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Abstract

We introduce two trace statistics for the null hypothesis of no cointegration that
nonparametrically correct for serial correlation in the spirit of Phillips-Perron. The limiting
distributions are free of nuisance parameters. One of them coincides with the asymptotic
distribution of Johansen's trace statistic. Hence, this statistic is applicable without further
tabulation of critical values.
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1 Introduction

The nonparametric corrections for serial correlation of the Dickey-Fuller [DF]
statistics by Phillips (1987) and Phillips and Perron (1988) are widely used
in practice. Here we address the question how these unit root tests can be
generalized in order to obtain trace statistics for the null hypothesis of no
cointegration with limiting distributions free of nuisance parameters.

Let xt be a vector of I(1) variables of length n with ∆xt = ut, where
E(ut) = 0. Consider the regression

xt = Âxt−1 + ût , t = 1, . . . , T,

estimated by ordinary least squares (OLS), or in differences (∆xt = xt−xt−1)

∆xt = Π̂xt−1 + ût , Π̂ = Â− In , (1)

with In denoting the identity matrix.
In the univariate case (n = 1), the DF unit root test may be based on

the normalized estimator, T (Â−1), or on the studentized statistic tA testing
for A = 1,

tA =

√∑
x2

t−1√
T−1

∑
û2

t

(
Â− 1

)
,

where all sums run from t = 1 through T . In practice, one may augment (1)
with lagged differences to account for serial correlation of ut. Phillips (1987)
and Phillips and Perron (1988) considered a different way to handle short-run
memory and advocated nonparametric corrections of the test statistics:

Z(Â) := T (Â− 1)− Ω̂− Γ̂(0)

2T−2
∑

x2
t−1

, (2)

Z(tA) :=

√
T−1

∑
û2

t√
Ω̂

tA − Ω̂− Γ̂(0)

2
√

Ω̂
√

T−2
∑

x2
t−1

=

√∑
x2

t−1√
Ω̂

(Â− 1)− Ω̂− Γ̂(0)

2
√

Ω̂
√

T−2
∑

x2
t−1

, (3)

where Γ̂(0) and Ω̂ are consistent estimators of the variance and long-run
variance of ut, respectively (see Phillips and Durlauf (1986) or Phillips (1987)
for a discussion).
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In this note we consider tests for the null hypothesis of no cointegration
formally testing for A = In or Π = 0 in (1). We propose two nonparametric
corrections of the OLS estimator in the spirit of Phillips-Perron and prove
that their limit distributions are free of nuisance parameters. In particular
one of them coincides with the distribution discovered by Johansen (1988).

2 Trace tests

2.1 Johansen’s test

Johansen’s (1988) trace test for no cointegration can be considered as an
extension of the DF statistic tA. It relies on the eigenvalues λj of the matrix

Mx := S−1
11 S10S

−1
00 S ′10

with

S11 = T−1

T∑
t=1

xt−1 x′t−1 , S10 = T−1

T∑
t=1

xt−1 ∆x′t , S00 = T−1

T∑
t=1

∆xt ∆x′t .

Under the null hypothesis of no cointegration the eigenvalues converge to
zero, which yields the following approximation of the likelihood ratio test
statistic in terms of the trace of Mx:

LR := −T

n∑
j=1

log (1− λj) ≈ T

n∑
j=1

λj = T tr [Mx] .

In case of n = 1, one obtains T tr [Mx] ≈ t2A, where the approximation relies
on S00 ≈ T−1

∑
û2

t .
To account for serial correlation of ut, Johansen (1988) assumed a VAR

model and considered lag augmentation in (1). Alternatively, we introduce
two nonparametric corrections of the OLS estimator along the lines in Phillips
(1987) and Phillips and Perron (1988).

2.2 Assumptions and notation

We assume that the I(0) process ut is stationary and ergodic, although this is
stronger than necessary and maintained only for convenience. A set of more
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general assumptions is presented for instance in Phillips and Durlauf (1986).
Consequently,

T−1

T−h∑
t=1

utu
′
t+h

p→ E
(
utu

′
t+h

)
=: Γ(h),

where
p→ stands for convergence in probability. It will be convenient to work

with the following matrices

Λ :=
∞∑

h=1

Γ(h), Ω :=
∞∑

h=−∞
Γ(h) = Γ(0) + Λ + Λ′.

