

Appendix and Supplemental material not intended for publication-Round 2

Submission Number:EB-16-00633

Supplementary Appendix to be made available online for readers

The authors gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities of Sichuan University (Fund Number: skqy201624) and the National Natural Science Foundation of China (Fund Number: 71203149).

Submitted: Sep 13 2016. Revised: November 08, 2016.

Appendix. Supplementary Results

Coefficient	(1)	(2)	(3)
	State	Private	Overseas
	Dependent var	riable: Ln price pe	er square meter
Ln total building area (square meters)	0.014**	0.013**	-0.002*
	(0.001)	(0.000)	(0.001)
Total floors in building	-0.003**	0.003**	-0.001**
	(0.000)	(0.000)	(0.000)
If property Class C	0.066**	0.042**	0.008**
	(0.001)	(0.001)	(0.002)
If property Class B	0.125**	0.113**	0.099**
	(0.001)	(0.001)	(0.002)
If property Class A	0.286**	0.234**	0.167**
	(0.002)	(0.001)	(0.002)
If listed company	0.061**	0.091**	0.006**
	(0.001)	(0.001)	(0.002)
Ln unit area (square meters)	0.092**	0.004**	0.030**
	(0.001)	(0.001)	(0.002)
Ratio unit floor to total floors in building	0.011**	0.016**	0.027**
	(0.001)	(0.001)	(0.002)
If duplex apartment	0.004	0.038**	-0.019
	(0.038)	(0.012)	(0.014)
Ln sale duration (months)	-0.011**	-0.014**	-0.026**
	(0.001)	(0.000)	(0.001)
Constant	7.677**	7.823**	7.858**
	(0.013)	(0.006)	(0.013)
Observations	233,362	590,875	112,897
R-squared	0.828	0.821	0.860

Table A.1. Hedonic price regressions

Note: **, * denote significance at 5 and 10 percent level. Robust standard errors in parentheses. All regressions include location (blocks) fixed effects and the year-month dummies used to derive the price indexes. The six districts in Chengdu's city center can be divided into 28 blocks. Building area is total area of buildings in the complex; Listed companies are developers listed in the stock market; Property class is based on the building management fees paid divided by quartiles (class D is the lowest quartile and base category); Sale duration is the number of months the unit was on sale until it was purchased.

Coefficient	State	Private	Overseas
	(<i>i</i> =1)	(<i>i</i> =2)	(<i>i</i> =3)
	Cor	ditional mean equa	tion
θο	0.002	0.008**	0.002
	(0.003)	(0.002)	(0.002)
θ_{1i}	0.127	0.079	0.312**
	(0.092)	(0.065)	(0.080)
θ_{2i}	0.221	-0.001	-0.344**
	(0.142)	(0.100)	(0.124)
θ_{3i}	-0.070	-0.059	0.014
	(0.088)	(0.063)	(0.077)
adjustment _{ce1i}	-0.367**	0.061	0.058
	(0.080)	(0.056)	(0.069)
adjustment _{ce2i}	0.231**	-0.163**	0.405**
5	(0.107)	(0.076)	(0.094)
N	ormalized cointegra	ating equation 1 (ce	21)
ln state	In private	ln overseas	constant
1	0	-1.133	0.803
		(0.027)	
Normalized cointegrating equation 2 (ce2)			
ln state	In private	ln overseas	constant
0	1	-1.040	0.333
		(0.016)	
Lagrange multip	lier (LM) test for se	erial correlation (H ₀	: no serial
I M(6)			5 535
<i>p</i> -value			0.785
LM(12)			9.583
<i>p</i> -value			0.385
Log likelihood			957.9
SBIC			-13.988
# observations			130

Table A.2. Estimation results of the conditional mean equation (VEC model)

Note: **, * denote significance at 5 and 10 percent level. Standard errors reported in parentheses.

VEC model estimation

The two cointegrating relationships between the (log) price series were determined using the Johansen trace and eigenvalue test. The selected number of lags (one lag) is based on the Schwarz Bayesian information criterion. The Lagrange Multiplier (LM) test on the residuals and the eigenvalue stability condition (not reported) support the adequacy of the model specification.

