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Abstract

The orthogonal group on the location−scale family is at the foundation of the stochastic
structure underlying CAPM. Relaxing that assumption, we show how less restrictive matrix
subgroup symmetries on the location−scale family of asset returns bound asset choices. Sign
symmetry is a special case and provides conditions such that the investor does not sell short.
Group−generated welfare orderings are also identified
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1.  Introduction 
The inherent symmetries of the investor’s portfolio allocation problem have long been 

recognized.  These symmetries are exploited through the normal and elliptical symmetry 
assumptions and are central to understanding when the capital asset pricing model applies.  
Chamberlain (1983), Owen and Rabinovitch (1983), Madan and Seneta (1990), and Berk (1997) 
explain details on how elliptical symmetry and the capital asset pricing model relate.  The 
symmetries attending the normal and elliptically symmetric distributions are infinite because the 
invariances may be represented by an infinitely large set of matrix operations.  Lapan and 
Hennessy (2002) and Hennessy and Lapan (2003) have studied portfolio allocation under less 
complete symmetries.  These symmetries, the symmetry group on a finite number of objects and 
arbitrary subgroups of that group, may be viewed as subgroups of a larger group, the orthogonal 
group, that generates elliptically symmetric distributions. 

This note demonstrates how to work with arbitrary subgroups of the orthogonal group when 
studying the effects of symmetries on the structure of portfolio allocations.  To illustrate, we 
provide choice bounds for the group of sign symmetries and we show what this group means for 
the decision of whether to short an asset.  We will demonstrate that the bounds we identify have 
strong welfare implications.  If Sharpe indices become more dispersed in a matrix group 
determined sense, then an investor’s ex-ante welfare increases. 

 
2.  Orthogonal group and elliptical symmetry 

The orthogonal group defines the family of elliptically symmetric distributions.  
DEFINITION 1.    The orthogonal group of dimension N is i) the set of all N N×  matrices 

with real entries such that any element M  satisfies t
NM M I× = , with superscripted t as the 

transpose operation and NI  as the identity in N N×  matrices, together with ii) the matrix 
multiplication operation.  The orthogonal matrix set is labeled NO  and the group under matrix 

multiplication is labeled NO .1  
The group is uncountably infinite in the sense that NO  is an uncountably infinite set.  For 

example there are uncountably infinite distinct rotations around the origin in 2 , and all can be 
represented by elements in NO . 

DEFINITION 2.    1N ×  random vector ε  follows a spherical distribution if for all NM ∈O  
the invariance dMε ε=  applies where d=  means equal in distribution. 

DEFINITION 3.    1N ×  random vector x  follows the elliptically symmetric distribution with 
1N ×  location parameter vector µ  and N N×  dispersion parameter matrix Ψ  if d tx Cµ ε= +   

where ε  follows a spherical distribution, C  is a k N×  matrix, tC C = Ψ , and Ψ  has rank k .  
DEFINITION 4.    A matrix subgroup of the orthogonal group under matrix multiplication is a 

(topologically) closed subset G  of NO  that is closed under matrix multiplication.  The matrix 

subgroup is written as G  and the subgroup relation is written as NG ¥O .  

DEFINITION 5.    A permutation subgroup of NO  is a group NG ¥O  such that each matrix 
element in G contains one and only one number 1 in each row and in each column, while the  

                                                 
1 Materials related to definitions 1 through 3 may be viewed in Fang, Kotz, and Ng (1990).  See 
Armstrong (1988) on definitions 4 and 6. 
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remaining entries have value 0.  
DEFINITION 6.    For NG ¥O , distribution ( )F ε  is said to be G -symmetric if dMε ε= ∀  

M G∈ . 
 

