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Abstract
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those of their rivals. Therefore, it is an important issue to study the incentives of firms to
exchange private cost information. We resolve and further generalize an influential model of
Raith (1996) and show that, independent of the number of firms, concealing cost information
is a dominant firm strategy in heterogeneous Bertrand oligopolies with substitutive as well as
with complementary goods.
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1 Introduction

Competing firms are usually better informed about their own cost and demand pa-

rameters than about those of their rivals. Therefore, it is an important issue in the

Industrial Organization theory to study the incentives of firms to exchange private

information (see, e.g., Vives 1999, ch. 8). The literature on information sharing in

oligopoly is vast. However, most papers study Cournot competition in homogeneous

markets. Only few authors deal with price competition in heterogeneous markets,

even if this kind of competition is most important in the industrial sectors of an

economy. Vives (1984) and Sakai (1986) have concentrated on the exchange of de-

mand information, while Gal-Or (1986) and Sakai (1991) have studied the expected

gains of exchanging cost information. These Bertrand duopoly models yield the well

known result that firms reveal their private information in Bayesian equilibrium un-

der demand uncertainty, while under cost uncertainty they do not. In an influential

paper, Raith (1996) has developed a unified approach in which he derives the results

of these models as special cases.

While it is generally accepted in the literature that the duopoly results with demand

uncertainty generalize to oligopolistic market structures, Raith (1996, p. 279) has

argued that with cost uncertainty “... results obtained for duopolies do not extend

to larger markets”. Instead, for a large number of rivals in the market, unilateral

revelation of private cost information should be a dominant strategy. This far-

reaching conclusion indicates that the concealing strategy of firms is not very robust.

As has been pointed out by Jin (2000), however, this surprising implication is solely

based on an algebraic error in the original model.

The present paper therefore presents a general solution of Raith’s (1996) model

for the theoretically and empirically most interesting case of cost uncertainty and

derives the robust result that concealing cost information is an unambiguously domi-

nant strategy in price competition with substitutive as well as with complementary

goods.
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2 The Model

We consider a market consisting of n ≥ 2 firms, each producing a differentiated

good. According to most models in the information sharing literature, we assume a

quasi-linear quadratic utility function

U (q0,q) = q0 +

n
∑

i=1

αiqi −
1

2

n
∑

i=1

n
∑

j=1

βijqiqj (1)

of a representative consumer. Each consumer demands q0 units of the numéraire

good and qi units of the differentiated goods i = 1, . . . , n, represented by the vector

q = (q1, . . . , qn)′. We impose the usual parameter restrictions αi > 0, βij = β >

0 ∀ i = j and βij = γ ∈
(

− 1
n−1

β; β
)

∀ i 6= j. Consumers maximize utility subject

to the budget constraint

q0 +

n
∑

i=1

piqi ≤ I, (2)

where I denotes income and p = (p1, . . . , pi, . . . , pn)′ is the price vector of goods

i = 1, . . . , n. If income is large enough, the first-order conditions determining the

optimal consumption levels of all goods lead to the linear demand functions

Di (p) = ai − bpi + d
∑

j 6=i

pj , i, j = 1, . . . , n (3)

where ai :=
[β+(n−2)γ]αi−γ

∑

j 6=i αj

(β−γ)[β+(n−1)γ]
, b := β+(n−2)γ

(β−γ)[β+(n−1)γ]
and d := γ

(β−γ)[β+(n−1)γ]
, which

implies d ∈
(

−b; 1
n−1

b
)

. In this general model, corresponding to the demand pa-

rameters γ and d, the goods are substitutes (γ, d > 0), complements (γ, d < 0) or

independent (γ = d = 0).

