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Abstract

The aim of this paper is to offer new risk indicators that enable one to classify securities of a
portfolio according to their risk degrees. These indexes are issued from a new method of the
covariance decomposition based on the Shapley Value. The risk indicators are computed via
the well-known Gini coefficient, which is viewed as a new risk measure and compared with
the traditional measures related with the modern theory of portfolio. These indicators yield
suitable information, which could be used by private or institutional investors to trade
strategies on market portfolio.
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1. Introduction 

Modern portfolio theory introduced by Markowitz in 1952 is widely used by banks, financial 
firms, and financial advisers. This theory explores how risk adverse investors construct 
portfolios in order to optimise expected returns for a given level of market risk. Portfolio 
theory provides a broad context to understand specific risks and interactions of systematic 
risks measured by correlations between securities. Quantifying the benefits of diversification 
principle, this theory has profoundly shaped the management of institutional portfolios, and 
has motivated the use of passive investment management techniques. Mathematics of 
portfolio theory is extensively used in financial risk management and constitutes a suitable 
theoretical support for Value-at-Risk (VaR) measures.  
VaR computation based on analytic expressions, obtained from the covariance-variance 
matrix gives suitable information for traders, since it has interesting properties. In particular 
the property of additivity allows one to decompose the global risk to provide a range of 
indexes, like marginal and component VaRs derived by Garman [1996].   
Most studies have revealed that the gaussian paradigm underestimates risks. Other 
applications are concerned with non-parametric methods like historical simulations (Van Den 
Goorbergh and Vlaar, [1999]) and semi-parametric estimations using the tail index (Mc Neil 
and Frey, [2000]).  
Furthermore, the decomposition into individual risk contributions is not straightforward for 
two main reasons: 

- the diversification principle states that systematic risks can reduce the global risk of a 
portfolio, but does not provide information about the most volatile securities; 

- specific and systematic component of the portfolio Value-at-risk cannot be aggregated 
into the overall risk since the function is not separable.  

Risk estimation via the Gini decomposition is an alternative. Indeed, one can obtain a new 
ratio of financial risk in the context of portfolio theory with less restrictive hypotheses on the 
distributions (Mussard and Terraza, [2004]).  
Indeed, decomposable inequality measures allow one to gauge inequalities within and 
between groups. Consequently, we can define within-risk (specific risks) and between-risk 
(systematic risk) measures. The covariance matrix can be further decomposed using the 
Shapley Value. This new decomposition of between-risk measures provides suitable new 
trading risk indexes. These yield interesting information to classify securities according to 
different risk degrees.  
The aim of this paper is to present the Shapley Value as a new method of risk decomposition 
(section 2) and the Gini index as a new financial risk measure (section 3). The risk indicators 
are compared throughout an empirical study (section 4) applied on five securities of the CAC 
40 French stock market. We show that the Gini index method is a better measure to classify 
securities in a portfolio. Section 5 is devoted to the conclusion.  
  

2. Risk Decompositions by the Shapley Value [1953] 
In the field of inequality and poverty measurement, a new procedure of decomposition has 
been proposed. Trannoy in collaboration with Auvray [1992], with Chantreuil [1999], and 
with Sastre [2002] used the Shapley value algorithm to decompose inequality measures (see 
also Shorrocks [1999] for inequality and poverty measures). Let us remember the 
methodology.  
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Let I be an indicator defined by n factors, which can represent in financial applications, the 
returns rk,: k ∈ K = {r1, r2,…rk,…, rn}. The global risk indicator, estimated on n securities, is 
given by I = F(K). We define S as the set of factors remaining after the process of security 
elimination deriving from Shapley’s algorithm [S = K\{rk}]. Then, I = F(S), corresponds to the 
I value obtained without taking into account the factors rk (rk∉S). We define s, the number of 
factors, which remains after the successive eliminations of the different factors [s = ⎜S ⎜]. So, 
the indicators are defined by F: {S | S⊆K}→ℜ, where ℜ is the Euclidean space of dimension 
one. The contribution of the factor k to the global risk indicator is (see Shorrocks [1999]): 
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This technique is said to be consistent since the sum of the contributions gives the value of the 
global indicator (see e.g. Chantreuil and Trannoy, [1999]): 
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Shapley’s algorithm yields the procedure to estimate the risk contribution of a particular asset. 
For instance, considering two securities i and j (K= ri, rj), the risk contribution of j to the 
global risk indicator, measured by the Shapley decomposition, C , is: s

j
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and the risk contribution of  i, , is given by: Cs
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The risk contribution of the i-th security is estimated from the difference between the global 
statistic F(ri, rj) and F(rj) obtained when the i-th security has been eliminated. This difference 
represents the marginal impact of the i-th security, which is noted: ( ) ( )rFrrF jji   , − . This 
procedure is then implemented from F(ri), taking the difference between F(ri) and F(∅) since 
the i-th asset has been eliminated. The mean of these marginal impacts represents the 
contribution of the i-th security to the global value of the indicator. Shapley’s algorithm can 
be generalized to obtain the marginal impact of each security into the between-risk proportion 
of the portfolio. In financial words, the global risk indicator F(ri, rj) can be assimilated to the 
covariance measure between ri and rj.  
 
