
Testing for asymmetry in economic time series using
bootstrap methods 

Claudio Lupi Patrizia Ordine
ISAE − Institute for Studies and Economic Analyses University of Calabria, Dept. of Economics Statistics

Abstract
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The idea that some important macroeconomic variables may feature an asymmetric behavior
over thebusiness cycle is an old one. It is already present in Crum (1923) and later it becomes
a cornerstone of Burns and Mitchell’s (1946) business cycle theory. Asymmetries are also ad-
vocated by Keynes (1936) and Hicks (1950) as explanations of the different characteristics of
recessions and booms. More recently, according to Blatt (1983) ’’ [...] a pronounced lack of
symmetry is the rule’’ .

McQueen and Thorley (1993) classify asymmetries into three categories: ���������������������� ��!�"�$#
��������� and %�&!&"')(�&�*�* , respectively. Sharpness asymmetry is characterized by sharp business cy-
cle peaks and rounded troughs and can be associated to the business cycle pattern described
by Keynes. Steepness asymmetry is a subject common to many recent papers (see, +!, -., , De
Long and Summers, 1986 and Neftçi, 1984) and features steep downward slopes during reces-
sionsand gradual upward slopesin expansions. Finally, deep troughsand low peaksdistinguish
deepnessasymmetry (see, /10 2.0 , Sichel, 1991).

In this paper we study the characteristics of a nonparametric test for asymmetry that can be
applied to relatively short time series. By not assuming any specif ic process for the observed
series, we bypass the drawbacks of other conventional tests. Also, since we use a simulation-
basedapproach that exploitsthefeaturesof theobservedsample, implicitly wetakeintoaccount
the sample length and do not rely exclusively on asymptotic results.

The paper is organized as follows: the next section is devoted to a brief discussion of the
econometric problem. Section three describes the simulation-based test. A comparison with
other bootstrap procedures follows. The final section reports some Monte Carlo results and
drawssomeconclusions. Detailsof thealgorithm used in thesimulation approach are reported
in theappendix.

3.4�576!8�9;:=<?>A@
B7CED�8;F.GHGI6!9;C�F
Our null hypothesis is that the observed time series J�K�L"MON�PRQS is a realization of the stationary
linear symmetric processT�UWVYX[Z;\^]`_1a b!c uncorrelated and symmetrically distributed (1)

with dfe;g!hjilknmOoqpsr"tvuw�xzy|{W}~��n�
with invertible �[�;�^� .

Our alternative is that the distribution of the ��� ’s is skewed. This can happen, for example,
when the linear process (1) isdriven by shockswhich havean asymmetric distribution, so that���W�����"�^���1� �!� uncorrelated and asymmetrically distributed (2)

with �s�"�����z�|�7�q�f�; �¡¢¤£¦¥n§W¨©�ªn«­¬
Another economically attractivepossibility is that theprocessreactsasymmetrically to positive
and negativeshocks, as in®v¯±°³²µ´µ¶;·^¸`¹vº»½¼¿¾ÁÀ$Â"Ã^Ä�ÅÇÆÈ ÉfÊ;Ë1ÌjÍ¦Î|Ï7ÐqÑsÒ"Ó�ÔÕ�Öl×ÙØWÚÛ�ÜnÝ (3)

where Þ�ßàâáÙãåäçælè;é1ê"ë1ìÇí�îðïOñòôóöõ½÷�øsù;ú1û"ü1ýOþ`ÿ and the lag polynomials ��������� and 	�
���
�� are such
that ������������������ ��!"$#&%(')')'+* and ,.-0/�1�243�5.6798 :.;<$=?>A@+@+@)B with CEDF&GHJI.KL in general.
The process (3) is equivalent to (1) if and only if MENEO�P�Q�RTS�U0V�W�XZY The asymmetric moving
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average (3) has been introduced by Wecker (1981) with theaim of finding aprocess that could
be representative of some observed price asymmetries. Indeed, (3) features some interesting
properties:
[]\_^ ’’ reacts’’ differently according to whether the innovation is positiveor negative;` asymmetry may benot only amatter of ’’size’’ (in absolutevalue) of thereaction ( a+b c$b d larger

[smaller] reaction in the presence of negative [positive] shocks) but also a matter of timing
( e+f g$f h when someof the iEjk or l�mn arezero);o contrary to thesymmetric process(1), (3) hasin general anon-zero mean (whoseexact value
dependson thevalues of the p�qr and sutvxwzy{ theautocorrelation functionof (3) cannot bedistinguished fromthat of (1), unless |�}~��&���u�������

in which case it cannot bedistinguished from that of awhitenoise process.