We assume the same type of information structure as in Gal-Or (1986), i.e., firms

know the distribution function of their constant unit cost, but are only imperfectly

informed about the realizations. The deviations τi from the expected values ci are
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independently and identically normally distributed with means zero and variances

t ≥ 0, i.e. τi ∼ N (0, t).1

If firms knew the realization of their respective deviation parameters τi, but were

uncertain about the rivals’ cost parameters, the underlying information structure

would be a standard one of asymmetric information. However, the assessment of

the advantage or disadvantage of information exchange becomes more complicated

if firms have to decide about their information revelation behavior at a point in

time when information about their own unit cost is also uncertain. As in the Gal-Or

(1986) model, we simultaneously analyze both stochastic uncertainty of firms about

their own unit cost as well as asymmetric information between the competitors.

Firm i’s ex ante observed signal for the deviation parameter τi is ϕi = τi + ψi,

where the signal errors ψi are also assumed to be independently and identically

normally distributed with means zero and variances u ≥ 0, i.e. ψi ∼ N (0, u). Thus,

firms can make no inferences about the unit cost of their rivals based on their pri-

vate cost information. However, each firm has the option to signal its perception

of unit cost to the rivals. In a very general way we may account for the precision

of a strategic information revelation by specifying the signal as ϕ̂i = ϕi + ξi. The

strategic revelation deviations ξi are also assumed to be independently and identi-

cally normally distributed random variables with means zero and variances ri ≥ 0,

i.e. ξi ∼ N (0, ri). If the signal is sent with zero variance (ri = 0), firm i perfectly

reveals its cost information. In the case of an infinitely high variance (ri → ∞),

it conceals its private information.2 All firms have to make their pricing decisions

using all available cost information, represented by their respective information sets

zi = (ϕi, ϕ̂)′ with the vector ϕ̂
′ = (ϕ̂1, . . . , ϕ̂n) of revealed information by all firms.

1 There may be parameter constellations where the nonnegativity constraint of unit cost is not ful-

filled if the random variables are assumed to be normally distributed. However, this distribution

function which is usually applied in the information exchange literature can be interpreted as

an approximation of any specific distribution function or as the result of the additive clustering

of several independently distributed singular random variables.

2 Under these circumstances, strategic lying in the revelation process as modeled by Ziv (1993) is

excluded. Firms only have the option to reveal their cost information with an arbitrarily large

noise. This means that concealing occurs by announcing and sending worthless signals.
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Given the information set zi, the ex ante expected profit function of firm i is

Ei
[

πi (p)
∣

∣ zi

]

= Ei

{{

[pi − (ci + τi)]

(

ai − bpi + d
∑

j 6=i

pj

)}
∣

∣

∣

∣

∣

zi

}

(4)

where E is the expected value operator. The necessary first-order conditions3 lead

to the reaction functions

pi (zi) =
ai + b

[

ci + Ei (τi| zi)
]

+ d
∑

j 6=i E
i [pj (zj)| zi]

2b
. (5)

Since the resulting equilibrium strategies are affine in the information sets zi, the

proposed solution equations take the form

pi (zi) = η0i + η1iϕi + η2i
′
ϕ̂ . (6)

In order to solve for prices in Bayesian equilibrium, we have to determine the coeffi-

cients η0i, η1i ∈ R and η2i ∈ R
n. For the expected price decisions of the competitors

we obtain

Ei [pj (zj)| zi] = η0j + η1jE
i (ϕj| zi) + η2j

′
ϕ̂ , i, j = 1, . . . , n, i 6= j . (7)

Due to the assumptions of the normal distributions, the conditional means Ei (ϕj| zi)

solve as Ei (ϕj | zi) = t+u
t+u+rj

ej
′
ϕ̂, where ej is the j-th unit vector. In an analogous

way, the expected deviations of unit cost from their mean are Ei (τi| zi) = t
t+u

ϕi.

