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Appendices

Appendix A. Data

This section shares data. Section A.1 provides evidence for a few assertions made in the text,

including the simultaneous occurrence of millions of job opening and unemployed people. Section

A.2 shares data generated from the computational experiment.

Replication materials are available at

https://github.com/richryan/fundamentalSurplusGeneralMatch.

Appendix A.1 Data on Unemployment and Job Openings

Each month there are millions of unemployed people despite millions of job openings. These

two series are shown in figure 3. The number of unemployed people is a statistic computed from

responses to the Current Population Survey. The series is depicted with the broken line. The

number of job openings is a statistic computed from responses to the Job Openings and Labor

Turnover Survey. The monthly series in figure 3 start in December 2000, when data from the Job

Openings and Labor Turnover Survey become available. The horizontal blue line indicates one

million.
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Figure 3: Jobs openings and unemployed persons.

Notes: The blue horizontal line shows the level 1 million. Shaded areas indicate US recessions.

Sources: US Bureau of Labor Statistics. Unemployment Level [UNEMPLOY], retrieved from FRED, Federal Reserve

Bank of St. Louis; https://fred.stlouisfed.org/series/UNEMPLOY. Job Openings: Total Nonfarm [JTSJOL], retrieved

from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/JTSJOL.

When job openings or vacancies are plotted against unemployment the relationship is known as

the Beveridge curve. Figure 4 shows this relationship. The relationship is negative because more
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vacancies create more matches, which reduce unemployment. Barlevy et al. (2023) use a bathtub

metaphor to describe the relationship between vacancies and unemployment. They also analyze

longer time series, which is informative.
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Figure 4: Empirical relationship between vacancies and unemployment.

Note: The relationship is often referred to as the Beveridge curve. Vacancies refer to job openings.

Sources: US Bureau of Labor Statistics. Unemployment Level [UNEMPLOY], retrieved from FRED, Federal Reserve

Bank of St. Louis; https://fred.stlouisfed.org/series/UNEMPLOY. Job Openings: Total Nonfarm [JTSJOL], retrieved

from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/JTSJOL.

The relationship in figure 4 can be expressed in rates, where the unemployment rate is shown

on the horizontal axis and the vacancy rate is shown on the vertical axis. The vacancy rate could

be constructed by dividing the number of vacancies by the sum of vacancies plus the aggregate

measure of productive firms or employment.

Appendix A.2 Data from Calibrated Models

Figure 5 provides data on the elasticities of market tightness and the wage rate for the six economies

studied in figure 2. In panel A, the elasticities of market tightness, computed using the expression

in (6), show that the nonlinear technology delivers higher labor-market volatility. This idea is

expressed in figure 2 in terms of unemployment rates.

Panel B of figure 5 shares elasticities of the wage rate with respect to � for the six economies

studied in figure 2. The values are computed using equation (31) in this appendix. The elasticities

add an important point to any interpretation of higher labor-market volatility: The economy indexed

by � = 0.61 does not exhibit higher ��,� because wages respond less to productivity. Under that

false narrative, the reason ��,� is higher would be because firms stand more to gain from an increase

in productivity. Because wages are less elastic and respond less to productivity, an increase in

productivity would mean more profit for a firm owner. The surplus generated from an increase in

� goes either to the worker or to the firm owner—and it does not go to the worker when wages are
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inelastic. But figure 5 rules this narrative out: Panel B shows that (1) wages are more elastic under

the nonlinear technology than the Cobb–Douglas technology and (2) wages are elastic across all

productivity levels and matching technologies. The data suggest that matching technology does

matter.

Figures 6 and 7 show monthly job-finding and job-filling probabilities generated by the six

economies. The daily rates are converted to monthly rates using the computations discussed in

appendix E. The main takeaway is that the daily calibration forces monthly job-finding and filling

rates to stay within 0 and 1; although, the monthly job-filling rates are close to 1. Ljungqvist

and Sargent’s (2017) skillful suggestion is helpful, because it is almost guaranteed that a high

job-finding rate would push the job-filling rate above 1 in a monthly or quarterly calibration.
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Figure 5: Elasticities of market tightness and the wage rate.

Notes: The six values in each panel correspond to the six economies studied in figure 2. Panel A shows the elasticities

of market tightness, ��,� , computed using equation (6). Panel B shows the elasticities of the wage rate, ��,� , computed

using equation (31).
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Figure 6: Equilibrium rates of job finding.

Notes: Job-finding rates for six economies with match efficiency adjusted to generate 5 percent unemployment for

each matching technology at productivity levels .61, 0.63, and 0.65. The data correspond to the six economies studied

in figure 2. Daily probabilities are converted to monthly probabilities using the computations described in appendix E.
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Figure 7: Equilibrium rates of job filling.