It must bestressed that, since the first two sample moments of (1), (2), and (3) are observa-
tionally equivalent, if wewant to assess if theobserved sample �������������� hasbeen generated by
thesymmetric process(1) or by oneof theasymmetric processes(2) or (3), wemust usehigher
order moments. In particular we can fruitfully use the properties of the processes in terms
of their skewness. A consistent estimator of the coefficient of skewness is �_�]�����Z���¡ £¢¥¤¤with ¦¨§ª©�«�¬�­ ®�¯�°±³²µ´·¶�¸�¹$ºJ»¼¾½À¿ where ÁÂ is the sample average. If Ã�Ä_Å�Æ�Ç�È�ÉÊ were independent

Gaussian, then ËªÌ�ÍÏÎÑÐ ÒÓÕÔ Ö�×�Ø�Ù�ÚÜÛ (see Ý+Þ ß$Þ Kendall and Stuart, 1969). However, the àÑá ’sare
in general autocorrelated. Thisproblem hasbeen tackled by DeLong and Summers (1986) as-
suming aspecif icARMA processwith Gaussian errorsfor theobserved â�ã_ä�å�æ�ç�èé andsimulating
a large number of realizations from this process. Since the simulated processes are symmetric
by construction, with a given autocorrelation structure, De Long and Summers (1986) derive
the finite sample empirical distribution of the coefficient of skewness under the null and build
confidence intervals for theestimated coefficient of skewnessof theobserved series. However,
this approach has threemain drawbacks. First, thenull hypothesis is not just that of symmetry,
but also the implicit hypothesison theparametric form of theDGP(DataGenerating Process).
If theprocess for theDGPis incorrectly specif ied, inference is invalidated. Second, adifferent
ARMA processmust be identified and simulated for each series to beanalyzed. Third, thepro-
cedure relies on a non-pivotal statistic. As far as the series are Gaussian, the last disadvantage
can be removed by using a result due to Lomnicki (1961) that proves that the coefficient of
skewnessof the linear Gaussian process êìëxí(î�ï�ð�ñZò+ó , with ô+õxö�÷ùø�úÏû)üxýþ�ÿ uncorrelated, issuch

that ���������
	�� 
���� ������������� ��� �"!$#&% '(*) +-,/.10�243 , with 576 the lag-8 autocorrelation

coefficient. The other two drawbacks can be overcome if we can simulate symmetric time se-
ries with the same autocorrelation structure as the observed one, without imposing parametric
models. This is what wedo in thenext section.

9;:=<?>�@BA;>�C1DE@GFHDEIKJGC1LNM�OQPSR�T�M�U1U1VHDEV JKC1A
In this paper we propose the use of a nonparametric procedure that, although remaining in
the spirit of De Long and Summers (1986), bypasses the difficulties arising from their ap-
proach. The idea is that of using the observed series nonparametrically in order to bootstrap
linear Gaussian timeseries that on averagehave thesamecorrelogram as theoriginal one. The
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bootstrap replicationsare then used to derivethedistribution of thecoefficient of skewnessun-
der the null, which is used to carry out the test on the observed series. Being nonparametric,
contrary toLM-typetests, thistest doesnot requireaparametricalternative(see WKX Y$X LuukkonenZK[;\�] ., 1988; Luukkonen and Teräsvirta, 1991). This, of course, may imply that it lacks power
as compared to those tests for specif ic alternatives.