Coefficient	State	Private	Overseas	
	(<i>i</i> =1)	(<i>i</i> =2)	(<i>i</i> =3)	
	Conditional variance-covariance equation			
c_{i1}	-0.0002	-0.0013	-0.0019	
	(0.0026)	(0.0083)	(0.0116)	
C _{i2}		-0.0011	-0.0013	
		(0.0103)	(0.0151)	
<i>C</i> ₁₃			0.0000	
			(0.0001)	
a_{il}	0.388**	0.050	-0.005	
	(0.125)	(0.058)	(0.089)	
a_{i2}	-0.248*	-0.137*	-0.186*	
	(0.149)	(0.078)	(0.100)	
a_{i3}	0.137	0.103	0.373**	
	(0.153)	(0.138)	(0.100)	
$g_{\rm i1}$	0.898**	-0.066**	0.074	
	(0.038)	(0.012)	(0.062)	
g_{i2}	0.142**	0.974**	-0.119**	
0	(0.030)	(0.023)	(0.030)	
g_{i3}	-0.104**	0.055	0.931**	
	(0.053)	(0.064)	(0.031)	
ν			10.348**	
			(4.031)	
Wald joint test for cross-	-volatility coeffi	cients (H ₀ : $a_{ij}=g_{ij}$	=0,∀i≠j)	
Chi-sq			417.115	
<i>p</i> -value			0.000	
Wald test for block-exog	geneity in varian	ce of state enterp	rises	
(H ₀ : $a_{1j}=g_{1j}=0, j=2,3$)				
Chi-sq		28.535	3.953	
<i>p</i> -value		0.000	0.139	
Wald test for block-exog	geneity in varian	ce of private ente	erprises	
(H ₀ : $a_{2i}=g_{2i}=0, i=1,3$)		-	-	
Chi-sq	14.744		0.732	
<i>p</i> -value	0.001		0.392	
Wald test for block-exogeneity in variance of overseas enterprises				
(H ₀ : $a_{3i}=g_{3i}=0$, $i=1,2$)	-		-	
Chi-sq	3.350	20.919		
<i>p</i> -value	0.187	0.000		
			(Cont.)	

Table A.3. Estimation results of the conditional variance equation (BEKK model)

Coefficient	State	Private	Overseas
	(<i>i</i> =1)	(<i>i</i> =2)	(<i>i</i> =3)
Ljung-Box test for autocorrelation (H ₀ : no autocorrelation in squared			
residuals)			
LB(6)	2.028	4.073	0.772
<i>p</i> -value	0.917	0.667	0.993
LB(12)	6.815	9.389	1.999
<i>p</i> -value	0.870	0.669	0.999
Lagrange multiplier test for ARCH res	iduals (H ₀ :	no serial	
correlation in squared residuals)			
LM(6)	2.388	1.469	1.277
<i>p</i> -value	0.881	0.962	0.973
LM(12)	10.417	9.146	2.595
<i>p</i> -value	0.579	0.690	0.998
Hosking Multivariate Portmanteau test	t for cross-c	orrelation (H	I ₀ : no
cross-correlation in squared residuals)			
M(6)			26.141
<i>p</i> -value			1.000
M(12)			61.717
<i>p</i> -value			1.000
Log likelihood			1,037.7
SBIC			-15.028
# observations			130

Note: **, * denote significance at 5 and 10 percent level. Model estimated using a Student's t distribution to account for leptokurtic distribution of the returns series. Standard errors reported in parentheses. v is the degrees of freedom parameter. LB, LM and M stand for the corresponding Ljung-Box, Lagrange Multiplier and Hosking test statistics.

BEKK model estimation

The residual diagnostic tests — Ljung-Box (LB), Lagrange Multiplier (LM) and Hosking Multivariate Portmanteau (M) tests —show no evidence of autocorrelation, ARCH effects, and cross correlation in the standardized squared residuals, which support the appropriateness of the model specification. The Wald joint test for cross-volatility coefficients $(H_0 : a_{ij} = g_{ij} = 0, \forall i \neq j)$ indicate the overall presence of direct volatility spillovers and persistence between the market segments.