Notes: Job-filling rates for six economies with match efficiency adjusted to generate 5 percent unemployment for each

matching technology at productivity levels .61, 0.63, and 0.65. The data correspond to the six economies studied in

figure 2. Daily probabilities are converted to monthly probabilities using the computations described in appendix E.

16



Appendix B. The Elasticity of Matching with Respect to Unemployment

In general, a matching technology computes the number of new matches or new hires produced

when � workers are searching for jobs and � vacancies are posted. A matching technology, � , in

other words, maps unemployment and vacancies into matches: � : R+×R+ → R+. It is increasing

in both its non-negative arguments and exhibits constant returns to scale in � and �.

Before turning to the particular parameterization, for completeness, I state and prove a well

known result about the elasticity of matching with respect to unemployment. This result will be

used in the discussion about the decomposition of the elasticity of tightness.

I use the following notation:

• � denotes the number of new matches generated within a period.

• � denotes the number of unemployed workers searching for a job.

• � denotes the number of vacancies posted by firms recruiting workers.

• � = �/�, the ratio of vacancies to unemployment, denotes labor-market tightness.

• � (�) = �/� denotes the probability that a vacancy is filled.

• �� (�) = �/� denotes the probability that a worker finds a job.

That �/� denotes the probability that a posted vacancy is filled follows from the assumption that

search is random, meaning each vacancy faces the same likelihood of being filled.

In addition, a general matching technology should possess the following characteristics:

lim
�→0

� (�) = 1 and lim
�→∞

� (�) = 0 (7)

while

lim
�→0

�� (�) = 0 and lim
�→∞

�� (�) = 1, (8)

which says that the job-filling probability goes to 1 as the ratio of job openings to unemployed

persons goes to 0, or �/� → 0. Likewise, it is nearly impossible to fill a vacancy when there

are many job openings relative to the number of unemployed. Job-finding is the flip side of this

process, which explains the limits in (8).

The elasticity of matching with respect to unemployment is the percent change in matches given

a percent change in unemployment:

��,� ≔
��

��

�

�
= −

��′ (�)

� (�)
. (9)

The expression in (9) comes from direct computation. Indeed, from the definition of job filling,

� (�) = �/�, it follows that

��

��
=

�

��
[� (�) �]

= �′ (�)
−�

�2
� = −�′ (�) �2,
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where the first equality uses the fact that � (�) = �/� and the second line uses the fact that

��/�� = −�/�2. Thus

��

��

�

�
= −

�′ (�) �2

�/�
= −

�′ (�) �2

�� (�)

= −
��′ (�)

� (�)
> 0,

where the last equality in the first line uses the definition of job finding: �� (�) = �/�. The

inequality uses the property that �′ < 0. The inequality ��,� > 0 means that, for a given level of

labor demand, an increase in workers searching for jobs increases the number of new hires.

Moreover ��,� lies in the interval (0, 1). It has already been established that ��,� > 0. The

fact that ��,� < 1 can be established by differentiation of �� (�) with respect to �:

�

��
[�� (�)] = {[1 × � (�)] + ��′ (�)}

1

�

= [� (�) + ��′ (�)]
1

�
.

Because �� (�) can be written �� (�, �) /�, it also true that

�

��
[�� (�)] =

1

�

�

�
+ �

��� − �

�2

=
1

�

�

�
+ �

(

��

�
−
� (�)

�

)

=
1

�
{�� (�) + � [�� − � (�)]}

where �� is the derivative of the matching function with respect to vacancies. Combining these

two expressions yields

[� (�) + ��′ (�)]
1

�
=

1

�
{�� (�) + � [�� − � (�)]}

∴ [� (�) + ��′ (�)] � = �� (�) + � [�� − � (�)]

∴ ��′ (�) = �� − � (�)

∴

��′ (�)

� (�)
=

��

� (�)
− 1

∴ 1 −

(

−
��′ (�)

� (�)

)

=
��

� (�)

∴ 1 − ��,� =
��

� (�)
.

Therefore, 1−��,� is positive since � is increasing in both its arguments. Re-arranging 1−��,� > 0

establishes that ��,� < 1. Hence, ��,� ∈ (0, 1). These results are collected in proposition 3.

