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Abstract

In this paper we discuss the finite sample behavior of the KPSS test in the presence of
conditionally heteroskedastic errors. We confirm that under stationary GARCH errors the
asymptotics of the KPSS remains valid. However, in finite samples we observe a slight size
distortion and a power distortion. Interestingly, IGARCH errors do not seem to affect the size
of the test, however they may often cause a substantial loss of power.
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1 Introduction

Recently, mostly motivated by practical applications, there has been an increasing
interest in analyzing the effects that errors with time varying variance have on unit
root tests. Kim and Schmidt (1993) found that Dickey-Fuller (1979,1981) tests tend
to overreject in the presence of GARCH errors, with the problem becoming most
severe in the case of near integrated variance. Nelson et al. (2001) and Cavaliere
(2003) examine the asymptotic properties of unit root tests with Markov switching
variances. Seo (1999) and Ling et al. (2003) investigate the asymptotic distribution
theory of unit root tests with GARCH errors and propose likelihood-based unit root
tests. Cavaliere and Taylor (2004) provide a new approach to unit root testing in the
presence of a general class of permanent variance changes. Cavaliere (2004) investi-
gates the effects of a permanent variance shift on the stationarity test of Kwiatkowski
et al. (1992), KPSS hereafter, and Cavaliere and Taylor (2005a) analyze the effects
of a general class of time varying variances (including GARCH) on the KPSS test.

This paper extends the literature on stationarity tests by examining the case
where the errors are conditionally heteroskedastic. Specifically, we study the finite
sample behavior of KPSS tests in the presence of conditionally heteroskedastic errors
of the form GARCH(1,1) as proposed in Bollerslev(1986). Since many economic and
financial series display conditional heteroskedasticity we believe that it is interesting
to assess whether and to what extent the presence of GARCH errors affects the
performance of the KPSS test.

The paper is organized as follows. Section 2 gives the background to the KPSS
test, section 3 discusses the asymptotic properties of the test under GARCH errors.
In section 4 we examine the finite sample performance of the KPSS test when the
error term follows various ARMA-GARCH processes. A brief summary concludes.

2 The KPSS Test

The KPSS tests the null hypothesis that a series is I(0) against the alternative that
the series is I(1). This is done in the context of the unobserved component model:

yt = dt + µt + ut (1)

µt = µt−1 + εt (2)

where yt, t = 1 . . . T are the observed data, dt is a deterministic component, ut

satisfies the strong mixing conditions of Phillips and Perron (1988) with long run
variance σ2

u, ε ∼ i.i.d.(0, σ2
ε ), and the initial value µ0 is treated as fixed and serves the

role of an intercept. The null hypothesis is therefore H0 : σ2
ε = 0 and the alternative

is H1 : σ2
ε > 0.

The KPSS test is constructed using the residuals {ût}T
t=1 from the regression of yt

on dt. As in KPSS, we focus on the two cases: (i) dt = µ a constant; (ii) dt = µ+ τt a
constant plus a time trend. The KPSS test rejects H0 in favor of H1 for large values
of the statistic

η̂ =
T−2

∑T
t=1(

∑t
i=1 ûi)

2

σ̂2
u

(3)

where σ̂2
u is a consistent estimate of σ2

u (see Kwiatkowski et al. 1992 p. 164 for
details). In the constant case we identify the statistic as η̂µ, while in the linear trend
case it will be η̂τ . Representations for the limit null distribution of the test statistic in
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the two cases and the relative critical values are found in Kwiatkowski et al., (1992)
pp. 164-167.

