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Abstract

In this paper the problem of choosing a univariate forecasting model for small samples is
investigated. It is shown that, a model with few parameters, frequently, is better than a model
which coincides with the data generating process (DGP) (with estimated parameter values).
The exponential smoothing algorithms are, once more, shown to perform remarkably well for
some types of data generating processes, in particular for short-term forecasts. All this is
shown by means of Monte Carlo simulations and a time series of realized volatility from the
CAC40 index. The results speaks in favour of a negative answer to the question posed in the
title of this paper.
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Abstract

In this paper the problem of choosing a univariate forecasting model for
small samples is investigated. It is shown that a model with few parameters
frequently is better than a model which coincides with the data generating
process (DGP) with estimated parameter values. The exponential smoothing
algorithms are again shown to perform remarkably well for some types of data
generating processes, in particular for short-term forecasts. All this is shown
by means of Monte Carlo simulations and a time series of realized volatility
from the CAC40 index. The results speaks in favour of a negative answer to
the question posed in the title of this paper.

1 Introduction

In Kim (2003), the author investigates the fact that bias of estimators of autoregres-
sive parameters in small samples impair the forecast performance of such models. A
related problem is that it is difficult to find an appropriate forecasting model when
the sample size is small. This is the topic of the present paper. In Section 2 the
problem is presented in general and then narrowed down for illustration purposes to
a specific data generating process (DGP). Section 3 presents the forecast methods
investigated, Section 4 the simulation study, Section 5 an example with realized
volatility data from the CAC40 index and Section 6 summarizes the results.

2 Forecasts based on small samples

Imagine a realization of a time series {z;}_, that is generated by the data generating
process P. Furthermore, assume that the model M is used to forecast the value of
k- 1t is well known, and intuitively reasonable, that the best forecast of x; g,
made at time ¢, in the sense of minimizing mean squared forecast errors, is given
when M is chosen to be the expectation of z;, conditional on the realization {z;}._,
under P. In the context of a small sample it is worth mentioning that the parameters



in the model M have to be estimated. This means that even in a situation when
we have correctly identified the data generating process, something not likely to be
done in real world applications, the success of the forecasts produced hinges on the
success in estimating the parameters of the model. This is the topic of Kim (2003)
who studies the problem in autoregressive models. In small samples it might be
difficult to identify P based on data, even if P is one of the models investigated in
the model search. This problem is the focus of interest in this paper. T will, for
the most part, follow Kim (2003) and study autoregressive DGP’s. One simulation
experiment will, however, be done with an MA-process.

3 Four forecasting methods

In the simulation study in next section, four different strategies for forecasting will
be used. P will always be an AR(6) model and M will be chosen in the following
four different ways.

e Forecasting with knowledge of the DGP. As a benchmark, it will be assumed
that the DGP is known except for its parameters which will be estimated.
The estimation of the parameters is thus the only disturbance to an otherwise
obvious best method.

e Using an AR(1)-model. The purpose of using this forecasting method is to
investigate if the benefit of this naive reduction of number of parameters will
outweigh the bias induced by the model misspecification.

e Determining lag length of an AR-model with the Akaike information criterion
(AIC) (Akaike, 1974). This is an attempt of identifying the DGP and then use
it for forecasting. While intuitively the most appealing method to this author,
the small sample properties of the forecasts are not clear. On the one hand,
the DGP might not be identified for small samples. If the DGP is identified,
on the other hand, there are many parameters to estimate, inducing forecast
inaccuracy.

e [xponential smoothing algorithms. These methods are used as representatives
for “brute force” forecasts. Both the simple exponential smoothing algorithm
and Holt’s linear exponential smoothing algorithm will be investigated. The
latter method (Holt, 1957) is included mainly to see what harm the uncertainty
the trend estimation is doing to the precision of the forecasts in situations
when no trend is present. The smoothing parameters will be estimated by
minimizing the in-sample mean squared errors.



4 Simulation study

The data generating processes that are simulated are AR(6) processes. For all
models, one-step-ahead and five-step-ahead forecasts are evaluated. All comparisons
are made out-of-sample, i.e. for each replicate, T,;s plus one (five) observations are
generated but only the first T ;s are used to estimate parameters. The number
of replicates is 1000 for each model and sample size and the maximum number of
lags used in the AIC criterion based forecasts is 10. The measure of comparison
is the mean squared error of forecasts (MSEF). All simulations are made using the
R programming language (R Development Core Team, 2005) and the R-package
fSeries (Wuertz et al., 2006).