Proposition 3. Given a constant-returns to scale matching technology that is increasing in both its

arguments, � (�, �), the elasticity of matching with respect to unemployment, ��,� ≔ −��′ (�) /� (�),

lies in the interval (0, 1).
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Appendix C. Properties of Two Prominent Matching Technologies

Cobb–Douglas. One prominent parameterization of � is

M (�, �) = A���1−�, A > 0, � ∈ (0, 1) . (10)

The function M exhibits constant returns to scale in � and �. This is the familiar Cobb–Douglas

parameterization. Because M is increasing in both unemployment and vacancies, � > 0 and

1 − � > 0. These two inequalities imply 0 < � < 1. The Cobb–Douglas parameterization delivers

good empirical performance based on the statistical evidence provided by Petrongolo and Pissarides

(2001).

Under random search, the probability that a vacancy is filled is M/�:

�A (�) =
M

�
= A���−� = A�−�,

where the notation �A explicitly references the matching efficiency parameter, A. A direct com-

putation establishes that the job-filling probability is decreasing in tightness. It is harder, in other

words, for a firm to fill a vacancy the more vacancies there are for a given level of unemployment.

Under random search, the probability that a worker finds a job is

��A (�) =
M

�

�

�
= A�1−� .

The job-finding probability is increasing in �. It is easier, in other words, for an individual worker

to find a job the more vacancies there are for a given level of unemployment.

The elasticity of matching with respect to unemployment is constant:

��,� = −
��′

A
(�)

�A (�)

= −
� (−�) A�−�−1

A�−�

= �.

(11)

Nonlinear. Another parameterization of the matching technology, suggested by den Haan et al.

(2000), is

M (�, �) = A
��

[�� + ��]1/�
, A, � > 0. (12)

The function M exhibits constant returns to scale: For any � ∈ R+,

A
(��) (��)

[(��)� + (��)�]
1/�

= A
�2��

{�� [�� + ��]}1/�

= A
�2��

� [�� + ��]1/�

= �A
��

[�� + ��]1/�
.
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In addition, M is increasing in both its arguments. Indeed,

�M

��
= A

� (�� + ��)1/� − 1
�
(�� + ��)1/�−1 ���−1��

(�� + ��)
2
�

= A
� [�� + ��]1/� − (�� + ��)1/�−1 ���

(�� + ��)
2
�

= A
� [�� + ��]1/�

(�� + ��)
2
�

(

1 −
��

�� + ��

)

> 0.

A symmetric argument establishes that M is increasing in �.

Under the nonlinear parameterization, the probability that a vacancy is filled is

�A (�) =
M

�
= A

�

[�� + ��]1/�

1/�

1/�

= A
1

[1 + (�/�)�]
1/�

= A
1

(1 + ��)1/�
.

A direct computation establishes that the job-filling probability is decreasing in tightness:

��A (�)

��
= −

A

�

1

(1 + ��)1/�−1
���−1 < 0.

The probability a worker finds a job is

��A (�) =
M

�
= A

�

(1 + ��)1/�
> 0.

The job-finding probability under the nonlinear parameterization is increasing in �:

�

��
[��A (�)] = A

(1 + ��)1/� − � 1
�
(1 + ��)1/�−1 ���−1

(1 + ��)2/�

= A
(1 + ��)1/� − (1 + ��)1/�−1 ��

(1 + ��)2/�

= A
(1 + ��)1/�

(1 + ��)2/�

(

1 −
��

1 + ��

)

> 0.

For the nonlinear matching technology, when A < ∞, the job-finding probability is between 0

and A. Indeed,

lim
�→0

��A (�) = lim
�→0

A
�

(1 + ��)1/�
= 0
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and

lim
�→∞

��� (�) = lim
Θ→∞

A
�

(1 + ��)1/�
= lim

�→∞
A

1

(1 + ��)1/�−1 ��−1

= A,

where the second-to-last equality uses L’Hôpital’s rule and the fact that

(1 + ��)1/�−1 ��−1
= (1 + ��)

1−�
�

(

1

�

)1−�

= (1 + ��)
1−�
�

(

1

�

)1−�

= (1 + ��)
1−�
�

[(

1

�

)�]
1−�
�

= (1 + ��)
1−�
�

(

1

��

) 1−�
�

=

[

1

��
(1 + ��)

] 1−�
�

=

[

1 +
1

��

] 1−�
�

and therefore

lim
�→∞

(1 + ��)1/�−1 ��−1
= lim

�→∞

[

1 +
1

��

] 1−�
�

= 1.

In addition, the fact that the job-finding probability is increasing everywhere implies that the

probability a worker finds a job lies between 0 and 1 when A = 1.

Similarly, the job-filling probability for the nonlinear parameterization falls between 0 and A.

Indeed,

lim
�→∞

�� (�) = lim
�→∞

A
1

(1 + ��)1/�
= 0

and

lim
�→0

�� (�) = lim
�→∞

A
1

(1 + ��)1/�
= A.