3 Properties of KPSS under GARCH errors

Here we investigate the behavior of the KPSS statistics when yt is generated by:

yt = dt + µt + ut (4)

µt = µt−1 + εt (5)

ut = νt

√
ht, ht = ω + αu2

t−1 + βht−1 (6)

where yt and dt are as above, ω > 0, α ≥ 0, β ≥ 0, {νt} is a sequence of i.i.d. real-
valued random variables with continuous density (with respect to a Lebesgue measure
on the real line) which is positive on (−∞, +∞), and is independent of h0, and has
E(νt) = 0, E(ν2

t ) = 1, and E(ν4
t ) < ∞. Furthermore εt ∼ i.i.d.(0, 1) and νt and εt

are independent of each other.
In order for the KPSS test to be robust to the presence of conditional heteroskedas-

ticity it is required that ut satisfies the regularity conditions of Phillips and Perron
(1988) or alternatively, either the linear process conditions of Phillips and Solo (1989)
or the martingale central limit theorem as in Hall and Heyde (1980).

As demonstrated in Carrasco and Chen (2002) (pp 24-25), under suitable mo-
ment conditions, the necessary and sufficient condition for covariance stationarity of
GARCH sequences α + β < 1 (see Bollerslev (1986)) is the sufficient condition for
strict stationarity and exponential β-mixing of ut. Therefore, under these conditions
the limit distribution of the KPSS statistic under stable GARCH(1,1) errors remains
valid 1. However, this condition excludes cases where α + β = 1, the IGARCH case
(see Nelson 1990). In such a case, for ω > 0, the unconditional variance of ut diverges,
and ut does not satisfy the definition of a covariance stationary process (nor does u2

t ).
In the next section we report the finite sample performance of the KPSS test

under different ARMA-GARCH specifications of the residuals.

4 Finite Sample Results

To investigate the finite sample accuracy of the KPSS statistics under conditionally
heteroskedastic errors, we produce 50000 samples of sizes T = 50, 100, 200 using the
following DPG:

yt = dt + µt + ut (7)

µt = µt−1 + εt (8)

(1− φL)ut = (1 + θL)et (9)

et = νt

√
ht, ht = ω + αe2

t−1 + βht−1 (10)

where as before νt ∼ iid(0, 1), We study the finite (small) sample properties of η̂µ and
η̂τ for φ = 0, 0.5, 0.8, 0.9, θ = 0, 0.4,−0.4, ω = 0.1, α = 0.2 β = 0.7, 0.8.

1Note also that stable GARCH processes with finite fourth moments are martingale difference se-
quences, and therefore the martingale central limit theorem in Hall and Heyde (1980) may also be
used to establish convergence of the partial sums of ut. Furthermore, GARCH models are believed
to satisfy the conditions for linear precesses of Phillips and Solo 1989 (see also Stock, 1994).
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Note that (see Kwiatkowski et al. 1992), as for the i.i.d. case the size of the test
depends only on the sample size (T ), and the number of lags (l) used to calculate σ̂2

u.
Here, we are interested on the effect of introducing both an ARMA structure (defined
by φ and θ), and a stationary GARCH(1,1) or an integrated GARCH effects. As in
the original work from Kwiatkowski et al. (1992), we consider three values of l as a
function of T : l0 = 0, l4 = integer[4(T/100)1/4], and l12 = integer[12(T/100)1/4].
Tables 1-3 display the size properties of the KPSS for T=50, 100, 200 respectively,
offering a comparison between the accuracy of the test with i.i.d., ARMA, ARMA-
GARCH, and ARMA-IGARCH errors.

Examining the i.i.d. case first, we can see that the test is correctly sized for l0,
regardless of the sample size T considered. However, as l increases the test rejects
the null too seldom, and this under-rejection improves only very slowly with larger
samples. Applying stationary GARCH (1,1) errors seems to add something to these
effects. For the l0 case, the test rejects more often than in the pure i.i.d. case, and
this effect decreases slowly for larger T . When considering the case of l4 and l12, the
effect of GARCH (1,1) errors is to cause KPSS tests to reject even less often than
when the errors are white noise.