3.  Model 
An expected utility maximizer at time point 0 with time point 1 payoff W  and monotone 

increasing time 1 utility function ( ) :U W →  has available $1 to invest in any amount of 
1N +  assets.  One of these assets is risk-free with return r .  This is the rate the agent can borrow 

and lend at.  The other N  assets are risky with location-and-scale parameterized rates of return;  
 , 0 {1,2, ... , } .n n n n n Nx n Nµ σ ε σ= + > ∀ ∈ ≡Ω  (1) 
The distribution of vector ε  is given as ( )F ε  with expectation operator [ ]E ⋅  and [ ] 0nE nε = ∀ ∈ 

NΩ .2  The agent allocates $ na  to the nth risky asset, where Na∈  is the vector of these 
allocations.  Residual fund amount, positive or negative, is 1 1ta−  where 1 N∈  is the vector of 
ones.  This residual amount is allocated to the risk-free asset so that the budget is exhausted.   

The agent’s problem then is to  
 { } 1 1 2 2max ( 1) , ( , , ... , ) ,t t t

a N NE U r a r b b a a aµ ε σ σ σ + − + =   (2) 

and denote maximizing arguments by solution â .  Throughout the analysis is written as if there 
is a unique optimizer.  The analysis carries through for non-singleton optimizer sets.  For θ  as 
the Sharpe index vector with entries ( ) /n n nrθ µ σ= − , the problem may be re-written as  

 { }max t t
b E U r b bθ ε + +    (3) 

and solution vector b̂  must satisfy ˆ ˆn n nb a σ= .  The analysis that follows extends the permutation 
group analysis in Lapan and Hennessy (2002) and Hennessy and Lapan (2003) to the larger set 
of arbitrary orthogonal matrix groups. 

If ( )F ε  is G -symmetric, then  

 { } { } { }ˆ ˆ ˆ ˆ ˆ ˆ, ( ) .t t t t t t t t tE U r b b E U r b b M E U r b b b M bθ ε θ ε θ ε     + + = + + = + + =       (4) 

But optimality and symmetry require that  

 
{ } { } { }
{ } { } { }

ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ( ) .

t t t t t t t

t t t t t t t t

E U r b b E U r b b E U r b M b

E U r b b M E U r b b E U r b b b b

θ ε θ ε θ ε

θ ε θ ε θ θ ε

    + + ≥ + + = + +    

     = + + = + + = + + − +     

 (5) 

Comparing (4) and (5), the only difference in the payoff function is ˆ( )t tb b θ− .  Optimality and 
invariance due to G -symmetry ensure that the payoff’s stochastic attributes, as captured in ˆtb ε , 
are exactly the same apart from the payoff location shift.  The monotonicity property on ( )U W  

                                                 
2 Comparing (1) with definition 3, our model does not allow for full elliptical symmetry even 
when the symmetries of vector ε  are NO .  This is because (1) requires C  to be diagonal.  The 
model can be extended to full elliptical symmetry for full-rank square matrices C  through a 
diagonalizing re-specification of the assets so that the note’s findings would carry through up to 
a basis re-specification. 
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requires that ˆt tb bθ θ≤  or ˆ ˆ ˆ( )t t t tM b b M b M Gθ θ θ≡ ≤ ∀ ∈ .  More formally,  
PROPOSITION 1.    If ( ) :U W →  is increasing and ( )F ε  is G -symmetric with NG ¥O  

then ˆ ( ) 0t
Nb M I M Gθ− ≤ ∀ ∈ . 

Each M G∈  creates a bound that b̂  must satisfy.  Lapan and Hennessy (2002) and 
Hennessy and Lapan (2003) provide permutation group illustrations of these bounds, but 
permutations do not allow for axial reflections, arbitrary rotations around the origin or 
reflections through arbitrary rays from the origin. 
 