The fact that the job-filling probability is decreasing everywhere implies that the probability a job

is filled falls between 0 and A.
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The elasticity of matching with respect to unemployment for the nonlinear parameterization is

��,� = −
��′ (�)

� (�)

=

� 1
�
A (1 + ��)−1/�−1 ���−1

A (1 + ��)−1/�

=
(1 + ��)−1/�−1 ��

(1 + ��)−1/�

= (1 + ��)−1 ��

=
��

1 + ��
.

(13)

As implied by proposition 3, the elasticity in (13) falls inside the unit interval. Unlike the Cobb-

Douglas parameterization, ��,� is not constant.

Minor discussion. While Cobb–Douglas fits the data well, as Petrongolo and Pissarides (2001)

and Bleakley and Fuhrer (1997) have shown, not all specifications keep job-finding and job-filling

probabilities within the unit interval (den Haan et al., 2000). This feature is one motivation for

using the nonlinear technology in business-cycle research like that in Petrosky-Nadeau and Zhang

(2017). Although, Ljungqvist and Sargent (2017, 2639n6) skillfully show how a daily calibration

could avoid this outcome and encourage firms to post vacancies.
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Appendix D. Derivations for the Fundamental Surplus Omitted from the Main Text

In this section, I derive expressions presented in sections 2.3 and 2.4. And I provide further details

used in the proofs of propositions 1 and 2. Many of the expressions are repeated here so that I can

explicitly refer to them.

Appendix D.1 Key Bellman Equations

Here I repeat the key Bellman equations for the canonical DMP model.

Key Bellman equations in the economy for firms are

J = � − � + � [�V + (1 − �) J] , (14)

V = −� + � {� (�) J + [1 − � (�)] V} . (15)

Imposing the zero-profit condition in equation (15) implies

0 = −� + � {� (�) J + [1 − � (�) 0]}

∴ � = �� (�) J

or

J =
�

�� (�)
. (16)

Substituting this result into equation (14) and imposing the zero-profit condition implies

J = � − � + � [�V + (1 − �) J]

∴

�

�� (�)
= � − � + � (1 − �)

�

�� (�)

∴

�

�� (�)
= � − � + (1 − �)

�

� (�)

∴ � = � + (1 − �)
�

� (�)
−

�

�� (�)

∴ � = � +
�

� (�)

(

1 − � −
1

�

)

∴ � = � +
�

� (�)
(−� − �) .

This simplifies to

� = � −
� + �

� (�)
�. (17)

The key Bellman equations for workers are

E = � + � [�� + (1 − �) E] (18)

U = � + � {�� (�) E + [1 − �� (�)] U} . (19)

In the canonical matching model, the match surplus,

S = (J −V) + (E −U)
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is the benefit a firm gains from a productive match over an unfilled vacancy plus the benefit a worker

gains from employment over unemployment. The surplus is split between a matched firm–worker

pair. The outcome of Nash bargaining specifies

E −U = �S and J = (1 − �) S, (20)

where � ∈ [0, 1) measures the worker’s bargaining power.

Appendix D.2 On the Value of Unemployment

The next part of the derivation yields a value for unemployment. Solving equation (14) for J yields

J = � − � + � (1 − �) J

∴ J [1 − � (1 − �)] = � − �

∴ J =
� − �

1 − � (1 − �)
.

And solving (18) for E yields

E = � + ��U + � (1 − �) E

∴ E [1 − � (1 − �)] = � + ��U

∴ E =
� + ��U

1 − � (1 − �)

=
�

1 − � (1 − �)
+

��U

1 − � (1 − �)
.

Developing the expressions in (20) for the outcome of Nash bargaining yields

E −U = �S

= �
J

1 − �

and using the just-derived expressions for J and E yields
[

�

1 − � (1 − �)
+

��U

1 − � (1 − �)

]

︸                                   ︷︷                                   ︸

E

−U =
�

1 − �

[

� − �

1 − � (1 − �)

]

︸             ︷︷             ︸

J

.

Developing this expression yields

� + ��U − [1 − � (1 − �)] U =
�

1 − �
(� − �)

∴ � + ��U −U + �U − ��U =
�

1 − �
(� − �)

∴ � =
�

1 − �
(� − �) + (1 − �) U

∴ (1 − �) � = � (� − �) + (1 − �) (1 − �) U

∴ � = �� + (1 − �) U − � (1 − �) U.

