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Abstract

In this paper we show that phase—-scrambling bootstrap offers a natural framework for
asymmetry testing in economic time series. A comparison with other bootstrap schemes is
also sketched. A Monte Carlo analysis is carried out to evaluate the size and power properties
of the phase—scrambling bootstrap—based test.
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1. Introduction

The idea that some important macroeconomic variables may feature an asymmetric behavior
over the business cycleisan old one. It isalready present in Crum (1923) and later it becomes
a cornerstone of Burns and Mitchell’s (1946) business cycle theory. Asymmetries are also ad-
vocated by Keynes (1936) and Hicks (1950) as explanations of the different characteristics of
recessions and booms. More recently, according to Blatt (1983) ”[...] a pronounced lack of
symmetry istherule”.

McQueen and Thorley (1993) classify asymmetries into three categories: sharpness, steep-
ness, and deepness, respectively. Sharpness asymmetry is characterized by sharp business cy-
cle peaks and rounded troughs and can be associated to the business cycle pattern described
by Keynes. Steepness asymmetry is a subject common to many recent papers (see, e.g., De
Long and Summers, 1986 and Neftci, 1984) and features steep downward slopes during reces-
sionsand gradual upward slopesin expansions. Finally, deep troughs and low peaks distinguish
deepness asymmetry (see, e.g., Sichel, 1991).

In this paper we study the characteristics of a nonparametric test for asymmetry that can be
applied to relatively short time series. By not assuming any specific process for the observed
series, we bypass the drawbacks of other conventional tests. Also, since we use a simulation-
based approach that exploitsthefeatures of the observed sample, implicitly we takeinto account
the sample length and do not rely exclusively on asymptotic results.

The paper is organized as follows: the next section is devoted to a brief discussion of the
econometric problem. Section three describes the simulation-based test. A comparison with
other bootstrap procedures follows. The fina section reports some Monte Carlo results and
draws some conclusions. Details of the algorithm used in the simulation approach are reported
in the appendix.

2. Testing for asymmetry

Our null hypothesis is that the observed time series {y;}2 ! is arealization of the stationary
linear symmetric process

y = 9(B)ey ¢ uncorrelated and symmetrically distributed D
With E(s;) = 0, E(¢}) = 02 < o0
with invertible ¥(B).

Our adternative is that the distribution of the y,’s is skewed. This can happen, for example,
when the linear process (1) is driven by shocks which have an asymmetric distribution, so that

y = 9(B)ey g; uncorrelated and asymmetrically distributed )
with E(s;) =0, E(&}) = 02 < oo.

Another economically attractive possibility isthat the process reacts asymmetrically to positive
and negative shocks, asin

vy =97 (B)ef +9 (B)g, E(e)) =0, E(c}) = 0% < o0 (3)

where e = max(g;,0), &, = min(g, 0), and the lag polynomias ¥+ (B) and 9 (B) are such

that v©(B) = 9§ +9{B+...,and ¥ (B) = 9, + 97 B + ..., withJ; # ¥, in general.

The process (3) is equivaent to (1) if and only if 9% (B) = ¥ (B). The asymmetric moving



average (3) has been introduced by Wecker (1981) with the aim of finding a process that could
be representative of some observed price asymmetries. Indeed, (3) features some interesting
properties:

e 1, "reacts’ differently according to whether the innovation is positive or negative;

e asymmetry may be not only amatter of "size” (in absolute value) of thereaction (e.g., larger
[smaller] reaction in the presence of negative [positive] shocks) but also a matter of timing
(e.g., when some of the ;" or 99, are zero);

e contrary to the symmetric process (1), (3) hasin genera anon-zero mean (whose exact value
depends on the values of the ;" and ¥; );

e theautocorrelation function of (3) cannot be distinguished fromthat of (1), unlessy; = —9;
Vi, in which case it cannot be distinguished from that of a white noise process.