3.1.    Elliptical Symmetry.  If NG = O  in proposition 1, then the group supports elliptical 

symmetry.  This example is of particular interest because the set ˆt
NM b M∀ ∈O  orbits (i.e., re-

locates) b̂  over the entire sphere centered at the origin in N  and containing the optimum, b̂ ; 
 2 2

1 1
ˆ, .N N

n nn n
b bκ κ

= =
= =∑ ∑  (6) 

Equation (6) demonstrates the dimension of the orthogonal group; its matrices can map one point 
on a non-degenerate sphere to any other point on it.  The level of symmetry that elliptical 
symmetry imposes gauges the assumption’s restrictiveness.  Equation (6) also demonstrates the 
utility of linear, i.e., matrix, groups in portfolio problems.  The linearity of tb ε  means that a 
linear invariance on ( )F ε  implies some invariance consequence on b  through the relation 

1t tb b MMε ε−= . 
In light of (6), another way of writing condition set ˆ ˆ( )t t t

NM b b Mθ θ≤ ∀ ∈O  is as the 
constrained optimization problem 
 ( )2 2

1 1
ˆ ˆarg max , ;N Nt

b n nn n
b b b bθ λ κ κ

= =
= + × − =∑ ∑  (7) 

where λ  is a Lagrange multiplier.  The investor could choose any point on the sphere and 
chooses b̂  as the sphere-constrained optimum.  The presence of a risk-free asset ensures that 
there is no budget constraint on b , and so the sphere can have arbitrarily large radius.  
Optimization on (7) provides ˆ ˆ/ /i j i jb bθ θ =  so that allocations among risky assets are in direct 
proportion to the Sharpe indices and the only allocation vectors one need consider are along the 
ray 1 2( , , ... , ) ,t

Nb θ θ θ θ θ= × ∈ , as a subspace in Nb∈ .  The way that groups enter this 
optimization problem is a particularly simple application of Lie (continuous) groups where the 
orthogonal group generates the sphere manifold.  Baker (2002) provides an accessible 
introduction to matrix representations of Lie groups.  
 
3.2.    Sign Symmetry.  Interesting subgroups of NO  are the groups of sign changes, i.e., 
reflection symmetries through axes.  For density 1 2( , , ... , )Nf ε ε ε , the group of all sign changes 
is defined by the invariances 1 2 1 2 1 2( , , ... , ) ( , , ... , ) ( , , ... , ) ...N N Nf f fε ε ε ε ε ε ε ε ε≡ − ≡ − ≡ ≡  

1 2( , , ... , )Nf ε ε ε−  together with the invariances these sign change operations generate.  The 
relevant matrices are of form 
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1

2

( 1) 0 0
0 ( 1) 0

, {0,1}, ;

0 0 ( 1) N

n Nn

δ

δ

δ

δ

 −
 −  ∈ ∈Ω
 
 

− 

 (8) 

and there are 2N  such matrices, which we label as set ND  with associated matrix group ND . 

Applying proposition 1, if NG =D  then ˆ ( ) / 0n n n Nb r nµ σ× − ≥ ∀ ∈Ω  and ˆ 0nb ≥  whenever 

n rµ ≥ .  If some n rµ ≥  then it will not be optimal for any investor with non-satiated preferences 
to short that nth asset.  Notice that statistical independence has been assumed nowhere in the 
analysis.  But cov( , )i jε ε  0 , Ni j= ∀ ∈Ω  under NG =D  because [ ] [ ]i j i jE Eε ε ε ε= −  implies 

[ ] 0i jE ε ε = .  On the other hand, if NG ¥D  with G  comprised of just NI  and NI−  then 

proposition 1 only asserts that 
1

ˆ ( ) / 0N
n n nn

b rµ σ
=

× − ≥∑ .  In that case, if n Nr nµ ≥ ∀ ∈Ω  then at 

least one ˆ
nb  must be non-negative. 

 
4.  Welfare 

Proposition 1 provides insights into understanding how asset means and variances in our 
model affect ex-ante welfare.  To see this, define the convex hull of the orbit of vector Nz′∈  
under matrix group NG ¥O  as ( ; )z G′Η .  If ( ; )z z G′′ ′∈Η  then z′′  is said to be G -majorized by 
z′ , and we write Gz z′′ ′≤ .  See p. 422 of Marshall and Olkin (1979) or Mudholkar (1966) for 
details on group majorization. 