(21)
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Using the fact that

1 − � = 1 −
1

1 + �
=

1 + � − 1

1 + �
=

�

1 + �
,

the latter expression can be written as

� =
�

1 + �
U + �

(

� −
�

1 + �
U
)

, (22)

which is equation (9) in Ljungqvist and Sargent (2017, 2634). The value �U/(1 + �) in equation

(22) is the “annuity value of being unemployed” (Ljungqvist and Sargent, 2017, 2634).

To get an expression for the annuity value of unemployment, �U/(1 + �), I solve equation (19)

for E −U and substitute this expression and the expression in (16) into (20).

These steps are taken next:

Turning to equation (19):

U = � + � {�� (�) E + [1 − �� (�)] U}

∴ U = � + ��� (�) E + �U − ��� (�) U

∴ U = � + [��� (�)] (E − U) + �U

U (1 − �) − � = [��� (�)] (E − U)

∴ E −U =
1

��� (�)
[(1 − �) U − �]

=
1 + �

�� (�)
[(1 − �) U − �]

=
�

�� (�)
U −

1 + �

�� (�)
�.

Using this expression for E −U in (20) yields

E −U = �S

∴

�

�� (�)
U −

1 + �

�� (�)
� = �S

= �

(

J

1 − �

)

=
�

1 − �

�

�� (�)
,

where the last equality uses the expression for J in equation (16). Developing this expression

yields

�

�� (�)
U −

1 + �

�� (�)
� =

�

1 − �

�

�� (�)

∴ �U − (1 + �) � =
�

1 − �

1

�
��

∴ �U − (1 + �) � =
�

1 − �
(1 + �) ��

∴

�

1 + �
U = � +

���

1 − �
, (23)
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which is equation (10) in Ljungqvist and Sargent (2017, 2634).

Substituting equation (23) into equation (22) yields an expression for the wage:

� =
�

1 + �
U + �

(

� −
�

1 + �
U
)

= � +
���

1 − �
+ �

(

� − � −
���

1 − �

)

= (1 − �) � + (1 − �)

(

���

1 − �

)

+ ��

= (1 − �) � + ��� + ��

or

� = � + � (� − � + ��) , (24)

which is equation (11) in Ljungqvist and Sargent (2017, 2635).

Appendix D.3 Existence and Uniqueness

The two expressions for the wage rate in (17) and (24) jointly determine the equilibrium value of �:

� −
� + �

� (�)
� = � + � (� − � + ��) .

Developing this expression yields

� −
� + �

� (�)
� = � + � (� − � + ��)

∴ � − � = � (� − � + ��) +
� + �

� (�)
�

∴ (1 − �) (� − �) = ��� +
� + �

� (�)
�

=

[

��� (�)

� (�)
+
� + �

� (�)

]

�,

which can be re-arranged to yield an expression in � alone:

� − � =
� + � + ��� (�)

(1 − �) � (�)
�. (25)

Equation (25) implicitly defines an equilibrium level of tightness. The expression agrees with

equation (12) in Ljungqvist and Sargent (2017, 2635). Pissarides (2000) also shows how similar

equations can be manipulated to yield a single expression in � alone.

Existence and uniqueness of equilibrium tightness is established by proposition 4.

Proposition 4. Suppose � > �, which says that workers produce more of the homogeneous

consumption good at work than at home, and suppose that (1 − �) (� − �) /(� + �) > �. Then a

unique � > 0 solves the relationship in (25).

The condition that (1 − �) (� − �) /(� + �) > � requires that the value of the first job opening is

positive.

26



The steady-state level of unemployment is

� =
�

� + � (�)
=

�

� + �� (�)
. (26)

Proof. I establish proposition 4 in three steps: □

1. Existence and uniqueness of the economy’s steady-state equilibrium are established.

2. The required condition on parameter values that guarantees an equilibrium is then interpreted

as the positive value of posting an initial vacancy, offering an alternative interpretation from

the one given by Pissarides (2000).

3. When the number of jobs created equals the number of jobs destroyed, the familiar expression

for steady-state unemployment depends on the rate of separation to the sum of the rates of

separation and finding. This result is well known and is included for completeness (see, for

example, Pissarides, 2000).

Proof. Step 1: To establish existence of an equilibrium, I define the function

T
(

�̃
)

=
� − �

�
−
� + � + ��̃�

(

�̃
)

(1 − �) �
(

�̃
)

=
� − �

�
−

� + �

(1 − �) �
(

�̃
) −

�

1 − �
�̃.