Theprocedurewesuggest utilizesan algorithm originally proposed by Theiler ^K_�`1aSb (1992)
and adapted by Braun and Kulperger (1997) and Davison and Hinkley (1997). Theprocedureis
basedon thefact that thesampleperiodogramsummarizesthesecond-order samplemomentsof
theobserved series. Given that theperiodogram can beexpressed asthesquared modulusof the
Fourier transform of the data, the idea is that of randomizing the phases of the periodogram of
the (demeaned) series under investigation, while preserving the moduli, and then recomputing
thesimulated seriesviatheinverseFourier transform.1 Indicating with an asterisk thebootstrap
quantities, it can be shown that, not only c4dfe*gKh i�jkmlKnpoqsr�tvuxwzyv{�|�}/~����G�&�s����� , but also that the odd
joint momentsof thesimulatedseriesareall zero(seeDavisonandHinkley, 1997). Furthermore,
Braun and Kulperger (1997) prove that under fairly general conditions the series simulated
in this way are Gaussian.2 Using normality of the bootstrapped series, following Lomnicki
(1961), wecompute, instead of the coefficient of skewness, the asymptotically pivotal statistic�����1�&���

.
Figure 1 shows the distributions of ���7�1�&� (dotted line) and of ���7�1�&��� (dashed line)

computed using 5000 bootstrap replicationsand compared to that of independent standard nor-
mal variates(solid line) for six experiments. In thefirst column of thefigurethedriving shocks
arestandard normal; in thesecond they are �*�m�/��� . Therowscorrespond respectively to awhite
noise process, to an ARMA process, and to an asymmetric MA process. In all instances the
distribution of the asymptotically pivotal statistic coincides nearly perfectly with the standard
normal. Notealso that thevarianceof �� 7¡1¢&£ is larger than that of ¤�¥�¦�§&¨�© when theseries
isautocorrelated, asexpected.

ª1«­¬¯®1°²±$³�´mµS¶E®1·x¸¹µ»º½¼¾®1ºH¼�¿K´-À�®1®1º ¶Áº½´G³1±¾¶EÂK¼�¿K°²¿K¶
Other bootstrap schemes could in principle be used. Logical possibilities are represented by
model-based bootstrap and moving-blocksbootstrap.

The first amounts to fitting appropriate (generally AR or ARMA) models to the data and
applying resampled estimated residuals to themodel. Thisprocedure isgenerally fineas far as
the model is specif ied correctly. However, it is not entirely suitable for our purposes. Indeed,
if the original series is driven by asymmetric shocks, the residuals from an estimated ARMA
will in general beasymmetric and thebootstrap will generateasymmetric series. This is rather
clearly illustrated in Figure 2 where the distributions of Ã�Ä�Å1ÆmÇ and È�É7Ê�Ë&Ì�Í are plotted
under model-based resampling.3 The presence of asymmetric shocks shifts the distributions
with respect to the standard normal. This means that a test based on this bootstrap procedure
is likely not to reject the null of symmetry in those cases. Furthermore, it appears that some

Î
A morepreciseaccount isgiven in Appendix A.Ï
A sufficient condition for this result to hold is that the original series Ð½Ñ�ÒsÓvÔÖÕ�×Ø be a realization of a process

such that ÙmÚÜÛ�ÝßÞ�à»ápâEã�ä1åæ"çéèëê and ìKí»î�ïðÁñóòô»õpöE÷�øÖùú"ûéüóý$þ , thus including, ÿ�� � � , FARMA processes.�
Here themodelsused are �����	��
 with � selected on thebasisof the 
���� .
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Figure 1: Densities of ��������� (dotted line) and ��������� � (dashed line) under
phase-scrambling bootstrap (5000 bootstrap replications) as compared to standard normal
(solid line). The original !�"�#%$'& ( )* series is: case 1, normal IID; case 2, IID +�,�-/.10 ; case 3,2436587�9;:�<�=?> @BADCFE�GDH1IKJ'LFMONQP , RFSUTWVYX%Z�[�\^] ; case4 _4`6acb�d;e1f�g?h iBjlk�monqp�r;s�t�u/v w , xFyUz|{~}��O�1� ; case
5, �4�6�c�F�o�D���;������/� �B�D������������/� � , �F� �W¡£¢%¤'¥�¦�§ ; case6 ¨�© ª|«�¬o­D®�¯;°�±�²³/´ µB¶D·�¸�¹�º�»�¼½/¾ ¿ , ÀFÁ ÂÄÃ�ÅFÆ%Ç1È .
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Figure 2: Densities of É�Ê'Ë1Ì4Í (dotted line) and Î�Ï'Ð'Ñ4ÒÔÓ (dashed line) under model-based
bootstrap(5000bootstrapreplications) ascomparedtostandardnormal (solid line). TheoriginalÕ�Ö�×%Ø'Ù Ú ÛÜ series is: case 1, normal IID; case 2, IID Ý�ÞFß%à1á ; case 3, â�ãåäçæ�è;é�ê�ëOì í�îðïFñBòðó1ô;õ�öF÷?ø ù ,úFûUüWýYþ%ÿ������ ; case4 ���	��

���
������������������ "!�#%$'&�( , )�*,+.-0/�1'2
3 ; case5, 4�5	6�7�8�9�:�;"<�=�>?�@�A�BDC
EGFIH�JLKM�N�O ,P�Q,RTSVUXW�Y�Z�[ ; case6 \�]_^a`�bdcfe�g�h
ikjlnm�o	pfq�rGs�t�uwvx'y�z , {%|~}.�0�k�n�
� .
problemsarepresent also in theasymmetric moving averagecase (case5).

Moving-blocksbootstrap isanother standardbootstrap techniquefor timeseries. In thiscase,
blocksof consecutiveobservationsareresampled. Figure3showsthat theproblemshighlighted
for model-based bootstrap arepresent also in thiscase.

�����������G�V�����������������������������_�����¡ ������G��������¢�£G ��
�¤��¥��G�������
In this section we study the size and power properties of the test for asymmetry based on the
phase-scrambling bootstrap. For comparison, wealso investigate thepropertiesof thetest built
upon theasymptotic standard normal distribution. Given the evidence reported in theprevious
section and the fact that the method is computer-intensive, we will not investigate the relation
with other bootstrap schemes any further. Since we are mainly interested in the application
with fairly short time series, in all experiments simulated time series of 100 observations are
used. Thebootstrap testsarebased on 1000 bootstrap samples. Given the time required by the
bootstrap procedures, thenumber of MonteCarlo simulationsfor each parameter configuration
had to be limited to 500.
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Figure3: Densitiesof ¦�§�¨�©�ª (dotted line) and «�¬w­
®�¯±° (dashed line) under moving-blocks
bootstrap(5000bootstrapreplications) ascomparedtostandardnormal (solid line). Theoriginal²�³�´XµL¶�·�¸¹ series is: case 1, normal IID; case 2, IID º¼»�½X¾
¿ ; case 3, ÀkÁÃÂÅÄ�Æ"Ç�ÈkÉnÊ�Ë¼ÌÎÍ�Ï�ÐÎÑ
Ò"Ó�Ô�Õ�Ö�× ,Ø�Ù,ÚTÛVÜXÝ�Þ�ß�à ; case4 á�â	ã�ä
å�æ
ç�è�é�ê�ë�ì�í�î�ï�ð"ñ�ò%ó'ô�õ , ö�÷,ø.ù0ú�û'ü
ý ; case5, þ�ÿ�� �������
	��

�����������������
�! "�#�$ ,%�&('*),+.-
/
0�1 ; case6 2�35476�8:9<;
=?>�@BACED�F�G<H
I�J�K
LNMOQP�R , SUTWVYX[ZB\E]�^ .
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Table1: MonteCarlo analysis: Size