Following Gardebroek and Hernandez (2013), the impulse-response functions are derived in two steps. First, we estimate the size of a shock in one of the market segments ($\tilde{\mathcal{E}}_i$) such that the estimated steady-state conditional variance in that segment (\bar{h}_{ii}) increases in 1% after one period. Second, we introduce shock $\tilde{\mathcal{E}}_i$ in the conditional variance of the other segments h_{jj} , $j \neq i$, and iterate the change in these variances with respect to their steady-state value.

Coefficient	State	Private	Overseas
	(<i>i</i> =1)	(<i>i</i> =2)	(<i>i</i> =3)
	Conditional	variance-covaria	nce equation
ω_i	0.146	0.383	0.109
	(0.151)	(0.261)	(0.089)
α_i	0.282	0.355*	0.357*
	(0.216)	(0.184)	(0.201)
β_i	0.725**	0.537**	0.686**
	(0.165)	(0.189)	(0.093)
α			0.022
			(0.029)
в			0.886**
			(0.069)
V			7.725**
			(2.061)
Wald joint test for adju	stments coefficients (Ho	$\alpha = \beta = 0$	
Chi-sq			192.164
p-value			0.000
Ljung-Box test for auto	ocorrelation (H ₀ : no auto	correlation in sq	uared residuals
LB(6)	2.706	2.926	2.035
p-value	0.845	0.818	0.916
LB(12)	9.050	5.534	4.963
p-value	0.699	0.938	0.959
Lagrange multiplier tes squared residuals)	st for ARCH residuals (H	H ₀ : no serial corre	elation in
LM(6)	3.127	2.375	2.288
<i>p</i> -value	0.793	0.882	0.891
LM(12)	9.795	8.007	5.249
<i>p</i> -value	0.634	0.785	0.949
Hosking Multivariate I correlation in squared 1	Portmanteau test for cros residuals)	ss-correlation (H ₀	: no cross-
M(6)			30.153
p-value			0.993
M(12)			79.402
p-value			0.975
Log likelihood			1,014.5
SBIC			-15.046
# obs.			130

Table A.4. Estimation results of DCC model

Note: **, * denote significance at 5 and 10 percent level. Model estimated using a Student's t distribution to account for leptokurtic distribution of the returns series. Standard errors reported in parentheses. v is the degrees of freedom parameter. LB, LM and M stand for the corresponding Ljung-Box, Lagrange Multiplier and Hosking test statistics.

DCC model estimation

The variance-covariance matrix in the DCC model is specified as

$$H_t = D_t R_t D_t \tag{A.1}$$

where $D_t = diag(h_{11,t}^{1/2}...h_{33,t}^{1/2});$ $h_{ii,t}$ is a GARCH(1,1) specification, i.e. $h_{ii,t} = \omega_i + \alpha_i \varepsilon_{i,t-1}^2 + \beta_i h_{ii,t-1}, i = 1,...,3;$ $R_t = diag(q_{ii,t}^{-1/2})Q_t diag(q_{ii,t}^{-1/2});$ $Q_t = (q_{ij,t}), i, j = 1,...,3,$ is a 3x3 symmetric positive-definite matrix given by $Q_t = (1 - \alpha - \beta)\overline{Q} + \alpha u_{t-1}u_{t-1} + \beta Q_{t-1};$ and $u_{i,t} = \varepsilon_{i,t} / \sqrt{h_{ii,t}}$. \overline{Q} is the 3x3 unconditional variance matrix of u_t , and α and β are nonnegative adjustment parameters satisfying $\alpha + \beta < 1$.

The residual diagnostic tests — Ljung-Box (LB), Lagrange Multiplier (LM) and Hosking Multivariate Portmanteau (M) tests —show no evidence of autocorrelation, ARCH effects, and cross correlation in the standardized squared residuals, which support the appropriateness of the model specification. The Wald joint test for adjustment coefficients ($H_0: \alpha = \beta = 0$) is indicative of time-varying conditional correlations in price returns between the market segments.