 

  
    

Set #77: N=500 | Horizon=12 | b=2 
  

Rank 1st 2nd 3rd 4th 

Model KPSS ADF PP AVG 

Relative RMSE 1 1 1 1.015814 

Mean Ratio 1 30.534417 3.571497 39.535414 

p-value -- 0.624 0.733 0.009 

  
    

 

  



  

Appendix Table A3: Summary Statistics for Structural Break Specification 

 
Structural Break Set #1: N=50 | Horizon=1 

 

Rank 1st 2nd 3rd 4th 

Model ADF PP AVG KPSS 

Relative RMSE 1 1.002246 1.006487 1.009547 

Mean Ratio 1 1.003191 1.006538 1.010206 

p-value -- 0.873 0.59 0.648 

  
    

Structural Break Set #2: N=50 | Horizon=3 
 

Rank 1st 2nd 3rd 4th 

Model PP ADF AVG KPSS 

Relative RMSE 1 1.00188 1.009671 1.022781 

Mean Ratio 1 1.003316 1.003943 1.025416 

p-value -- 0.881 0.642 0.662 

  
    

Structural Break Set #3: N=50 | Horizon=6 
 

Rank 1st 2nd 3rd 4th 

Model AVG ADF PP KPSS 

Relative RMSE 1 1.048804 1.050604 1.055673 

Mean Ratio 1 1.068547 1.071279 1.067635 

p-value -- 0.306 0.294 0.303 

  
    

Structural Break Set #4: N=200 | Horizon=1 
 

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00022 1.000941 1.024906 

Mean Ratio 1 1.000296 1.000988 1.02546 

p-value -- 0.783 0.723 0.707 

  
    

Structural Break Set #5: N=200 | Horizon=3 
 

Rank 1st 2nd 3rd 4th 

Model KPSS PP ADF AVG 

Relative RMSE 1 1.000355 1.000392 1.02087 

Mean Ratio 1 1.000721 1.000785 1.014743 

p-value -- 0.722 0.744 0.773 

  
    

Structural Break Set #6: N=200 | Horizon=6 
 

Rank 1st 2nd 3rd 4th 

Model AVG KPSS ADF PP 

Relative RMSE 1 1.006472 1.006927 1.007616 

Mean Ratio 1 1.025099 1.02577 1.026194 

p-value -- 0.226 0.243 0.237 



  

  
    

Structural Break Set #7: N=200 | Horizon=12 
 

Rank 1st 2nd 3rd 4th 

Model AVG ADF KPSS PP 

Relative RMSE 1 1.048606 1.05015 1.052569 

Mean Ratio 1 1.054629 1.057867 1.058038 

p-value -- 0.223 0.215 0.215 

  
    

Structural Break Set #8: N=500 | Horizon=1 
 

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000169 1.002964 1.05001 

Mean Ratio 1 1.000193 1.003039 1.047894 

p-value -- 0.726 0.516 0.59 

  
    

Structural Break Set #9: N=500 | Horizon=3 
 

Rank 1st 2nd 3rd 4th 

Model ADF PP KPSS AVG 

Relative RMSE 1 1.000114 1.004966 1.095034 

Mean Ratio 1 0.999823 1.00648 1.086249 

p-value -- 0.794 0.54 0.594 

  
    

Structural Break Set #10: N=500 | Horizon=6 
 

Rank 
 

2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.000508 1.010043 1.094365 

Mean Ratio 1 1.000925 1.012903 1.089891 

p-value -- 0.756 0.543 0.607 

  
    

Structural Break Set #11: N=500 | Horizon=12 
 

Rank 1st 2nd 3rd 4th 

Model PP ADF KPSS AVG 

Relative RMSE 1 1.00109 1.022514 1.040824 

Mean Ratio 1 1.002365 1.029266 1.023581 

p-value -- 0.731 0.502 0.604 

  
   

 

 