Proposition 1.  
The Shapley decomposition of the covariance cov(ri, rj) between two securities i and j permits 
to obtain: 
(i) the contribution of each security to cov(ri, rj); 
(ii) the contribution of each security to the risk related with the diversification principle. 
Proof. 
Let us consider a two-asset portfolio where F: ℜt×ℜt → ℜ represents the covariance between 
the asset returns on t observations:   

F(rj, ri) = cov(ri, rj) .            (6) 
When the i-th security has been eliminated, via Shapley’s algorithm, j is therefore the unique 
security of the portfolio. Thus: 

F(rj) = cov(rj, rj) = σj²,                              (7) 
where σj² is the variance of j. The same result is obtained when j has been eliminated: 

F(ri) = cov(ri, ri) = σi².                               (8) 
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Therefore, it is possible to bring out the contribution of the j-th security to the covariance 
cov(ri, rj): 
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where the variance of the empty set is:  = 0.  σ2
0/

The same procedure is applied to compute the contribution of the i-th security to the 
covariance cov(ri, rj):  
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Proposition 1 (i) is then completed: 
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In accordance with the modern theory portfolio, the variance of the portfolio is: 
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where  stands for Markowitz’s weights associated with the i-th security. Afterward, the 
decomposition of systematic risks (say between-security risk  ) using the Shapley Value  
(11) is:  
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Therefore, the contribution of the i-th security (∀i = 1, …, n) to the between-security risk is: 
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Finally, Shapley’s decomposition method enables one, on the one hand, to measure individual 
contributions of between-security risk proportions, and on the other hand, to obtain a 
separable measure of the covariance between the securities.  
 
Proposition 2.  
The Shapley decomposition of the covariance cov(ri, rj) between two securities i and j and the 
decomposition of the specific risk yield the contribution of the i-th security to the overall 
amount of the risk portfolio. 
Proof. 
The specific risk decomposition, say the within-security risk (since it relies on each security), 
is straightforward: 
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Then, we obtain the contribution of the i-th security (∀i = 1, …, n) to σ  :    w
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Combining equations (14) and (17), one can obtain the contribution of the i-th security to the 
risk portfolio : σ 2
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and a new risk-trading index (RTI), that is, the relative contribution of the i-th security to :  σ 2
p
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σ
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2
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2
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This ratio measures the risky security of a portfolio and therefore provides a new 
classification of the securities in accordance with a risk scale. Then, the Shapley 
decomposition of the covariance facilitates financial information and individual’s predictions, 
whatever they are institutional investors or little investors.  
The principal criticism of this approach is that the risk index depends on the variance 
estimation method. As Dagum [1997] states, the one-way variance analysis is debatable since 
it is based on the following assumptions: (i) the observation are statically independent and (ii) 
the studied observation are normally distributed. Even if the normality enables one to involve 
losses and gains in the distribution tail (throughout derivatives measures such as Value-at-
Risk), we aim at obtaining alternatives to these well-known models. The Gini index appears 
as a solution since it both represents a dispersion measure, a concentration measure and an 
inequality measure. It can be seen as a new non-parametric indicator of risk, which takes 
benefit from a more simple use with a clear interpretation based on risk decomposition. 
 

3. The Gini decomposition as a risk measure of portfolios 
The well-known Gini index (G) is included in the close interval [0,1] and is usually applied on 
income distributions. The Gini decomposition is a non-parametric method used when a 
population is divided into several subgroups. Dagum [1997] have shown that, it is possible to 
separate the indicator in two components: the within-group inequalities and the between-
group inequalities. Using this technique, it is possible to establish a link between the risk of a 
security and the Gini concentration coefficient. A strong concentration represents a risky 
security, and conversely. 
 