Then, using the fact that lim�̃→0 �
(

�̃
)

= 1,

lim
�̃→0

T
(

�̃
)

=
� − �

�
−

� + �

1 − �
> 0,

where the inequality uses the assumption that (1 − �) (� − �) /(� + �) > 0. Additionally, I define

�̃• =
1 − �

�

� − �

�
> 0,

which is positive because � > � and � ∈ [0, 1). Then

T
(

�̃•
)

=
� − �

�
−

� + �

(1 − �) �
(

�̃•
) −

�

1 − �
�̃•

=
� − �

�
−

� + �

(1 − �) �
(

�̃•
) −

�

1 − �

1 − �

�

� − �

�

= −
� + �

(1 − �) �
(

�̃•
)

< 0,

where the inequality follows from the fact that �
(

�̃•
)

> 0. Because T is a combination of

continuous functions, it is also continuous. Therefore, an application of the intermediate value

theorem establishes that there exists �★ ∈
(

0,
1−�
�

�−�
�

)

such that T
(

�★
)

= 0.
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The uniqueness part of proposition 4 comes from the fact that T is decreasing. Indeed,

T ′
(

�̃
)

=
� + �

(1 − �)
[

�
(

�̃
) ]2

�′
(

�̃
)

−
�

(1 − �)
< 0,

and the inequality comes from the fact that �′ < 0.

Step 2: The condition that (1 − �) (� − �) /(� + �) > � restates the requirement that the initial

vacancy is profitable. The following thought experiment demonstrates why.

Starting from a given level of unemployment, which is guaranteed with exogenous separations,

the value of posting an initial vacancy is computed as lim�→0 V . In this thought experiment, the

probability that the vacancy is filled is 1, as lim�→0 � (�) = 1. The following period the firm earns

the value of a productive match, which equals the flow payoff � − � plus the value of a productive

match discounted by � (1 − �): J = � − � + � (1 − �) J . Solving this expression for J yields

J = � − � + � (1 − �) J

∴ J [1 − � (1 − �)] = � − �

∴ J =
� − �

1 − � (1 − �)
.

The wage rate paid by the firm, looking at the expression in (24), is

lim
�→0

� = lim
�→0

� + � (� − � + ��)

= �� + (1 − �) �,

making

J =
(1 − �) (� − �)

1 − � (1 − �)
.

Using this expression in the value of an initial vacancy

lim
�→0

V = lim
�→0

⟨−� + � {� (�) J + [1 − � (�)] V}⟩

= −� + �
(1 − �) (� − �)

1 − � (1 − �)

> 0.

The inequality stipulates that in order to start the process of posting vacancies, the first vacancy

needs to be profitable. Developing this inequality yields

�
(1 − �) (� − �)

1 − � (1 − �)
> �

∴

1

1 + �

(1 − �) (� − �)

1 − 1
1+�

(1 − �)
> �

∴

(1 − �) (� − �)

1 + � − 1 + �
> �
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or

(1 − �) (� − �)

� + �
> �.

Which is the condition listed in proposition 4.

Step 3: The steady-state level of unemployment comes from the evolution of unemployment and

steady-state equilibrium where ��+1 = �� = � and �� = �. Next period’s unemployment comprises

unemployed workers who did not find a job, [1 − � (��)] �� , plus employed workers who separate

from jobs, � (1 − ��), where 1 − �� is the level of employment after the normalization that the size

of the labor force equal one. From this law of motion:

��+1 = [1 − � (��)] �� + � (1 − ��)

∴ � = [1 − � (�)] � + � (1 − �)

∴ 0 = − � (�) � + � − ��

∴ (� + � ) � = �

or � = �/[� + � (�)], establishing (26). □

Appendix D.4 Joint Parameterization of � and �

The joint parameterization of the cost of posting a vacancy, �, and matching efficiency, �, is a

“choice of normalization” (p 12, footnote 33 of the accompanying online appendix to Ljungqvist

and Sargent, 2017). Given a calibration � and �, which produces an equilibrium market tightness

through the implicit expression for � in (25), the same equilibrium market tightness and job-finding

probability can be attained with an alternative parameterization, �̂ and �̂.

See Kiarsi (2020) for the importance of the cost of posting a vacancy.

To verify this claim, I differentiate matching technologies by explicitly referencing the matching

efficiency parameter, which affects the technologies as a multiplicative constant. Both (10) and

(12) can be expressed this way. The two job-filling rates, for example, will be �� (�) and �̂� (�).

The two job-finding rates, for example, will be ��� (�) and �̂�� (�).

I start by letting �̂ = �� for some � > 0 and � < [��� (�)]
−1. The expression for equilibrium

market tightness in (25) becomes

� − � =
� + � + ��̂�̂�

(

�̂
)

(1 − �) �̂�
(

�̂
) �̂

∴

1 − �

��
(� − �) =

� + �

�̂�
(

�̂
) + ��̂

∴

(1 − �) (� − �)

�
= �

� + �

�̂�
(

�̂
) + �� �̂.