It must be stressed that, since the first two sample moments of (1), (2), and (3) are observa-
tionally equivalent, if we want to assess if the observed sample {y;}2 ! has been generated by
the symmetric process (1) or by one of the asymmetric processes (2) or (3), we must use higher
order moments. In particular we can fruitfully use the properties of the processes in terms
of their skewness. A consistent estimator of the coefficient of skewness is sk = MsM, >/
with M, = 7= -7 My, — 4)” where y is the sample average. If {y;}4 " were independent

Gaussian, then /T/6sk 4, N(0,1) (seee.g. Kendal and Stuart, 1969). However, the y,'sare
in general autocorrelated. This problem has been tackled by De Long and Summers (1986) as-
suming aspecific ARMA processwith Gaussian errorsfor the observed {y;}¢ ! and smulating
alarge number of realizations from this process. Since the simulated processes are symmetric
by construction, with a given autocorrelation structure, De Long and Summers (1986) derive
the finite sample empirical distribution of the coefficient of skewness under the null and build
confidence intervals for the estimated coefficient of skewness of the observed series. However,
this approach has three main drawbacks. Firgt, the null hypothesisis not just that of symmetry,
but aso the implicit hypothesis on the parametric form of the DGP (Data Generating Process).
If the process for the DGP isincorrectly specified, inferenceisinvalidated. Second, a different
ARMA process must be identified and simulated for each seriesto be analyzed. Third, the pro-
cedure relies on a non-pivotal statistic. Asfar as the series are Gaussian, the last disadvantage
can be removed by using a result due to Lomnicki (1961) that proves that the coefficient of
skewness of the linear Gaussian process z; = ¢(B)e;, with e, ~ N(0, 02) uncorrelated, is such

—1/2
that /7 /6sk* = \/T/6 (Z;‘;foo p?) / sk -4, N(0, 1), with p; the lag-j autocorrelation
coefficient. The other two drawbacks can be overcome if we can simulate symmetric time se-
ries with the same autocorrelation structure as the observed one, without imposing parametric
models. Thisiswhat we do in the next section.

3. The phase-scrambling bootstrap

In this paper we propose the use of a nonparametric procedure that, athough remaining in
the spirit of De Long and Summers (1986), bypasses the difficulties arising from their ap-
proach. The ideais that of using the observed series nonparametrically in order to bootstrap
linear Gaussian time series that on average have the same correlogram as the original one. The



bootstrap replications are then used to derive the distribution of the coefficient of skewness un-
der the null, which is used to carry out the test on the observed series. Being nonparametric,
contrary to L M-typetests, thistest does not require aparametric alternative (seee.g. Luukkonen
et al., 1988; Luukkonen and Terasvirta, 1991). This, of course, may imply that it lacks power
as compared to those tests for specific alternatives.

The procedure we suggest utilizes an algorithm originally proposed by Theiler ef al. (1992)
and adapted by Braun and Kulperger (1997) and Davison and Hinkley (1997). The procedureis
based on thefact that the sampl e periodogram summarizes the second-order sample moments of
the observed series. Given that the periodogram can be expressed as the squared modul us of the
Fourier transform of the data, the ideais that of randomizing the phases of the periodogram of
the (demeaned) series under investigation, while preserving the moduli, and then recomputing
the simulated series viatheinverse Fourier transform.* Indicating with an asterisk the bootstrap
quantities, it can be shown that, not only cov*(y;, v; ) = cov(ys, y1—x), but aso that the odd
joint momentsof thesimulated seriesareall zero (see Davison and Hinkley, 1997). Furthermore,
Braun and Kulperger (1997) prove that under fairly genera conditions the series simulated
in this way are Gaussian.? Using normality of the bootstrapped series, following Lomnicki
(1961), we compute, instead of the coefficient of skewness, the asymptotically pivotal statistic
VT /6sk*.

Figure 1 shows the distributions of /7'/6sk (dotted line) and of \/7"/6sk* (dashed line)
computed using 5000 bootstrap replications and compared to that of independent standard nor-
mal variates (solid line) for six experiments. In thefirst column of the figure the driving shocks
are standard normal; in the second they are x?(5). The rows correspond respectively to awhite
noise process, to an ARMA process, and to an asymmetric MA process. In al instances the
distribution of the asymptotically pivotal statistic coincides nearly perfectly with the standard
normal. Note also that the variance of /7T/6sk islarger than that of \/7T'/6sk* when the series
isautocorrelated, as expected.