4.1 The stationary autoregressive case

[ start by considering a case where the DGP is a weakly stationary AR(6) process,
i.e. when all roots to the AR-polynomial lies outside the unit circle. First, a case
which is clearly stationary is studied, then a case where one of the roots to the
AR-polynomial is close to the unit circle.

4.1.1 Clearly stationary case

The first case has the AR-parameters ¢ = (0.1,0.1,0.1,0.1,0.1,0.1). The modulus to
the roots to the corresponding AR-polynomial are (1.476,1.578,1.578,1.148,1.476, 1.607),
all well outside the unit circle. As can be seen from Table 1 using the DGP with
estimated parameters actually give the next largest MSEF of all models for the
smallest sample, 20 observations. Only Holt’s linear exponentional smoothing algo-
rithm is worse. The simple exponential smoothing algorithm outperforms this “true”
model also for the sample sizes 50. For the studied sample sizes, the AIC criterion
underestimate the lag length of the DGP. Eventually, of course, for large samples
the “true” model will outperform all others.

The five-step-ahead forecasts are then investigated for the same DGP. The results
here are more in favour of the DGP with estimated parameters or its more realistic
version for applications, the AR process with lag length determined by the AIC
criterion. A notable difference with the one-step-ahead case is that the exponential
smoothing algorithms perform worse than for the one-step-ahead forecasts.

4.1.2 Close to unit root case

The AR-coefficients in the process that will now be studied are ¢ = (0.2,0.2,0.1,0,0.1,0.35)’
with roots to the corresponding AR-polynomial (1.213,1.228,1.228,1.014, 1.213,1.270).
Table 3 shows that simple exponential smoothing outperforms the DGP with esti-
mated parameters and the AR-AIC forecasts up to sample size 50.



4.2 The non-stationary autoregressive case

In this subsection I will study an example of a unit root process. When forecasting
a non-stationary process of the unit root type, the Holt’s linear algorithm turns out
to out-perform the DGP with estimated parameters even for the sample size 100.
This is so even though less information have been used than for the other forecasts
in the sense that a decision whether to difference the data or not was not needed to
be made. This results, however, does not persist for the five-step-ahead forecasts.

4.3 The moving average case

Also for the MA(1) process studied here, for sample sizes up to 100, the results
indicate that the DGP with estimated parameters is not the best way of producing
good forecasts. The somewhat surprising observation here is that the best forecasts
are made by using an AR model with lag-length determined by the AIC criterion.
This is true both for the one-step-ahead and five-step-ahead forecasts.

5 A real world data example

At first it seems difficult to investigate the results above on real world data. After all
one cannot possible know the exact structure of the DGP that generated these data.
What T will try to do is to convince the reader that the DGP of a reasonably long
observed time series is well approximated by a particular process within the ARIMA-
class of processes. Thereafter I will select a short subset of this dataset, estimate the
parameters with this subset, and investigate the ability of the different forecasting
methods to forecast observations outside of it. The data I have chosen for this
exercise is a time series that comes as example data “cac40vol” in the package fSeries
(Wuertz et al., 2006) to the R software (R Development Core Team, 2005). The series
represents the realized volatility of the CAC40 index for 1249 days between 1995 to
1999. After inspection of the sample ACF and PACF of the data an AR(8) models
was first hypothesized. This model passed the Ljung-Box test for the residuals up
to 100 lags on the 5% level. After reducing the number of AR-parameters to 5 it
turned out that the residuals still passed this test. This was not the case for an
AR(4). Therefore, an AR(5) model was chosen to serve as the “approximated DGP”
for these data. Alternatively, the AR(5) forecasts can, of course, be seen just as one
of the forecasting methods that are compared.

The sample size was chosen to 100 as well as the number of forecasts to base
the MSEF’s on. The following procedure was used. First observations 51-150 was
used to estimate the parameters of the different models. Thereafter, observation
number 151 was forecasted and subtracted from the actual outcome, forming the
first forecast error. Now observations 52-151 was used to estimate parameters and
the 152’nd observation was forecasted. This procedure was repeated 100 times.