Going on to the statistical properties of the KPSS with ARMA errors, the results
obtained confirm, for a given value of θ, the expected over-rejection for larger φ + θ
and under-rejection when φ + θ < 0. it seems that the severity of the over-rejection
(under-rejection) depends on how large and positive (negative) φ + θ is. The results
for the ARMA-GARCH (1,1) cases, are not too different from the simple ARMA ones.
However, an exception is provided by the case where there is near cancellation with
φ = 0.5 and θ = −0.4. In this case, we observe that in presence of slightly autocorre-
lated and conditionally heteroskedastic errors the KPSS test tends to reject less often
than it should as compared with the case where errors are slightly autocorrelated. It
is important to notice that this effect persists for all the sample sizes considered.

An interesting result is that the KPSS test does not seem to be greatly affected by
the presence of IGARCH errors. In this case, Cavaliere and Taylor (2004), show that
the scaled partial sums of ut weakly converge to a non-standard Brownian motion
whose variance depends on the underlying volatility process (rather than a standard
Brownian motion), and consequently the distribution of the numerator of the KPSS
statistic (3) is not of the form given in Kwiatkowski et al. (1992) pp164-167. More-
over, it is not clear what the denominator of (3) will converge to, or indeed if it does
converge at all, given that the long run variance is diverging. Notice that, Cavaliere
and Taylor (2005a) also find little size distortion in unit root tests under IGARCH
innovations. This issue is interesting and merits further investigation, although this
is beyond the scope of the present paper.

Lastly, in tables 4, 5 and 6, we present simulation results giving the size adjusted
power of the KPSS test in the presence of i.i.d. and GARCH(1,1) errors as a function
of only two relevant parameters, namely T and λ = σ2

ε /σ
2
u. This is done for T=50, 100,

200, and λ between 0.001 and 1000. In the stationary GARCH case, the different
values of λ are obtained by simulating the process in (7-10) holding σ2

ε = 1 and,
recalling that the long run variance of ut, σ2

u = ω/1 − (α + β), keeping α = 0.2 and
β = 0.7, and allowing only ω to vary in order to achieve the desired values of σ2

u and
consequently of λ.

In general, for a given sample size T , the power of the KPSS test increases with
λ, even though it does not necessarily reach unity as λ → ∞. Also, as expected,
for fixed λ, power increases with T , reflecting the consistency of the test. However
the rate at which this happens depends strongly on l, so that choosing a larger l will

3



cost power. Examining the simulation results in greater detail, we note that for a
given T the presence of stationary GARCH(1,1) errors seems to ‘improve’ the power
of the KPSS test as compared with the case of simple i.i.d. errors, especially when λ
is smaller. However, this is true only when the GARCH process is stationary. In the
case where errors are IGARCH and λ is small the power of KPSS tests is very low.
Indeed, it needs to be highlighted that in this case the ratio λ is difficult to computate
as σu → ∞ and therefore the values for λ in that case are not going to be exactly
the ones displayed on the table. Yet, it is again interesting that for larger values of λ
this lack of power disappears. It is not straightforward to provide an explanation for
what happens, mainly because it is not clear what really happens to the quantity λ.
Again, this is another interesting issue, and as such will constitute object of further
research. As a final note, it is worth highlighting that, unlike other studies on unit
root testing with stationary GARCH errors (Kim and Schmidt, 1993) changing the
values of α and β does not provide different results from the one presented, nor does
the presence of near integrated GARCH errors.

5 Summary

In this paper, we have discussed the finite sample properties of the KPSS test in
the presence of conditionally heteroskedastic errors, and analyzed by means of Monte
Carlo methods its finite sample performance under various ARMA-GARCH specifi-
cations. To summarize, while the presence of stationary GARCH errors which satisfy
certain moments conditions are known not to alter the asymptotic distribution of
the KPSS test, in finite samples we observe a slight size distortion when we apply
a stationary GARCH effect to i.i.d. or slightly autocorrelated innovations. Also we
observe that presence of stationary GARCH(1,1) errors seems to distort the power
of the KPSS tests as compared with the case of simple i.i.d. errors. Finally, while
they do not satisfy the standard regularity conditions of the Functional Central Limit
Theorem, IGARCH errors do not seem to significantly alter the size properties of the
test; however, they cause a great loss of power especially in relatively small samples.
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Table 1: Size of ηµ and ητ at 5% level with ARMA, ARMA-GARCH, and ARMA-IGARCH
errors