We omit technical details discussed in the literature and assume instead
(where joint convergence also applies):

T−2

T∑
t=1

xt x
′
t

d→
∫ 1

0

B(r) B(r)′dr =

∫
B B′, (4)

T−1

T∑
t=1

xt−1 u′t
d→

∫ 1

0

B(r) dB(r)′ + Λ =

∫
B dB′ + Λ, (5)

as T → ∞ where
d→ denotes convergence in distribution. The Brownian

motion B is defined in terms of a standard Wiener process W of length n, B =
Ω1/2W . Finally, the I(1) vector xt alone is assumed to be not cointegrated,
Ω > 0 (positive definite).

2.3 Result

Define
Z(Mx) := TS−1

11 (S10 − Λ̂)Ω̂−1(S10 − Λ̂)′, (6)

and
Z(Â) := T (Â− In)− T Λ̂′S−1

11 , (7)

where Λ̂ and Ω̂ are again consistent estimators.

Proposition Under the above assumptions it holds

tr [Z(Mx)]
d→ tr

[(∫
WW ′

)−1 ∫
WdW ′

(∫
WdW ′

)′]
,

tr
[
Z(Â)

]
d→ tr

[(∫
W dW ′

)′ (∫
W W ′

)−1
]
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as T →∞.

Proof With (4) and (5) the proof is elementary. By the continuous mapping
theorem it holds:

Z(Mx)
d→

(∫
B B′

)−1 ∫
BdB′ Ω−1

(∫
BdB′

)′

= Ω−1/2

(∫
WW ′

)−1 ∫
WdW ′

(∫
WdW ′

)′
Ω1/2 ,

which establishes the first result by the trace properties. The second result
is established the same way.

Notice that the distribution of tr [Z(Mx)] coincides with the one given in
Johansen (1988, Theorem 3).

3 Discussion

Remark 1 Consider the univariate case (n = 1) where Ω = Γ(0) + 2 Λ.

Using Λ̂ = (Ω̂− Γ̂(0))/2, it is straightforward to verify that Z(Â) reduces to
the expression in (2), while Z(Mx) = [Z(tA)]2. Hence, our proposals from
(6) and (7) are indeed direct extensions of the Phillips-Perron statistics.

Remark 2 In a univariate context Phillips and Perron (1988) observed that

Z(Â) is more powerful than Z(tA) in empirically relevant cases. Nevertheless,

we recommend the use of tr [Z(Mx)] instead of tr[Z(Â)], simply because
percentiles of the limiting distribution of the latter are not tabulated, while
critical values for tr [Z(Mx)] are readily available, see e.g. Johansen (1995,
Table 15.1) or Osterwald-Lenum (1992, Table 0).

Remark 3 The test statistic tr[Z(Mx)] can also be seen as a modification

of the Wald statistic W testing for Π = 0 with Π̂ = S ′10 S−1
11 :

W := vec(Π̂)′
[(∑

xt−1 x′t−1

)−1

⊗ T−1
∑

ût û
′
t

]−1

vec(Π̂)

= tr

[(
T−1

∑
ût û

′
t

)−1

Π̂
∑

xt−1 x′t−1Π̂
′
]

= T tr

[(
T−1

∑
ût û

′
t

)−1

Π̂ S11Π̂
′
]

.
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Replacing the variance estimator T−1
∑

ût û
′
t by Ω̂ and adding two appro-

priate terms results in tr[Z(Mx)]:

tr[Z(Mx)] = T tr
[
Ω̂−1Π̂S11Π̂

′
]
− 2 T tr

[
Ω̂−1Π̂Λ̂

]
+ T tr

[
Ω̂−1 Λ̂′ S−1

11 Λ
]

.

Hence, tr[Z(Mx)] has a Wald-type representation and interpretation. A sim-
ilarly modified Wald statistic has been discussed by Phillips and Durlauf
(1986), however in terms of the alternative estimator

Π̃ =
S ′10 + S10

2
S−1

11

instead of Π̂.

Remark 4 Phillips and Ouliaris (1990) suggested a trace test which is similar
in spirit to our proposal,

tr
[
Ω̂ T S−1

11

]
d→ tr

[(∫
WW ′

)−1
]

,

where critical values of this limit are tabulated in their paper. A comparison
of the competing procedures via Monte Carlo experiments is beyond the
scope of this note.

Remark 5 So far we have neglected determinisitc components. If all vari-
ables are demeaned before computing Sij and tr [Z(Mx)], then the resulting
limiting distribution is given in terms of demeaned Wiener processes. For
critical values, see e.g. Osterwald-Lenum (1992, Table 1.1*).
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