These 100 forecast errors was the basis for the MSEF’s. This procedure was then
in turn repeated for the subsample 151-250, and so on until the end of the sample.

The results clearly shows that the “approximate DPG” with estimated parame-
ters is not the best way to forecast these series, at least not according to the MSEF
criterion. In fact, the best forecasting method, would have been the simple expo-
nential smoothing algorithm. In all but two of the 12 periods its performance is the
best of the different forecast methods. In only one of the 12 periods its performance
is worse than the “approximate DGP” with estimated parameters.

6 Conclusions

Forecasting with a model not identical to the data generating process turns out to
be better in some cases for autoregressive models in the sense of minimizing mean
squared forecast errors. These cases are when the number of parameters to estimate
in the the DGP is large relative to the sample size. The intuition behind this is that
even though a smaller model does not reflect the time dynamics of the process as
well as the model identical to the DGP, the lower number of estimated parameters
makes the precision of the forecasts higher.

Another result is that the more persistent the dynamics of the process, the more
important it seems to be to capture the DGP correctly. Among the realistic methods,
i.e. methods feasible to use in a real world situation, the AIC-determined forecasts
are the best in this case. As in many cases, exponential smoothing algorithms turns
out to be reliable also for the investigated autoregressive processes, in particular for
small samples.

Furthermore, for I(1) processes, Holt’s linear exponential seems surprisingly able
to capture the local trends occurring in such processes. Here however, the results
is slightly more favourable to trying to find the DGP before forecasting. For MA-
processes, again, knowledge of the DGP is no guarantee for good forecast perfor-
mance. Using an AR-model where the lag-length is determined by the AIC criterion
outperform the DGP with estimated parameters. The exponential smoothing algo-
rithms are less useful here.

The empirical illustration, where the realized volatility of the CAC40 index is
studied, strengthen the simulation findings. The forecast performance of the model
identified by using the entire sample is by no means better than the other models.
The simple exponential smoothing algorithm seems to be an good choice to forecast
this series.
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Table 1: Mean squared errors of one-step-ahead forecasts. T, is the number of

observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the

MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)

when an AR(1) model is used, AR(pasc) when the AIC criterion is used and ES

when and Holt when exponential smoothing is used. ¢ = (0.1,0.1,0.1,0.1,0.1,0.1)’
Tobs PAIc AR(G) AR(l) AR(ijc) ES Holt

20 0.711  1.237 1.142 1.155 1.128 1.467
50 1.719 1.088 1.139 1.106 1.083 1.378
100 3.179  1.037  1.065 1.064 1.057 1.300
200 6.169 0975  1.028 0.975 0987 1.108

Table 2: Mean squared errors of five-step-ahead forecasts. T, is the number of
observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the
MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)
when an AR(1) model is used, AR(pasc) when the AIC criterion is used and ES
and Holt when exponential smoothing is used. ¢ = (0.1,0.1,0.1,0.1,0.1,0.1)’

Tobs Paic AR(6) AR(l) AR(pA[C) ES Holt

20 0.692 1.130 1.116 1.120 1.211 3.891
50 1.735 1.049 1.108 1.083 1.100 2.604
100 3.139  1.047  1.095 1.063 1.100 1.972
500 6.172  1.036  1.115 1.041 1.122 1.503

Table 3: Mean squared errors of one-step-ahead forecasts. T, is the number of
observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the
MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)
when an AR(1) model is used, AR(pasc) when the AIC criterion is used and ES
and Holt when exponential smoothing is used. ¢ = (0.2,0.2,0.1,0,0.1,0.35)’

Tobs PaAaIc AR(6) AR(l) AR(ijc) ES Holt

20 1.394  1.297  1.412 1.316 1.185 1.647
50 3.594 1.176  1.491 1.298 1.116 1.386
100 5.937 1.011  1.539 1.033 1.084 1.240
500 6.504 0.918  1.481 0.925 1.028 1.162




Table 4: Mean squared errors of five-step-ahead forecasts. T, is the number of
observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the
MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)
when an AR(1) model is used, AR(pasc) when the AIC criterion is used and ES
and Holt when exponential smoothing is used. ¢ = (0.2,0.2,0.1,0,0.1,0.35)’