T=50
ηµ ητ

α β φ θ l0 l4 l12 l0 l4 l12
0 0 0 0 0.0483 0.0390 0.0099 0.0543 0.0415 0.0650

0.2 0.7 0 0 0.0614 0.0371 0.0087 0.0759 0.0426 0.0579
0.2 0.8 0 0 0.0543 0.0414 0.0094 0.0611 0.0448 0.0634
0 0 0 0.4 0.1549 0.0527 0.0122 0.2133 0.0582 0.0688

0.2 0.7 0 0.4 0.1575 0.0513 0.0105 0.2216 0.0598 0.0598
0.2 0.8 0 0.4 0.1615 0.0580 0.0135 0.2235 0.0654 0.0721
0 0 0 -0.4 0.0006 0.0100 0.0050 0.0004 0.0091 0.0560

0.2 0.7 0 -0.4 0.0042 0.0101 0.0044 0.0044 0.0116 0.0489
0.2 0.8 0 -0.4 0.0014 0.0122 0.0041 0.0010 0.0096 0.0583
0 0 0.5 0 0.3418 0.1000 0.0182 0.4926 0.1176 0.0649

0.2 0.7 0.5 0 0.3360 0.1021 0.0168 0.4746 0.1162 0.0646
0.2 0.8 0.5 0 0.3351 0.0989 0.0194 0.4728 0.1173 0.0671
0 0 0.5 0.4 0.4470 0.1088 0.0182 0.6557 0.1320 0.0685

0.2 0.7 0.5 0.4 0.4414 0.1110 0.0165 0.6385 0.1331 0.0623
0.2 0.8 0.5 0.4 0.4416 0.1142 0.0181 0.6429 0.1338 0.0663
0 0 0.5 -0.4 0.1059 0.0583 0.0128 0.1293 0.0648 0.0654

0.2 0.7 0.5 -0.4 0.0621 0.0383 0.0086 0.0742 0.0423 0.0543
0.2 0.8 0.5 -0.4 0.1064 0.0613 0.0120 0.1275 0.0619 0.6540
0 0 0.8 0 0.7421 0.2861 0.0360 0.8909 0.3353 0.0646

0.2 0.7 0.8 0 0.7421 0.2940 0.0382 0.8703 0.3371 0.0681
0.2 0.8 0.8 0 0.7317 0.2840 0.0378 0.8728 0.3365 0.0700
0 0 0.8 0.4 0.7881 0.2914 0.0378 0.9333 0.3523 0.0708

0.2 0.7 0.8 0.4 0.7871 0.2992 0.0379 0.9221 0.3613 0.0707
0.2 0.8 0.8 0.4 0.7847 0.2995 0.0392 0.9223 0.3532 0.0696
0 0 0.8 -0.4 0.5575 0.2386 0.0336 0.6744 0.2646 0.0656

0.2 0.7 0.8 -0.4 0.5431 0.2404 0.0321 0.6454 0.2733 0.0671
0.2 0.8 0.8 -0.4 0.5570 0.2446 0.0347 0.6506 0.2739 0.0690
0 0 0.9 0 0.8750 0.4666 0.0829 0.9403 0.5050 0.0898

0.2 0.7 0.9 0 0.8750 0.4666 0.0829 0.9403 0.5050 0.0898
0.2 0.8 0.9 0 0.8733 0.4484 0.0704 0.9454 0.4961 0.0937
0 0 0.9 0.4 0.9046 0.4577 0.0761 0.9720 0.5210 0.0899