_a`Nb
c�d�e
-based fhg.i�j�kml

bootstrap
Nominal sizen o

0.010 0.050 0.100 0.010 0.050 0.100
-0.8 -0.8 0.008 0.052 0.098 0.000 0.020 0.048
-0.8 -0.5 0.006 0.040 0.080 0.004 0.014 0.038
-0.8 0.0 0.010 0.048 0.098 0.004 0.024 0.062
-0.8 0.5 0.020 0.066 0.116 0.014 0.056 0.084
-0.4 -0.8 0.012 0.054 0.126 0.010 0.030 0.070
-0.4 -0.5 0.020 0.072 0.114 0.016 0.048 0.086
-0.4 0.0 0.032 0.090 0.130 0.024 0.064 0.102
-0.4 0.5 0.012 0.060 0.130 0.010 0.042 0.092
-0.4 0.8 0.018 0.060 0.118 0.014 0.042 0.088
0.0 -0.8 0.020 0.050 0.114 0.018 0.036 0.080
0.0 0.5 0.014 0.048 0.092 0.012 0.046 0.074
0.0 0.0 0.012 0.042 0.090 0.006 0.038 0.068
0.0 0.5 0.018 0.078 0.128 0.014 0.056 0.098
0.0 0.8 0.014 0.076 0.132 0.006 0.050 0.094
0.4 -0.8 0.018 0.056 0.112 0.016 0.046 0.084
0.4 -0.5 0.022 0.074 0.124 0.022 0.068 0.100
0.4 0.0 0.010 0.064 0.106 0.002 0.036 0.078
0.4 0.5 0.016 0.072 0.136 0.010 0.038 0.076
0.4 0.8 0.020 0.066 0.114 0.012 0.036 0.062
0.8 -0.5 0.012 0.048 0.102 0.010 0.024 0.052
0.8 0.0 0.014 0.058 0.120 0.004 0.018 0.046
0.8 0.5 0.010 0.056 0.124 0.006 0.014 0.040
0.8 0.8 0.016 0.048 0.116 0.002 0.016 0.036
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Table2: MonteCarlo analysis: Power against ARMA processes with chi-squared innovations

paqNr
s�t�u
-based vhw.x�y�zm{

bootstrap
Nominal size| }

0.010 0.050 0.100 0.010 0.050 0.100
-0.8 -0.8 0.130 0.262 0.336 0.044 0.156 0.248
-0.8 -0.5 0.024 0.070 0.142 0.008 0.042 0.078
-0.8 0.5 0.432 0.642 0.738 0.358 0.588 0.698
-0.4 -0.8 0.066 0.160 0.236 0.042 0.102 0.186
-0.4 -0.5 0.036 0.106 0158 0.014 0.074 0.124
-0.4 0.5 0.646 0.848 0.908 0.612 0.824 0.896
-0.4 0.8 0.516 0.744 0.822 0.466 0.696 0.790
0.0 -0.8 0.064 0.150 0.262 0.042 0.118 0.204
0.0 0.5 0.348 0.560 0.678 0.320 0.514 0.624
0.0 0.5 0.448 0.674 0.766 0.386 0.586 0.718
0.0 0.8 0.288 0.482 0.608 0.234 0.448 0.540
0.4 -0.8 0.382 0.606 0.718 0.338 0.576 0.672
0.4 -0.5 0.634 0.822 0.900 0.588 0.788 0.878
0.4 0.5 0.222 0.410 0.544 0.150 0.300 0.450
0.4 0.8 0.174 0.372 0.502 0.110 0.274 0.406
0.8 -0.5 0.420 0.616 0.728 0.352 0.538 0.628
0.8 0.5 0.052 0.176 0.252 0.020 0.066 0.142
0.8 0.8 0.054 0.138 0.222 0.014 0.070 0.110

Thetest sizeisinvestigatedusingasthe’’observedseries’’ simulatedstationary and invertible
ARMA(1,1) models ~��5������� ���(���U�:���!���Q��� ���(�*���Q�����.�
�
���
with �Y ¢¡
£¥¤�¦�§
¨�©«ª
¬?­�®U¯
°�±�²U³«´
µ�¶
·m¸«¹
º�»
¼ and ½¿¾ÁÀ
Â«Ã
Ä�Å
ÆUÇ¥È
É�Ê�ËUÌ
Í�Î
ÏUÐaÑ�Ò?Ó
ÔmÕ¥Ö!×?Ø�Ù . Size prop-
erties havebeen investigated for both theasymptotically pivotal bootstrap ( ÚaÛ!Ü
Ý�Þ�ß ) and the
asymptotic test basedon thestandard normal distribution. From theresultsreported in Table1 it
appears that theasymptotic test tends to under-reject in thepresenceof strongly autocorrelated
series. On average, the bootstrap test seems preferable, given that, contrary to the asymptotic
one, it doesnot display largedeviations from the theoretical size.