By inserting these conditional means together with equation (7) into the reaction

functions (5) and equating the resulting expressions with the proposed solution

equations (6), the coefficients can be identified as

η0i =
[2b− (n− 2) d] (ai + bci) + d

∑

j 6=i (aj + bcj)

(2b+ d) [2b− (n− 1) d]
(8)

η1i =
t

2 (t+ u)
(9)

3 The sufficient conditions for a profit maximum are globally met. In order to simplify the analysis,

we generally assume parameter values that guarantee Bayesian equilibria with positive quantities

for all firms.
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η2i = t

{

bd

(2b+ d) [2b− (n− 1) d]
v − d

2 (2b+ d) (t+ u+ ri)
ei

}

(10)

with the uncertainty vector v :=
(

1
t+u+r1

, . . . , 1
t+u+rn

)′

. Consequently, η2i contains

the elements

η2ii =
(n− 1) d2t

2 (2b+ d) [2b− (n− 1) d] (t+ u+ ri)
(11)

η2ij =
bdt

(2b+ d) [2b− (n− 1) d] (t+ u+ rj)
∀ i 6= j . (12)

Inserting these expressions into the solution equations (6), we obtain the optimal

pricing strategy

pi (zi) =
[2b− (n− 2) d] (ai + bci) + d

∑

j 6=i (aj + bcj)

(2b+ d) [2b− (n− 1) d]

+t

{

1

2 (t+ u)
ϕi +

(n− 1) d2

2 (2b+ d) [2b− (n− 1) d]

1

t+ u+ ri

ϕ̂i

+
bd

(2b+ d) [2b− (n− 1) d]

∑

i6=j

1

t+ u+ rj

ϕ̂j

}

. (13)

In order to calculate the ex ante expected equilibrium profits, we substitute the

optimal pricing strategy (13) into (4). Making use of the distributional properties

of the deviation parameters τi and taking the expected value over all possible in-

formation sets zi yields the ex ante expected equilibrium profits (see the Appendix

A.1):

Ezi
[πi (p)] =

(

ai − bη0i + d
∑

j 6=i

η0j

)

(η0i − ci) + bt2

{

1

4 (t+ u)

+
(n− 1) d2 [3 (n− 1) d2 + 4 (n− 2) bd− 8b2]

4 (2b+ d)2 [2b− (n− 1) d]2
1

t+ u+ ri

+
b2d2

(2b+ d)2 [2b− (n− 1) d]2

∑

j 6=i

1

t+ u+ rj

}

(14)

Differentiating these reduced-form profit functions with respect to the revelation

variances ri yields

∂Ezi
[πi (p)]

∂ri

= −(n− 1) bd2 [3 (n− 1) d2 + 4 (n− 2) bd− 8b2]

4 (2b+ d)2 [2b− (n− 1) d]2
t2

(t+ u+ ri)
2 . (15)
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As is shown in Appendix A.2, this derivative equals zero for d = 0, but has a positive

sign for all d 6= 0. Figure 1 illustrates this result for the case of substitutive goods

(0 < (n− 1)d < b), i.e. for a fixed parameter d which implies that the Figure 1

depends only on the variables b and n. Therefore, in contrast to the corresponding

∂Ez
i
[πi(p)]

∂ri

b

n0

Figure 1: Derivative (15) in the case of substitutive goods.

result derived by Raith (1996), firms producing substitutive goods will generally

choose an infinite variance (ri → ∞) in information transmission which is equivalent

to concealing their private cost information. Using this conceiling strategy, firms

weaken the price competition and, hence, increase their expected profits. Thus,

Gal-Or ’s (1986) result for a duopolistic market indeed generalizes to oligopolistic

market structures. Even for a large number of firms, unilateral revelation of private

cost information never constitutes a Bayesian equilibrium strategy.

As is shown in Figure 2, with complementary goods (i.e. d assumed to be within the

range −b < d < 0), firms also gain by choosing infinitely high variances ri because

there is again a positive effect on the expected profit level. Thus, independent of

the level of the demand parameter b and independent of the number of firms in the

market, also in the case of complementary goods firms always conceal their private

cost information.

In the special case of independent goods (d = 0) the derivative simplifies to
∂Ez

i
[πi(p)]

∂ri
= 0. As in such an industry firms behave as monopolists in their res-

pective markets, there will be no effect of better or worse information about the

unit costs of the other firms on their own expected profit.
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∂Ez
i
[πi(p)]

∂ri

b

n0

Figure 2: Derivative (15) in the case of complementary goods.