0.2 0.7 0.9 0.4 0.9029 0.4744 0.0811 0.9661 0.5251 0.0956
0.2 0.8 0.9 0.4 0.8986 0.4480 0.0736 0.9696 0.5112 0.0923
0 0 0.9 -0.4 0.7821 0.4173 0.0662 0.8388 0.4389 0.0913

0.2 0.7 0.9 -0.4 0.7718 0.4256 0.0734 0.8211 0.4480 0.0922
0.2 0.8 0.9 -0.4 0.7679 0.4210 0.0671 0.8226 0.4324 0.0879
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Table 2: Size of ηµ and ητ at 5% level with ARMA, ARMA-GARCH, and ARMA-IGARCH
errors

T=100
ηµ ητ

α β φ θ l0 l4 l12 l0 l4 l12
0 0 0 0 0.0495 0.0441 0.0311 0.0528 0.0473 0.0375

0.2 0.7 0 0 0.0636 0.0434 0.0265 0.0731 0.0482 0.0335
0.2 0.8 0 0 0.0595 0.0511 0.0355 0.0601 0.0526 0.0382
0 0 0 0.4 0.1568 0.0615 0.0372 0.2179 0.0658 0.0410

0.2 0.7 0 0.4 0.1605 0.0593 0.0316 0.2260 0.0684 0.0390
0.2 0.8 0 0.4 0.1569 0.0641 0.0371 0.2320 0.0753 0.0432
0 0 0 -0.4 0.0004 0.0108 0.0175 0.0001 0.0093 0.0202

0.2 0.7 0 -0.4 0.0029 0.0103 0.0126 0.0031 0.0112 0.0168
0.2 0.8 0 -0.4 0.0015 0.0128 0.0174 0.0008 0.0095 0.0201
0 0 0.5 0 0.3578 0.1085 0.0463 0.5451 0.1362 0.0540

0.2 0.7 0.5 0 0.3524 0.1143 0.0436 0.5096 0.1373 0.0509
0.2 0.8 0.5 0 0.3540 0.1191 0.0550 0.5187 0.1430 0.0523
0 0 0.5 0.4 0.4637 0.1208 0.0504 0.6970 0.1558 0.0548

0.2 0.7 0.5 0.4 0.4572 0.1208 0.0432 0.6721 0.1566 0.0521
0.2 0.8 0.5 0.4 0.4553 0.1256 0.0528 0.6818 0.1633 0.0598
0 0 0.5 -0.4 0.1107 0.0652 0.0382 0.1396 0.0746 0.0431

0.2 0.7 0.5 -0.4 0.0592 0.0426 0.0254 0.0731 0.0468 0.0321
0.2 0.8 0.5 -0.4 0.1152 0.0720 0.0404 0.1412 0.0788 0.0438
0 0 0.8 0 0.7981 0.3115 0.0982 0.9552 0.4407 0.1090

0.2 0.7 0.8 0 0.7926 0.3151 0.0921 0.9400 0.4509 0.1106
0.2 0.8 0.8 0 0.7881 0.3123 0.1026 0.9342 0.4441 0.1094
0 0 0.8 0.4 0.8394 0.3275 0.1025 0.9792 0.4606 0.1147

0.2 0.7 0.8 0.4 0.8318 0.3310 0.0945 0.9626 0.4626 0.1115
0.2 0.8 0.8 0.4 0.8281 0.3316 0.1006 0.9624 0.4623 0.1149
0 0 0.8 -0.4 0.6317 0.2715 0.0901 0.8132 0.3725 0.1020

0.2 0.7 0.8 -0.4 0.6173 0.2742 0.0868 0.7759 0.3734 0.1003
0.2 0.8 0.8 -0.4 0.6143 0.2745 0.0933 0.7936 0.3748 0.1094
0 0 0.9 0 0.9434 0.5297 0.1867 0.9927 0.6978 0.2090