4. Comparison with other bootstrap schemes

Other bootstrap schemes could in principle be used. Logica possibilities are represented by
model -based bootstrap and moving-blocks bootstrap.

The first amounts to fitting appropriate (generaly AR or ARMA) models to the data and
applying resampled estimated residuals to the model. This procedure is generally fine asfar as
the model is specified correctly. However, it is not entirely suitable for our purposes. Indeed,
if the original series is driven by asymmetric shocks, the residuals from an estimated ARMA
will in general be asymmetric and the bootstrap will generate asymmetric series. Thisis rather
clearly illustrated in Figure 2 where the distributions of /7"/6sk and /T /6sk* are plotted
under model-based resampling.®> The presence of asymmetric shocks shifts the distributions
with respect to the standard normal. This means that a test based on this bootstrap procedure
is likely not to reject the null of symmetry in those cases. Furthermore, it appears that some

L A more precise account is given in Appendix A.

2 A sufficient condition for this result to hold is that the original series {X;}3 ~* be arealization of a process
such that E(X; X1 «) .0 and E(X72 X7, ;) " o?, thusincluding, e.g., FARMA processes.

3 Herethe models used are A R(p) with p selected on the basis of the AIC.
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Figure 1: Dendsties of /7T /6sk (dotted line) and /7T/6sk* (dashed line) under
phase-scrambling bootstrap (5000 bootstrap replications) as compared to standard normal
(solid line). The origina {y;}¢ " seriesis: case 1, normal 11D; case 2, 1ID x?(5); case 3,
y: = 0.6y; 1 +&¢+0.65, 1,5, ~ N(0,1); cased y; = 0.6y;_1 + & + 0.654_1, &; ~ x*(5); case
51y =&+ 0.6e7 | +0.15¢, 1, ~ N(0,1); case 6y, = &; + 0.6, | + 0.15¢, 1, & ~ x*(5).
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Figure 2: Dengities of /7'/6sk (dotted line) and /7'/6sk* (dashed line) under model-based
bootstrap (5000 bootstrap replications) ascompared to standard normal (solid line). Theoriginal
{y:}¢ ' seriesis: case 1, normal 1ID; case 2, 11D x2(5); case 3, y; = 0.6y, 1 + & + 0.654 1,
gr ~ N(0,1); casedy, = 0.6y;_1+&,+0.664_1, 6 ~ x2(5); caseb, y; = £, +0.65 ;+0.15¢; 4,
ee ~ N(0,1); case 6y, = g¢ + 0.65 ; + 0.155;_ 1, & ~ X*(5).

problems are present also in the asymmetric moving average case (case 5).

Moving-blocksbootstrap isanother standard bootstrap techniquefor time series. Inthiscase,
blocks of consecutive observationsareresampled. Figure 3 showsthat the problemshighlighted
for model-based bootstrap are present also in this case.

S. Monte Carlo analysis of the bootstrap-based tests

In this section we study the size and power properties of the test for asymmetry based on the
phase-scrambling bootstrap. For comparison, we a so investigate the properties of the test built
upon the asymptotic standard normal distribution. Given the evidence reported in the previous
section and the fact that the method is computer-intensive, we will not investigate the relation
with other bootstrap schemes any further. Since we are mainly interested in the application
with fairly short time series, in al experiments simulated time series of 100 observations are
used. The bootstrap tests are based on 1000 bootstrap samples. Given the time required by the
bootstrap procedures, the number of Monte Carlo ssmulations for each parameter configuration
had to be limited to 500.
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Figure 3: Densitiesof /7'/6sk (dotted line) and /7" /6sk* (dashed line) under moving-blocks
bootstrap (5000 bootstrap replications) ascompared to standard normal (solid line). Theoriginal
{y.}¢ ! seriesis: case 1, normal 1ID; case 2, 11D x2(5); case 3, y; = 0.61,_1 + & + 0.65,_1,
E¢ ~ N(O, 1), Case4yt = 0-6yt—1+5t+0-65t—11 E ™~ X2(5), caseb, Yy = €t+0.6€2—_1+0.155t__1,
g: ~N(0,1); caseb6y; = &; + 0.65; +0.15e;_,, & ~ x2(5).