Therefore, our generalized model setup shows that Bertrand oligopolists always

conceal their private cost information. Silence is the golden strategy in all the cases

covered by our general model. This information policy does not depend on the num-

ber of firms in the market and holds for substitutive as well as for complementary

goods. Cost information exchange never constitutes a Bayesian equilibrium strategy.

Consequently, using the solution equations (6) with the coefficients defined in equa-

tions (8) to (10), we obtain the equilibrium prices

pi (zi) =
1

2b

[(

ai + d
∑

j 6=i

η0j

)

+ bci + b
t

t+ u
ϕi

]

(16)

and from (14) the expected equilibrium profits

Ezi
[πi (p)] =

(

ai − bη0i + d
∑

j 6=i

η0j

)

(η0i − ci) + b
t2

4 (t+ u)
. (17)

Obviously, cost uncertainty softens competition and rises expected profits, i.e. firms

gain from a higher cost uncertainty.
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3 Conclusion

By resolving and further generalizing an influential model of Raith (1996) we sho-

wed by theoretical analysis that, independent of the number of firms, concealing

cost information is a dominant strategy in heterogeneous Bertrand oligopolies with

substitutive as well as with complementary goods.

Furthermore, the presented model explains and supports the empirical observation

that firms generally refuse to reveal private cost information. As our analysis has

shown, concealing successful efforts in obtaining process innovations should be an

important firm strategy, especially if patent protection is not perfect.
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Appendix

A.1 Ex Ante Expected Equilibrium Profits

Substituting the optimal price strategies (13) into (4) and taking the expected value

over all possible information sets zi, in a first step leads to the following expression

of the ex ante expected equilibrium profits:

Ezi
[πi (p)] =

(

ai − bη0i + d
∑

j 6=i

η0j

)

(η0i − ci) − bη2
1iE
(

ϕ2
i

)

− bη1iE (ϕiη2i
′
ϕ̂)

+dη1i

∑

j 6=i

η1jE (ϕiϕj) + dη1i

∑

j 6=i

E (ϕiη2j
′
ϕ̂) − bη1iE (ϕiη2i

′
ϕ̂)

−bE (η2i
′
ϕ̂η2i

′
ϕ̂) + d

∑

j 6=i

η1jE (ϕjη2i
′
ϕ̂) + d

∑

j 6=i

E (η2i
′
ϕ̂η2j

′
ϕ̂)

+bη1iE (τiϕi) + bE (τiη2i
′
ϕ̂) − d

∑

j 6=i

η1jE (τiϕj) − d
∑

j 6=i

E (τiη2j
′
ϕ̂)

(18)

Making use of the distributional properties of the deviation parameters τi, the pri-

vate signals ϕi and the signals ϕ̂i, i = 1, . . . , n, we obtain:

E
(

ϕ2
i

)

= t+ u (19)

E (τiϕi) = t (20)

E (τiϕj) = 0 (21)

E (ϕiϕj) = 0 (22)

E (τiη2i
′
ϕ̂) = tη2ii (23)

E (τiη2j
′
ϕ̂) = tη2ji (24)

E (ϕiη2i
′
ϕ̂) = (t+ u) η2ii (25)

E (ϕiη2j
′
ϕ̂) = (t+ u) η2ji (26)

E (ϕjη2i
′
ϕ̂) = (t+ u) η2ij (27)

E (η2i
′
ϕ̂η2i

′
ϕ̂) = (t+ u+ ri) η

2
2ii +

∑

j 6=i

(t+ u+ rj) η
2
2ij (28)

E (η2i
′
ϕ̂η2j

′
ϕ̂) = (t+ u+ ri) η2iiη2ji + (t+ u+ rj) η2ijη2jj

+
∑

k 6=i

k 6=j

(t+ u+ rk) η2ikη2jk (29)
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Inserting these expressions (19) - (29) into (18) and rearranging yields the ex ante

expected equilibrium profits (14).