Comparing this to the original parameterization yields

(1 − �) (� − �)

�
= �

� + �

�̂�
(

�̂
) + �� �̂ =

� + �

�� (�)
+ ��.

For these to be equal, it must be the case that
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1. � �̂ = � and

2. �̂�
(

�̂
)

1
�
= �� (�).

Condition 1 implies �̂ = �/� . Condition 2 implies

�̂�
(

�̂
) 1

�
= �� (�)

∴ �̂� (�/�) = � �� (�)

∴ �̂ = �
�� (�)

� (�/�)
.

The job-finding rate is the same:

�̂ �̂�
(

�̂
)

=

(

�

�

)

�
�� (�)

� (�/�)
�

(

�

�

)

= ��� (�) .

The value for job creation, from (16), is also the same:

�̂ =
�̂

��̂��

(

�̂
)

=
��

��
���(�)
��(�/�)

�� (�/�)

=
�

���� (�)

= �.

The job-filling probability is proportional to the original job-filling probability:

�̂��

(

�̂
)

= � ��� (�) .

The choice of � must also be careful to not push � �� (�) outside of (0, 1), which is guaranteed

if

0 < � <
1

��� (�)
.

When the matching technology takes the Cobb–Douglas form, this condition amounts to � < ��/�,

which is the condition reported by Ljungqvist and Sargent (2017) in their online appendix.

When the matching technology is Cobb–Douglas, then the �̂ = �/� and

�̂ = �
��� (�)

�� (�/�)

= �
��−�
(

�
�

)−�

= �
��−�

�−���

= � ��−�

= �1−��,
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which is reported in footnote 33 of the online appendix to Ljungqvist and Sargent (2017).

When the matching technology takes the form of the nonlinear case given in (12), a case not

considered by Ljungqvist and Sargent (2017), where � (�) = � (1 + ��)−1/�, then �̂ = �/� and

�̂ = �
��� (�)

�� (�/�)

= �
� (1 + ��)−1/�

[1 + (�/�)�]
−1/�

.

Appendix D.5 A Decomposition of the Elasticity of Market Tightness and

the Fundamental Surplus

This section follows section II.A of Ljungqvist and Sargent (2017), beginning on page 2636.

The elasticity of tightness with respect to productivity is

��,� ≔
��

��

�

�
≈

Δ�/�

Δ�/�
,

where the approximation indicates that we are talking about the percent change in tightness with

respect to the percent change in �. Following Ljungqvist and Sargent (2017), in this section, I

decompose this key elasticity into two factors: The first is a factor bounded away from 1 and the

inverse of the elasticity of matching with respect to unemployment. The second is the inverse of

fundamental surplus fraction.

To uncover ��,�, note that equation (25) can be written

� − � =
� + � + ��� (�)

(1 − �) � (�)
�

∴

1 − �

�
(� − �) =

� + � + ��� (�)

� (�)

=
� + �

� (�)
+ ��.

(27)

Define

� (�, �) ≔
1 − �

�
(� − �) −

� + �

� (�)
− ��.

Then implicit differentiation implies

��

��
= −

��/��

��/��
= −

1−�
�

�+�

[�(�)]2 �
′ (�) − �

= −

[

�+�
�(�)

+ ��
]

1
�−�

�+�

[�(�)]2 �
′ (�) − �

,
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where the last equality uses the equality in (25). Developing this expression yields

��

��
= −

[

�+�
�(�)

+ ��
]

�+�

[�(�)]2 �
′ (�) − �

1

� − �
×
�� (�)

�� (�)

= −
[� + � + ��� (�)]

(� + �)
�′ (�)�
�(�)

− ��� (�)

�

� − �
.

(28)

The expression in the denominator is related to the elasticity of matching with respect to unem-

ployment.

Using the expression for ��,� in (9) in the developing expression for ��/�� yields

��

��
= −

[� + � + ��� (�)]

(� + �)
(
�′ (�)�
�(�)

)

− ��� (�)

�

� − �

=
� + � + ��� (�)

(� + �) ��,� + ��� (�)

�

� − �
.

(29)

Further developing this expression yields

��

��
=

� + � + ��� (�)

(� + �) ��,� + ��� (�)

�

� − �

=
� + � + (� + �) ��,� − (� + �) ��,� + ��� (�)

(� + �) ��,� + ��� (�)

�

� − �

=

[

1 +
� + � − (� + �) ��,�

(� + �) ��,� + ��� (�)

]

�

� − �

=

[

1 +
(� + �)

(

1 − ��,�

)

(� + �) ��,� + ��� (�)

]

�

� − �
.