Table 1. Monte Carlo anaysis. Size

¢

0

\/T'/6sk*-based

bootstrap

Nominal size

0.010

0.050

0.100

0.010

N(0, 1)

0.050

0.100

-0.8
-0.8
-0.8
-0.8
-0.4
-0.4
-04
-0.4
-0.4
0.0
0.0
0.0
0.0
0.0
04
04
04
04
04
0.8
0.8
0.8
0.8

-0.8
-0.5
0.0
0.5
-0.8
-0.5
0.0
0.5
0.8
-0.8
0.5
0.0
0.5
0.8
-0.8
-0.5
0.0
0.5
0.8
-0.5
0.0
0.5
0.8

0.008
0.006
0.010
0.020
0.012
0.020
0.032
0.012
0.018
0.020
0.014
0.012
0.018
0.014
0.018
0.022
0.010
0.016
0.020
0.012
0.014
0.010
0.016

0.052
0.040
0.048
0.066
0.054
0.072
0.090
0.060
0.060
0.050
0.048
0.042
0.078
0.076
0.056
0.074
0.064
0.072
0.066
0.048
0.058
0.056
0.048

0.098
0.080
0.098
0.116
0.126
0.114
0.130
0.130
0.118
0.114
0.092
0.090
0.128
0.132
0.112
0.124
0.106
0.136
0.114
0.102
0.120
0.124
0.116

0.000
0.004
0.004
0.014
0.010
0.016
0.024
0.010
0.014
0.018
0.012
0.006
0.014
0.006
0.016
0.022
0.002
0.010
0.012
0.010
0.004
0.006
0.002

0.020
0.014
0.024
0.056
0.030
0.048
0.064
0.042
0.042
0.036
0.046
0.038
0.056
0.050
0.046
0.068
0.036
0.038
0.036
0.024
0.018
0.014
0.016

0.048
0.038
0.062
0.084
0.070
0.086
0.102
0.092
0.088
0.080
0.074
0.068
0.098
0.094
0.084
0.100
0.078
0.076
0.062
0.052
0.046
0.040
0.036




Table 2: Monte Carlo analysis: Power against ARMA processes with chi-squared innovations

\/T/6sk*-based N(0,1)
bootstrap
Nominal size

) # 0010 0.050 0.100 0.010 0.050 0.100
-08 -0.8 0.130 0.262 0.336 0.044 0.156 0.248
-08 -0.5 0.024 0.070 0.142 0.008 0.042 0.078
-08 05 0432 0.642 0.738 0.358 0.588 0.698
-04 -0.8 0.066 0.160 0.236 0.042 0.102 0.186
-04 -05 0.036 0.106 0158 0.014 0.074 0.124
-04 05 0.646 0.848 0.908 0.612 0.824 0.896
-04 08 0516 0.744 0.822 0.466 0.696 0.790
0.0 -08 0064 0150 0.262 0.042 0.118 0.204
0.0 05 0348 0560 0678 0320 0.514 0.624
0.0 05 0448 0674 0.766 0.386 0.586 0.718
0.0 08 0283 0482 0608 0.234 0.448 0.540
04 -08 0382 0606 0718 0.338 0.576 0.672
04 -05 0634 0822 0900 0.588 0.788 0.878
04 05 0222 0410 0544 0.150 0.300 0.450
04 08 0174 0372 0502 0.110 0.274 0.406
0.8 -05 0420 0616 0.728 0.352 0.538 0.628
0.8 05 0052 0176 0.252 0.020 0.066 0.142
0.8 08 0054 0138 0.222 0.014 0.070 0.110

Thetest sizeisinvestigated using asthe” observed series” simulated stationary and invertible