A.2 Impact of Revelation Variances on Ex Ante Equilibrium

Profits

For d 6= 0, − (n−1)bd2t2

4(2b+d)2[2b−(n−1)d]2(t+u+ri)
2 < 0, so that the sign of (15) only depends on

the sign of:

3 (n− 1) d2 + 4 (n− 2) bd− 8b2 (30)

As this is a convex quadratic function of the demand parameter d there exist up to

two values of d (furtheron defined as d1 and d2) which imply (30) to be zero. In the

case of independent goods (i.e. d = 0) we obtain:

3 (n− 1) d2 + 4 (n− 2) bd− 8b2 = −8b2 < 0 (31)

Whether this negative sign holds for the entire range of substitutability of goods

d ∈
(

−b; 1
n−1

b
)

can be proofed by an analysis of d1 and d2: If neither d1 nor d2 is

located inside the range of d there is no change of the sign, wehereas if d1 and/or

d2 are located inside there will happen a change of the sign of (15). The values of

d1 and d2 can be derived as:

d1,2 =
−4 (n− 2) b±

√

16 (n− 2)2
b2 + 96 (n− 1) b2

6 (n− 1)

=
−2 (n− 2) b± 2b

√
n2 + 2n− 2

3 (n− 1)
(32)

If

d1 =
−2 (n− 2) b+ 2b

√
n2 + 2n− 2

3 (n− 1)
(33)

is located inside the range of d ∈
(

−b; 1
n−1

b
)

, the condition −b < d1 <
1

n−1
b must

hold. This implies on the one hand d1 > −b, i.e.:
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−2 (n− 2) b+ 2b
√
n2 + 2n− 2

3 (n− 1)
> −b

⇔ n + 1 + 2
√
n2 + 2n− 2 > 0 (34)

This condition holds for any number of firms n ≥ 2. The condition −b < d1 <
1

n−1
b

on the other hand implies that d1 <
1

n−1
b, i.e.:

−2 (n− 2) b+ 2b
√
n2 + 2n− 2

3 (n− 1)
<

1

n− 1
b

⇔ −2n + 1 + 2
√
n2 + 2n− 2 < 0 (35)

This condition holds for no number of firms n ≥ 2. From (34) and (35) we therefore

conclude that d1 ≥ 1
n−1

b which means that it is generally located outside of d ∈
(

−b; 1
n−1

b
)

.

In the following, an analogous analysis is presented for d2. If

d2 =
−2 (n− 2) b− 2b

√
n2 + 2n− 2

3 (n− 1)
(36)

is located inside the range of d ∈
(

−b; 1
n−1

b
)

, the condition −b < d2 <
1

n−1
b must

hold. This implies on the one hand d2 > −b, i.e.:

−2 (n− 2) b− 2b
√
n2 + 2n− 2

3 (n− 1)
> −b

⇔ n + 1 − 2
√
n2 + 2n− 2 > 0 (37)

This condition holds for no number of firms n ≥ 2. The condition −b < d2 <
1

n−1
b

on the other hand implies that d2 <
1

n−1
b, i.e.:

−2 (n− 2) b− 2b
√
n2 + 2n− 2

3 (n− 1)
<

1

n− 1
b

⇔ −2n + 1 − 2
√
n2 + 2n− 2 < 0 (38)

This condition holds for any number of firms n ≥ 2. From (37) and (38) we therefore

conclude that d2 ≤ −b which means that it is generally located outside of d ∈
(

−b; 1
n−1

b
)

.
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Therefore, both values d1 and d2 are located outside range of substitutability of

goods d ∈
(

−b; 1
n−1

b
)

. Combining this knowledge with the result (31) for inde-

pendent goods we can conclude that the expression (30) is always negative. Consi-

dering this in the analysis of (15) we can proof that
∂Ez

i
[πi(p)]

∂ri
> 0 for substitutes

(d > 0) and complements (d < 0), while for independent goods
∂Ez

i
[πi(p)]

∂ri
= 0.
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