Tobs PaIc AR(6) AR(l) AR(pA[C) ES Holt

20 1.360 1496  2.172 1.870 1.244 3.801
50 3.658 1.243 2.331 1.491 1.188 2.489
100 5.938 1.166  2.322 1.214 1.224 2.153
500 6.472  1.123  2.407 1.123 1.196 1.452

Table 5: Mean squared errors of one-step-ahead forecasts. T, is the number of

observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the

MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)

when an ARIMA(1,1,0) model is used, AR(pa;c) when the AIC criterion is used

and ES and Holt when exponential smoothing is used. ¢ = (0.1,0.1,0.1,0,0.1,0.1)’
Tobs paic AR(6) AR(l) AR(pA[C’) ES Holt

20 0.680 1.525 1.113 1.124 1.166 1.246
50 1.608 1.175  1.143 1.147 1.206 1.132
100 3.174  1.065 1.106 1.064 1.146 1.052
500 6.219 0.939 1.011 0.945 1.030 0.994

Table 6: Mean squared errors of five-step-ahead forecasts. T, is the number of

observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the

MSE’s of when the DGP, with estimated parameters, is used for forecasting, AR(1)

when an ARIMA(1,1,0) model is used, AR(pa;c) when the AIC criterion is used

and ES and Holt when exponential smoothing is used. ¢ = (0.1,0.1,0.1,0,0.1,0.1)’
Tobs PAIC AR(G) AR(l) AR(ijc) ES Holt

20 0.660 9.683  8.903 9.054 10.110 10.381
o0 1.787 8.656  9.720 9.177 10.522  9.934
100 3.149 7.966  9.597 8.6506 10.139  9.534
500 6.089  7.760 10.111 7.760 10.653  8.852




Table 7: Mean squared errors of one-step-ahead forecasts. T, is the number of
observations, pasc the average lag-length chosen by the AIC criterion, M A(6) is the
MSE’s of when the DGP, with estimated parameters, is used for forecasting, mal
when an MA(1) model is used, AR(pasc) when the AIC criterion is used and ES
and Holt when exponential smoothing is used. § = (0.1,0.1,0.1,0.1,0.1,0.1)’

Tobs PAIC mab mal AR(ijc) ES Holt

20 0.555 1.413 1.023 1.008 1.073 1.572
50 1.173 1.271 1.042 1.074 1.113 1.406
100 2.025 1.114 1.077 1.079 1.097 1.352
500 5.502 1.070 1.076 1.074 1.122 1.258

Table 8: Mean squared errors of five-step-ahead forecasts. T, is the number of
observations, pasc the average lag-length chosen by the AIC criterion, AR(6) is the
MSE’s of when the DGP, with estimated parameters, is used for forecasting, M A(1)
when an MA(1) model is used, AR(pasc) when the AIC criterion is used and ES
and Holt when exponential smoothing is used. § = (0.1,0.1,0.1,0.1,0.1,0.1)’

Tobs Paic mab mal AR(pA[C) ES Holt

20 0.511 1.107 1.008 0.996 1.241 4.388
50 1.047 1.139 1.100 1.099 1.255 2.928
100 1.916 1.082 1.081 1.076 1.130 2.198
500 5.475 1.056 1.071 1.052 1.099 1.583

Table 9: Out-of-sample one-step-ahead MSEF’s for the different forecasts of the
realized volatility of the CAC40 index. The sample is divided in 12 parts of 100
observations each.

Nstart Nend ny barc AR(5) AR( ]-) AR(pAIC) ES Holt
150 249 100 5.060 1.287 1.799 1.194 1.153 1.318
250 349 100 4.930 0.298 0.381 0.339 0.270 0.289
350 449 100 5.780 0.688 0.821 0.574 0.557 0.630
450 549 100 5.490 1.533 1.925 1.505 1.390 2.091
350 649 100 5.040 7.221 9.968 7.728 7.283 8.900
650 749 100 3.160 284.467 185.375 131.361 214.509 322.965
750 849 100 2.280 3.770 4.210 4.044 3.547 3.584
850 949 100 4.020 29.300  30.586 28.261  25.644  27.999
950 1049 100 3.680 4.302 2.740 4.638 4.003 4.698

1050 1149 100 5.320 0.874 1.293 0.929 0.783 0.999
1150 1249 100 4.730 0.490 0.676 0.430 0.404 0.560