0.2 0.7 0.9 0 0.9380 0.5425 0.1969 0.9882 0.6978 0.2135
0.2 0.8 0.9 0 0.9329 0.5330 0.1947 0.9894 0.6816 0.2147
0 0 0.9 0.4 0.9530 0.5427 0.1938 0.9953 0.6976 0.2162

0.2 0.7 0.9 0.4 0.9537 0.5536 0.1995 0.9935 0.7135 0.2262
0.2 0.8 0.9 0.4 0.9440 0.5359 0.1917 0.9915 0.6858 0.2157
0 0 0.9 -0.4 0.8834 0.5024 0.1863 0.9600 0.6462 0.2040

0.2 0.7 0.9 -0.4 0.8679 0.5056 0.1872 0.9446 0.6480 0.2044
0.2 0.8 0.9 -0.4 0.8710 0.4950 0.1863 0.9510 0.6354 0.2049
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Table 3: Size of ηµ and ητ at 5% level with ARMA, ARMA-GARCH, and ARMA-IGARCH
errors

T=200
ηµ ητ

α β φ θ l0 l4 l12 l0 l4 l12
0 0 0 0 0.0496 0.0464 0.0406 0.0523 0.0489 0.0426

0.2 0.7 0 0 0.0589 0.0453 0.0356 0.0701 0.0507 0.0385
0.2 0.8 0 0 0.0603 0.0549 0.0436 0.0666 0.0610 0.0489
0 0 0 0.4 0.1600 0.0626 0.0458 0.2232 0.0703 0.0475

0.2 0.7 0 0.4 0.1602 0.0614 0.0403 0.2297 0.0717 0.0447
0.2 0.8 0 0.4 0.1577 0.0683 0.0483 0.2265 0.0761 0.0500
0 0 0 -0.4 0.0002 0.0110 0.0247 0.0001 0.0096 0.0250

0.2 0.7 0 -0.4 0.0015 0.0108 0.0185 0.0017 0.0106 0.0194
0.2 0.8 0 -0.4 0.0020 0.0181 0.0293 0.0005 0.0135 0.0248
0 0 0.5 0 0.3720 0.1174 0.0593 0.5646 0.1466 0.0651

0.2 0.7 0.5 0 0.3578 0.1124 0.0527 0.5347 0.1449 0.0585
0.2 0.8 0.5 0 0.3597 0.1229 0.0622 0.5415 0.1573 0.0708
0 0 0.5 0.4 0.4741 0.1273 0.0604 0.7192 0.1688 0.0673

0.2 0.7 0.5 0.4 0.4680 0.1261 0.0550 0.6834 0.1703 0.0644
0.2 0.8 0.5 0.4 0.4521 0.1292 0.0670 0.6824 0.1727 0.0727
0 0 0.5 -0.4 0.1130 0.0705 0.0503 0.1442 0.0786 0.0510

0.2 0.7 0.5 -0.4 0.0568 0.0452 0.0354 0.0698 0.0497 0.0386
0.2 0.8 0.5 -0.4 0.1196 0.0785 0.0557 0.1513 0.0847 0.0573
0 0 0.8 0 0.8389 0.3367 0.1178 0.9778 0.5077 0.1451

0.2 0.7 0.8 0 0.8227 0.3423 0.1108 0.9630 0.5087 0.1437
0.2 0.7 0.8 0 0.8060 0.3265 0.1135 0.9642 0.4913 0.1434
0 0 0.8 0.4 0.8663 0.3477 0.1179 0.9867 0.5172 0.1433

0.2 0.7 0.8 0.4 0.8578 0.3500 0.1160 0.9794 0.5233 0.1413
0.2 0.8 0.8 0.4 0.8439 0.3439 0.1195 0.9766 0.5079 0.1491
0 0 0.8 -0.4 0.6764 0.2965 0.1103 0.8869 0.4339 0.1315