And this expression implies

��,� =
��

��

�

�

=

[

1 +
(� + �)

(

1 − ��,�

)

(� + �) ��,� + ��� (�)

]

�

� − �

= Υ
�

� − �
,

(30)

which is a fundamental result in Ljungqvist and Sargent (2017), expressed in their equation (15)

on page 2636. The expression in (30) decomposes the elasticity of tightness with respect to

productivity into two factors. Ljungqvist and Sargent (2017) focus on the second factor because

the first factor, Υ, “has an upper bound coming from a consensus about values of the elasticity of

matching with respect to unemployment.”

As long as the conditions for an interior equilibrium in proposition 1 hold, Υ is bounded above

by 1/��,�. Ljungqvist and Sargent (2017) establish this fact by noting that Υ in (30) can be written
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as

Υ (�) =

[

1 +
(� + �)

(

1 − ��,�

)

(� + �) ��,� + ���� (�)

]

and noting that Υ (�) can be viewed as a function of � and equal to Υ when � = 1. Evaluating

Υ (�) at � = 0 implies

Υ

�
�
�
�=0

= 1 +
(� + �)

(

1 − ��,�

)

(� + �) ��,�

= 1 +
1 − ��,�

��,�

=
1

��,�

> 1,

where the inequality is established in proposition 3. Moreover, Υ is decreasing in �:

�Υ

��
= −

(� + �)
(

1 − ��,�

)

[

(� + �) ��,� + ���� (�)
]2

��� (�) < 0.

Thus

1 < Υ ≔ Υ (1) < Υ (0) =
1

��,�

.

These two facts establish that Υ is bounded above by 1/��,�. Moreover, the expression for Υ,

defined in (30), establishes that Υ is bounded below by 1. The results are collected in proposition

5.

Proposition 5. In the canonical DMP search model, which features a general matching technology,

random search, linear utility, workers with identical capacities for work, exogenous separations,

and no disturbances in aggregate productivity, the elasticity of market tightness with respect to

productivity can be decomposed as

��,� = Υ
�

� − �
,

where the second factor is the inverse of fundamental surplus fraction and the first factor is bounded

below by 1 and above by 1/��,�:

1 < Υ <
1

��,�

.

Proposition 3 establishes that 1/��,� is larger than one.

Proposition 5 is the same as proposition 2, which is stated in the text.

Appendix D.6 Wage Elasticity in the Canonical Model

The elasticity of wages with respect to productivity is ��/�� × �/� =: ��,�:

Δ�
�

Δ�

��

≈
��

��

�

�
=: ��,� .
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An expression for ��/�� can be derived from (24):

� = � + � (� − � + ��)

∴

��

��
= �

(

1 + �
��

��

)

= �

[

1 + �

(

� + � + ��� (�)

(� + �) ��,� + ��� (�)

)

�

� − �

]

,

where the last inequality uses the expression for ��/�� in (29). The equilibrium condition in (25)

implies
� − �

�
=
� + � + ��� (�)

(1 − �) � (�)
.

Using this expression in the developing expression for ��/�� yields

��

��
= �

[

1 +

(

� + � + ��� (�)

(� + �) ��,� + ��� (�)

)

(1 − �) �� (�)

� + � + ��� (�)

]

= �

[

1 +
(1 − �) �� (�)

(� + �) ��,� + ��� (�)

]

= �

[

(� + �) ��,� + ��� (�) + (1 − �) �� (�)

(� + �) ��,� + ��� (�)

]

or
��

��
= �

[

(� + �) ��,� + �� (�)

(� + �) ��,� + ��� (�)

]

. (31)

When the worker has no bargaining power, � = 0, then ��/�� evaluates to 0. When the worker

has all the bargaining power, � = 1, then ��/�� = 1.
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Appendix E. Converting a Daily Job-finding Rate to a Monthly Job-finding Rate

Here I go through calculations that convert a daily rate to a monthly rate.

The probably a worker finds a job within the month is 1 minus the probably they do not find

a job. What is the probability that a worker does not find a job? For the first day of the month,

the probability of not finding a job is 1 − �� (�), where �� (�) is the daily job-finding probability.

Over two days, the probability is not finding a job on day 1 and on day 2, which is [1 − �� (�)]2.

Over the whole month, the probability of not finding a job is [1 − �� (�)]30. Thus, the monthly

job-finding probability is

monthly job-finding rate = 1 − [1 − �� (�)]30 .

A similar calculation converts the daily job-filling rate to the monthly job-filling rate:

monthly job-filling rate = 1 − [1 − � (�)]30 .

35