Power comparisons are reported in Tables 2 and 3 that show that power is always larger for
the bootstrap test as compared to the asymptotic one, irrespective of the specific alternative.
In some instances, when the bootstrap test has low power, the power of the test based on the
asymptotic distribution of àâá!ã
ä�å�æ iseven lower than thenominal size.

As aconcluding remark wenote that thesimulation-based test studied in this paper appears
to have better small sample properties than its asymptotic analog. Also, it appears to be better
suited than other resampling-based tests, in that the series simulated under phase-scrambling
bootstrap aresurely symmetric, independently of thenatureof theoriginal series.
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Table3: MonteCarlo analysis: Power against asymmetric MA processes

çaèNé
ê�ë�ì
-based íhî.ï�ð�ñmò

bootstrap
Nominal size Nominal sizeó ô

0.010 0.050 0.100 0.010 0.050 0.100
-0.8 -0.8 0.036 0.124 0.218 0.010 0.052 0.106
-0.8 -0.5 0.014 0.052 0.120 0.006 0.026 0.050
-0.8 0.5 0.182 0.376 0.482 0.154 0.314 0.440
-0.8 0.8 0.322 0.588 0.712 0.286 0.534 0.664
-0.4 -0.8 0.020 0.090 0.174 0.006 0.050 0.126
-0.4 -0.5 0.028 0.070 0.120 0.022 0.054 0.092
-0.4 0.5 0.312 0.574 0.698 0.280 0.514 0.646
-0.4 0.8 0.178 0.394 0.534 0.144 0.334 0.462
0.0 -0.8 0.022 0.078 0.152 0.014 0.050 0.116
0.0 0.5 0.162 0.350 0.474 0.128 0.282 0.416
0.0 0.5 0.172 0.352 0.482 0.142 0.304 0.422
0.0 0.8 0.118 .264 0.398 0.088 0.206 0.316
0.4 -0.8 0.136 0.340 0.480 0.108 0.300 0.438
0.4 -0.5 0.310 0.550 0.666 0.264 0.502 0.630
0.4 0.5 0.074 0.180 0.288 0.052 0.120 0.196
0.4 0.8 0.066 0.168 0.264 0.050 0.106 0.176
0.8 -0.8 0.294 0.540 0.702 0.242 0.484 0.634
0.8 -0.5 0.150 0.344 0.486 0.100 0.254 0.384
0.8 0.5 0.016 0.080 0.148 0.006 0.028 0.058
0.8 0.8 0.022 0.082 0.126 0.004 0.034 0.064
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Let �����  "!�#$&%"')(+*-,/.1012+3 definethefiniteFourier transform of 4�57698;:�<�=> , when ?)@BA;C�D/E
FGF
F
E�HJILKMGN

and OQP�RTS/UWVYXGZ\[ Thefirst simulationstep isthat of computing ];^_a`Bb�c7d/eJfhg with ikj uniformly
distributed between 0 and 2l .4 Since we want to obtain the Fourier transform of a real time
series, weneed to make m;n symmetric around frequency o . Therefore, for each p�qsr�tvuxwzy|{G} ,
wecompute ~a� ������ ���k����������� �;�����������+� (4)
and ��� �;� ��  B¡k¢�£�¤�¥�¦�§ ¨;©ª¬«�­;®¯�°+± ² (5)
The simulated series is then derived as the inverse Fourier transform of ³�´�´µ . Noting that the

periodogram of thesimulated series is ¶k·
¸x¹�º/»½¼ ¾�¿�¿À Á and using the fact that Â/Ã�Ä+ÅaÆÈÇÉ�Ê (where
the bar indicatescomplex conjugation), it is possible to derive thatËkÌ
ÍJÎ�Ï
Ð�Ñ Ò�Ó�ÓÔ Õ×Ö ØÚÙ�ÛÝÜßÞáàsâÝã�ä å/æèçêéhë
ì"íGî;ïGð
ñóòõô/öè÷ùøhú�û"üþý;ÿ�� �

� �����
	���
������
��������� ����� �"!�#%$
& '"(*),+.- /10 2�354 6
798;:�<�=%>

which implies that ?A@CBED�FHGJILKHMON�PRQ"S*TLUHV , asdesired, with W�XZY�[]\ denoting thebootstrap average.
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