0.2 0.7 0.8 -0.4 0.6633 0.2999 0.1081 0.8477 0.4286 0.1268
0.2 0.8 0.8 -0.4 0.6516 0.2931 0.1130 0.8556 0.4281 0.1404
0 0 0.9 0 0.9708 0.5860 0.2264 0.9992 0.7990 0.2969

0.2 0.7 0.9 0 0.9661 0.5974 0.2352 0.9980 0.8024 0.3120
0.2 0.8 0.9 0 0.9555 0.5691 0.2232 0.9980 0.7827 0.2999
0 0 0.9 0.4 0.9751 0.6007 0.2341 0.9993 0.8022 0.3068

0.2 0.7 0.9 0.4 0.9708 0.6049 0.2281 0.9986 0.8134 0.3120
0.2 0.8 0.9 0.4 0.9709 0.5887 0.2289 0.9991 0.7930 0.3070
0 0 0.9 -0.4 0.9324 0.5675 0.2248 0.9912 0.7632 0.2948

0.2 0.7 0.9 -0.4 0.9217 0.5645 0.2251 0.9830 0.7663 0.2947
0.2 0.8 0.9 -0.4 0.9160 0.5483 0.2159 0.9851 0.7514 0.2933
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Table 4: Power of ηµ and ητ at 5% level

ηµ ητ

T α β λ l0 l4 l12 l0 l4 l12
50 0 0 0.001 0.0741 0.706 0.0642 0.0570 0.0548 0.0505

0.2 0.7 0.001 0.1043 0.1087 0.0907 0.0603 0.0615 0.0515
0.2 0.8 0.001 0.0450 0.0480 0.0503 0.0467 0.0491 0.0468
0 0 0.01 0.2879 0.2466 0.1771 0.1260 0.1067 0.0500

0.2 0.7 0.01 0.3960 0.3591 0.2569 0.1819 0.1602 0.1130
0.2 0.8 0.01 0.0529 0.0558 0.0479 0.0538 0.0525 0.0479
0 0 0.1 0.7280 0.5643 0.3770 0.5731 0.3449 0.438

0.2 0.7 0.1 0.7751 0.6023 0.4102 0.6214 0.4052 0.1817
0.2 0.8 0.1 0.1313 0.1215 0.1000 0.0746 0.0735 0.0470
0 0 1 0.9240 0.6616 0.4305 0.9088 0.5231 0.2791

0.2 0.7 1 0.9233 0.6725 0.4509 0.9030 0.5280 0.2905
0.2 0.8 1 0.4518 0.3746 0.2656 0.2533 0.1899 0.1465
0 0 10 0.9568 0.6787 0.4411 0.9639 0.5544 0.3318

0.2 0.7 10 0.9497 0.6839 0.4540 0.9524 0.5492 0.3500
0.2 0.8 10 0.8102 0.6039 0.4109 0.6929 0.4142 0.2409
0 0 100 0.9584 0.6772 0.4398 0.9703 0.5572 0.3395

0.2 0.7 100 0.9522 0.6857 0.4587 0.9585 0.5547 0.3605
0.2 0.8 100 0.9310 0.6578 0.4356 0.9242 0.5273 0.3393
0 0 1000 0.9603 0.6806 0.4444 0.9700 0.5614 0.3398

0.2 0.7 1000 0.9524 0.6803 0.4542 0.9630 0.5504 0.3651
0.2 0.8 1000 0.9495 0.6670 0.4402 0.9632 0.5505 0.3390
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Table 5: Power of ηµ and ητ at 5% level

ηµ ητ

T α β λ l0 l4 l12 l0 l4 l12
100 0 0 0.001 0.1738 0.1623 0.1445 0.0854 0.0793 0.0730

0.2 0.7 0.001 0.2455 0.2545 0.2296 0.1048 0.1153 0.1014
0.2 0.8 0.001 0.0494 0.0501 0.0501 0.0521 0.0503 0.0489
0 0 0.01 0.5899 0.5238 0.4332 0.3517 0.2924 0.2051