ARMA(1,1) models

Yo = QY1+ e+ 009 er ~ NIID(0,1)

with ¢ € {-0.8,-0.4,0.0,+0.4,+0.8} and § € {-0.8,-0.5,0.0,40.5,+0.8}. Size prop-
erties have been investigated for both the asymptotically pivotal bootstrap (1/7"/6sk*) and the
asymptotic test based on the standard normal distribution. From theresultsreported in Table 1 it
appears that the asymptotic test tends to under-reject in the presence of strongly autocorrelated
series. On average, the bootstrap test seems preferable, given that, contrary to the asymptotic
one, it does not display large deviations from the theoretical size.

Power comparisons are reported in Tables 2 and 3 that show that power is aways larger for
the bootstrap test as compared to the asymptotic one, irrespective of the specific aternative.
In some instances, when the bootstrap test has low power, the power of the test based on the
asymptotic distribution of /T /6sk* is even lower than the nominal size.

As aconcluding remark we note that the simulation-based test studied in this paper appears
to have better small sample properties than its asymptotic analog. Also, it appears to be better
suited than other resampling-based tests, in that the series simulated under phase-scrambling
bootstrap are surely symmetric, independently of the nature of the original series.



Table 3: Monte Carlo analysis: Power against asymmetric MA processes

\/T'/6sk*-based N(0,1)
bootstrap
Nomina size Nominal size

) ¢ 0010 0.050 0.100 0.010 0.050 0.100
-08 -08 0.036 0.124 0218 0.010 0.052 0.106
-0.8 -05 0.014 0.052 0.120 0.006 0.026 0.050
-0.8 05 0182 0376 0482 0.154 0314 0.440
-0.8 08 0322 0588 0.712 0.286 0.534 0.664
-04 -08 0.020 0.090 0.174 0.006 0.050 0.126
-04 -05 0.028 0.070 0.120 0.022 0.054 0.092
-04 05 0312 0574 0698 0.280 0.514 0.646
-04 08 0178 0.394 0534 0.144 0.334 0462

00 -0.8 0.022 0.078 0.152 0.014 0.050 0.116
00 05 0162 0.350 0474 0128 0.282 0.416
00 05 0172 0.352 0482 0.142 0.304 0.422
00 08 0118 .264 0.398 0.088 0.206 0.316
04 -08 0.136 0.340 0480 0.108 0.300 0.438
04 -05 0310 0550 0.666 0.264 0.502 0.630
04 05 0074 0180 0.288 0.052 0.120 0.19
04 0.8 0.066 0168 0.264 0.050 0.106 0.176
08 -0.8 0294 0540 0.702 0.242 0484 0.634
08 -05 0150 0344 0486 0.100 0254 0.384
08 05 0.016 0.080 0.148 0.006 0.028 0.058
08 08 0.022 0.082 0126 0.004 0.034 0.064




Appendix A. The phase-scrambling bootstrap algorithm

Letz, = S y.e™r definethefinite Fourier transformof {y,}2 !, whenp=0,1,...,(T —
1) andw, = 27p/T. Thefirst smulation stepisthat of computing 2/, = z,e» with ¢, uniformly
distributed between 0 and 27.* Since we want to obtain the Fourier transform of area time
series, we need to make 2’ symmetric around frequency «. Therefore, foreach 0 < p < (T'—1),
we compute

Re{z} =27"*Re {2, + 2, } (4
and

Im {7} = 2712 Im {z—2zr_,}- (5)
The simulated series is then derived as the inverse Fourier transform of z;. Noting that the
periodogram of the simulated seriesis I*(w,) = \zg\Q and using the fact that 2y, = 2, (Where
the bar indicates complex conjugation), it is possible to derive that

I*(wp) = |2} 2 _ |22 + 27" [0t Or—r) p i(Otor—y)]
= |2p|* + |2p|* cos (¢, + d1_p)

= I(wp) [1+ cos (qbp + d)T_p)]
which impliesthat E* [I*(w,)] = I(w,), asdesired, with E* [-] denoting the bootstrap average.
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