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Abstract

In this study, we compare the performance of the Zheng (1996) and Elisson−Elisson (2000)
tests for omitted variable problems in parametric regression models. The study finds that the
Elisson and Elisson test has better finite sample performance relative to the Zheng test. The
results also confirm the suitability of the Elisson and Elisson test for testing models in
multi−−dimensional settings.
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1. Introduction

Developments in nonparametric consistent tests have provided a stream of
econometric tools to ascertain the validity of economic models. Recent ap-
plications, however, have only focused on establishing the consistency of a
variety of procedures using Monte Carlo simulation methods. Miles and Mora
(2003) used various smoothing and non–smoothing based test procedures to
validate Mincerian wage equations. They also conducted simulation studies
to determine the sensitivity of various procedures to heteroskedasticity which
is common in cross–sectional studies. However, aside from consistency stud-
ies, it is also of interest to know the performance of the said tests relative
to other specification errors. Elisson and Ellison (2000), henceforth referred
to as EE, noted that the tests may be applied to verify specific forms of
specification errors.

To our knowledge, no study has been done comparing the performance of
the Zheng (1996) and the EE test for omitted variables. The Zheng test has
an unsatisfactory property of ranking last in simulation studies by Miles and
Mora despite its purported good performance in Zheng. Dacuycuy (in press)
evaluated the finite sampling properties of the Zheng test for specific spec-
ification errors like omitted and irrelevant variable problems. Based on the
said study, the Zheng test performs well in testing for omitted variables but
performs poorly in testing for irrelevant variables. Using the same simulation
design as in Dacuycuy (in press), this study provides comparative empirical
evidence regarding the performance of the the Zheng and EE tests in testing
for omitted variable problems.

The paper is organized as follows: Section 2 briefly reviews the features of
the Zheng and EE tests. Section 3 details the design of the tests. Section 4
analyzes the comparative performance of the two tests and the last section
concludes.

2. Consistent tests for omitted variables

Consider a regression model, E[yi|xi] = h(xi; θ). Following Fan and Li (1996),
the true model that justifies omitting other regressors occurs when the ex-
pectation of y conditional on Z ⊂ X is just the expectation of y when the
conditioning variable is X. This means that whether a group of insignifi-
cant variables (W ), where W ∪ Z = X, is included or not, the conditional
expectation may not be affected.

Two independent but closely related tests have been developed. The Zheng
test evaluates the conditional moment E[εE[ε|X]f(x)], where ε corresponds
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to the residuals of a root – n consistent regression using kernel based smooth-
ing techniques. The sample analogue of the said population moment is a
U–statistic defined in Zheng as

Vn =
1

n(n− 1)

∑
i=1

∑
j 6=i

1

hk
K

(
xi − xj

k

)
eiej (1)

where e, h, K and k denote the residual, smoothing or bandwidth parame-
ter, non–negative kernel function and the dimension of X, respectively. The
consistent variance estimator for the test is given by
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Given the norming factor of nhd/2, Tn = Vn/(Σ̂n)1/2 ∼ N(0, 1). Being a
consistent test, if the null is invalid, then Tn → ∞. The test statistic is
asymptotically normally distributed.

The EE approach exploits information provided by residual based quadratic
forms. As stated in their work, the idea is that misspecification manifests
itself in spatial correlation among residuals.

The test statistic is written as

TEE
n =

e′Wije√
2s(e′Wije)

+

∑d
k=0 βk√

2s(Wij)
(3)

The first term represents the quadratic form based on the model’s residuals.
s(e′Wije) refers to the spectral radius of the quadratic form which acts as
the estimator for the variance. The weight matrix, W, is computed similar
to Zheng except that it is normalized. The second term is the finite sample
correction proposed by EE when the specification error of interest is omitted
variable problem. As in EE, βk is the coefficient pertaining to the kth regres-
sor under the null in the regression of WX.k on X, where the first column
consists of 1s. β0 is the estimate for the intercept in the regression of WX.1

on X. Similar to the Zheng test statistic, the EE test statistic converges to
the normal distribution and consistent in that TEE

n →∞ if the null is invalid.

Note that the EE test introduces a finite sample correction term to address a
specific misspecification problem while the Zheng test can be readily applied
without major modifications. Both tests, however, are easy to implement.
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3. Investigating finite sample performance: Omitted variables

The investigation applies the similar design used in Dacuycuy (in press).
We define the following variables and their respective distributions. Let
X1 ∼ N(0, 1), X2 = ζ1×ζ2

2
and ε ∼ N(0, 1), where ζi ∼ N(0, 1) for i = 1, 2.

The omitted variable Z has a standard normal distribution. The number
of replications will be maintained at 1000 and following Zheng, the set of
sample sizes includes 100 to 700.

Simple bandwidth selection rules from the work Miles and Mora will be
employed. Miles and Mora used a bandwidth which is represented by λmm =
kσ̂xn

−1/7 for the models with 3 continuous variables, where σ̂x is the sample
standard deviation of a vector of observations, x. To facilitate the test, the
test statistic would be computed following a set of different values for the
constant k.

For both tests, the multivariate representation of the kernel function will be
the multiplicative or product kernel which is expressed as K(u) = K(u1) ×
K(u2) × · · · × K(uk), where uk =

(xik−xjk)

hk
and K(uk) = 15

16
(1 − u2)2 for

uk ∈ [−1, 1]. The Zheng test uses the raw kernel weights for the residuals.
For the EE test, the row sum of elements in the weight matrix sums to 1.

The statistical hypotheses for examining the test performance are

H0 : yi = α + β1X1 + β2X2 + β3X
2
2

DGP0 : yi = 1 + X1 + X2 + X2
2

DGP1 : yi = 1 + X1 + X2 + X2
2 + Z

DGP2 : yi = 1 + X1 + X2
1 + X2 + X2

2 + Z + Z2 + Z3 + Z4

In DGP1, y is linear in the omitted variable Z. On the other hand, DGP2
renders the relationship nonlinear.

4. Simulation results

Comparative results in table 1 indicate that the EE test has superior esti-
mated powers relative to that of the Zheng test when it comes to detecting
an omitted variable problem. In fact, the EE test attains maximum power
in testing the null against DGP1 and registers high estimated powers in test-
ing the null against DGP2. Consistent with the empirical literature, power
depends on the bandwidth parameter except in alternative DGP1 under the
EE test wherein the rates of rejection are uniform across possible bandwidth
choices. In the Zheng test, a higher bandwidth results in greater power.
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However, the estimated sizes still underestimate their respective nominal
sizes (Li, 1999). Relative to the EE test, the Zheng test registers favorable
nominal sizes. The results may be affected by the increase in the dimension
of the regressor vector. It is also observed that the nominal size in the Zheng
test generally respond negatively to increasing k, which affect the bandwidth
λ. The same is true for the EE test.

5. Concluding remarks

The study compares the finite sample performance of the Zheng and EE tests
when the specification error concerns the omission of relevant variables in
parametric regression. Consistent with studies on finite sample performance
of the said tests, the results point to the superiority of the EE test in terms
of estimated power. It also confirms the suitability of the EE test for testing
models in multi–dimensional settings as evidence in the study by Miles and
Mora. However, the estimated sizes are still undersized.

A possible line of investigation is to determine a suitable finite sample correc-
tion factor for examining irrelevant variable problems. Moreover, the roles
of alternative bandwidth selection schemes as well as distribution approx-
imation methods on the respective tests’ power performance may also be
examined. These empirical matters are left for future research.
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