0.2 0.7 0.01 0.6769 0.6130 0.5043 0.4541 0.4149 0.2829
0.2 0.8 0.01 0.0822 0.0817 0.0768 0.0559 0.0571 0.0540
0 0 0.1 0.9232 0.7735 0.5990 0.8779 0.6964 0.4037

0.2 0.7 0.1 0.9367 0.7967 0.6167 0.8983 0.7380 0.4331
0.2 0.8 0.1 0.2727 0.2505 0.2228 0.1272 0.1226 0.1033
0 0 1 0.9892 0.8288 0.6213 0.9928 0.8156 0.4531

0.2 0.7 1 0.9881 0.8413 0.6416 0.9884 0.8256 0.4687
0.2 0.8 1 0.6873 0.5966 0.4858 0.4989 0.4078 0.2679
0 0 10 0.9943 0.8378 0.6285 0.9980 0.8297 0.4530

0.2 0.7 10 0.9926 0.8426 0.6413 0.9965 0.8370 0.4737
0.2 0.8 10 0.9294 0.7753 0.5966 0.9008 0.7173 0.4110
0 0 100 0.9948 0.8398 0.6279 0.9988 0.8369 0.4611

0.2 0.7 100 0.9927 0.8448 0.6400 0.9972 0.8359 0.4742
0.2 0.8 100 0.9858 0.8169 0.6143 0.9895 0.8085 0.4476
0 0 1000 0.9948 0.8349 0.6262 0.9986 0.8355 0.4587

0.2 0.7 1000 0.9932 0.8415 0.6349 0.9977 0.8369 0.4776
0.2 0.8 1000 0.9948 0.8269 0.6178 0.9981 0.8236 0.4531
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Table 6: Power of ηµ and ητ at 5% level

ηµ ητ

T α β λ l0 l4 l12 l0 l4 l12
200 0 0 0.001 0.4026 0.3849 0.3507 0.1855 0.1743 0.1523

0.2 0.7 0.001 0.4613 0.4608 0.4258 0.2262 0.2414 0.2194
0.2 0.8 0.001 0.0596 0.0619 0.0607 0.0491 0.0489 0.0490
0 0 0.01 0.8482 0.7845 0.6677 0.7228 0.6456 0.5039

0.2 0.7 0.01 0.8730 0.8208 0.7014 0.7631 0.7141 0.5750
0.2 0.8 0.01 0.1380 0.1366 0.1365 0.0734 0.0749 0.0694
0 0 0.1 0.9904 0.9274 0.7605 0.9901 0.9230 0.7148

0.2 0.7 0.1 0.9890 0.9304 0.7674 0.9852 0.9299 0.7343
0.2 0.8 0.1 0.4848 0.4577 0.4189 0.2703 0.2507 0.2180
0 0 1 0.9993 0.9476 0.7701 0.9999 0.9610 0.7471

0.2 0.7 1 0.9987 0.9491 0.7816 0.9993 0.9630 0.7688
0.2 0.8 1 0.8716 0.8120 0.6915 0.7728 0.7030 0.5465
0 0 10 0.9997 0.9493 0.7742 1.0000 0.9645 0.7486

0.2 0.7 10 0.9995 0.9504 0.7864 0.9999 0.9658 0.7648
0.2 0.8 10 0.9837 0.9242 0.7573 0.9789 0.9186 0.7063
0 0 100 0.9997 0.9503 0.7773 1.0000 0.9653 0.7535

0.2 0.7 100 0.9995 0.9483 0.7820 1.0000 0.9654 0.7678
0.2 0.8 100 0.9979 0.9422 0.7732 0.9988 0.9529 0.7548
0 0 1000 0.9998 0.9489 0.7745 1.0000 0.9665 0.7529

0.2 0.7 1000 0.9995 0.9513 0.7861 1.0000 0.9640 0.7664
0.2 0.8 1000 0.9993 0.9471 0.7838 0.9998 0.9614 0.7395
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