The most well-known case of G -majorization is ordinary majorization, which is the 
underpinning of Lorenz curve dominance and other measures of income dispersion.  In that case, 
the group is the group of all permutations on a set of objects.  Our interest is in the role of Sharpe 
index dispersion on the investor’s ex-ante welfare.  Proposition 4.1 in Lapan and Hennessy 
(2002) shows that more Sharpe index dispersion, in the sense of ordinary majorization, increases 
ex-ante welfare for a risk averse investor.  In this section we extend their result to arbitrary 
matrix subgroups of the orthogonal group. 

The G -majorization pre-ordering is of interest because of the G -increasing property.  From 
Eaton and Perlman (1977, p. 830), a function ( )f z  is said to be G -increasing if Gz z′′ ′≤  implies 

( ) ( )f z f z′′ ′≤ .  To establish why the property is of relevance, assume a strictly concave utility 
function and define maximized ex-ante welfare as  
 { }( ) max .t t

bS E U r b bθ θ ε = + +    (9) 

This function is symmetric in the sense that if ( )F ε  is G -symmetric then ( )S θ  is also G -
symmetric, ( ) ( )S S M M Gθ θ≡ ∀ ∈ .  The envelope theorem provides derivative ( ) / nS θ θ∂ ∂ =  
ˆ { ( )}n Wb E U W , where ( )WU W  is marginal utility.  Write the entries in vector Mθ  as 1( )Mθ  

through ( )N Mθ . 
With strictly increasing utility function, proposition 1 implies  
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1 1

( ) ( )( ) ( ) .N N
n n Nn n

n n

S SM I M Gθ θθ θ
θ θ= =

∂ ∂
≤ ∀ ∈

∂ ∂∑ ∑  (10) 

Eaton and Perlman (1977, p. 830) show that if ( )S θ  is G -symmetric and (10) is true on the 
domain of θ  then function ( )S θ  is G -increasing.  Thus we know that the investor’s ex-ante 
welfare as a function of Sharpe indices, ( )S θ , has the property of G -increasing, NG ¥O .  

PROPOSITION 2.    If ( ) :U W →  is increasing, continuously differentiable, and strictly 
concave while ( )F ε  is G -symmetric with NG ¥O  then ( ) ( )S Sθ θ′′ ′≤  whenever Gθ θ′′ ′≤ .  

We can go further upon making the assumption that all Sharpe indices are non-negative, but 
the notion of association is required.  The vector of random variables ε  is said to be associated if 

1 2cov( ( ), ( )) 0f x f x ≥  for all pairs of increasing functions 1( )f x  and 2( )f x .  The property is of 
relevance because the first-order condition in the portfolio problem may be written as  

 
{ }
{ }

[ ]
.

[ ]

t t
W n

n Nt t
W

E U r b b
n

E U r b b

θ ε ε
θ

θ ε

+ +
= − ∀ ∈Ω

+ +
 (11) 

If ε  is associated, the utility function is strictly concave, and all Sharpe indices are non-negative, 
then ˆ 0n Nb n≥ ∀ ∈Ω  and ( ) / 0n NS nθ θ∂ ∂ ≥ ∀ ∈Ω .  Define w

Gz z′′ ′≤  whenever there exists a z′′′∈  
N  such that Gz z′′ ′′′≤  and n n Nz z n′′′ ′≤ ∀ ∈Ω .  If w

Gθ θ′′ ′≤ , random variables ε  are associated, the 
investor is strictly risk averse and all Sharpe indices are positive, then there exists a θ ′′′  such that 

( ) ( )S Sθ θ′′′ ′≤  (by monotonicity) and also ( ) ( )S Sθ θ′′ ′′′≤  (by proposition 2). 
PROPOSITION 3.    Let ( ) :U W →  be increasing, continuously differentiable, and strictly 

concave while ( )F ε  is a G -symmetric distribution, NG ¥O , for associated random variables ε .  
If all Sharpe indices are non-negative, then ( ) ( )S Sθ θ′′ ′≤  whenever w

Gθ θ′′ ′≤ . 
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