3.1 Risk definition and the Gini ratio 
In order to define the Gini risk measure in accordance with intuition, we can imagine that all 
the returns of a portfolio securities are written on bowls, which are put in an urn. Then, we 
draw two bowls at random with repetition. The risk is defined as the return difference (in 
absolute values) of the two bowls. For instance, let us consider that an individual possesses a 
portfolio with the following initial value: V0 = 10000€. The expected gap between the two 
bowls drawn at random is given by 2×µ×G, where µ is the mean return of all the securities, 
and G the Gini ratio computed on all the returns of the portfolio securities. The potential loss 
of the investor is expressed as follows:  

Loss = 2×µ×G×10000 > 0, ∀G.                    (20) 
If the gap between two returns is extremely high, the loss of the individual is important. We 
observe the contrary, when the return difference is low.1

 
3.2 A reformulation of the between-security Gini via the Shapley Value [1953] 
Dagum’s [1997] article indicates that the Gini coefficient is separated into a within-group 
component Gw (from now on within-security measure) and a between-group component Ggb 
(say between-security measure):  

gbw  G   GG += ,  where         (21) 

                                                 
1 Let us remark that 2×µ×G is the Gini mean difference (1912). Pyatt (1976) associates the Gini index with a 
game where all individuals can participate and where it is possible to choose (randomly) the income of another 
person or to keep its own income.    
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ni is the number of observations of the i-th security, and µ the mean return computed on all 
the security returns.  
The risk portfolio G is then decomposed in the sum of the volatility of each security and the 
sum of the volatility associated with the interactions between the security pairs. In other 
words, the Gini decomposition enables one to conceive, like the variance, a conceptual 
dissociation between within-security risk and between-security risk by dividing the overall 
risk into two components: the within-security index (Gw) and the between-security index 
(Ggb). 
 
Proposition 3. The Gini decomposition, associated with the decomposition of the between-
security index via the Shapley Value, permits to measure the contribution of each security to 
Ggb.  
Proof. 
The observation share of the i-th security in the set of all observations (of n securities) is pi 
and the sum of returns of the i-th security in the sum of all the return securities, si, are given 
by: 

,  , N µ
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n  p ii 
iii ==                             (24)                         

where ni is the number of observations of the i-th security, N the overall number of 
observations (n×ni), and µi the mean returns of the i-th security. Following Dagum [1997], 
one can obtain2: 
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is the Gini index between the returns of the i-th and the j-th securities, and where, 

.  ,...,1, ²2

  
1 1 n i   µn

rr
  G

ii

 
n

t

n

s
isit

ii

i i

=∀
∑∑ −

= = =        (28) 

The Shapley decomposition of the interaction between the i-th and the j-th securities is: 
( ) ( iijjijjjiiijij GGGGG   G   2

1    G   2
1  +−++−= ),       (29) 

where the contributions of the j-th and the i-th securities to Gij are respectively: 
( )jjiiijs

j GGC   G   2
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Thus,  

 
2 See the computation of the Gini ratio of Dagum, Mussard, Seyte and Terraza [2002] for explanations and 
computational assistance. 
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Therefore, the contribution of the j-th security to the between-security risk [Ggb] is given by: 
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Corollary 2. 
The decomposition of Ggb (the between-security index) by the way of the Shapley Value allows 
one to measure the contribution of each security risk to the overall risk and then evaluate the 
most volatile securities of the portfolio. 
Proof. 
We know it is possible to gauge the contribution of each security to the within-security index. 
In particular, the contribution of the j-th security is given by: 

jjjjw
j  s pGC   = .            (33) 

Consequently, the contribution of the j-th security to the whole risk is: 
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Then, we can provide a risk trading index based on the Gini coefficient (RTIG):  
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The RTIG measures the contribution of the j-th security to the overall risk portfolio, and then, 
yields a classification of each security from the most risky to the least risky.  
Finally, we obtain two risk trading indexes, RTI and RTIG. This leads us to make some 
empirical comparisons between them.  
 

4. Illustration on French securities 
The empirical analysis is devoted to the portfolio of five French securities, which are studied 
in accordance with their closing prices: Accor, Michelin, Carrefour, Wanadoo, and TF1 
(which are securities of the CAC 40 French index). Using Markowitz’s methodology (1952), 
the portfolio is constituted with a 17,3% for Accor, 40,7% for Michelin, 34,2% for carrefour, 
3,8% for Wanadoo, and with a 4% for TF1. The studied period is: 01/02/2001 − 12/31/2002. 
This represents 508 observations. We make a distinction between the sample of estimation, 
that is, the first 400 observations, and the sample of forecast, that is, the 108 last observations.   
The sample of forecast can yield 108 potential losses, which offer information of the risk 
portfolio. To estimate the participation of each security and each period to the overall risk, 
first we calculate the RTIG×100. For t = 108, exhibit 1 gives a classification of securities 
from the most to the least risky. 
 

Exhibit 1 
Classification of the securities via the RTIG (%), t = 108 

1) Accor 2) Carrefour 3) Michelin 4) TF1 5) Wanadoo 
158.03 2.89 -2.71 -3.09 -55.13 

 
 
Given these results, the decision-makers can say (in t = 108) that Accor and Carrefour 
increase the risk of the portfolio, whereas the other securities diminish the risk. Indeed, 
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Michelin decreases the risk portfolio with a 2.71%, and Wanadoo decreases the overall risk 
with a 55.13%.  
Taking the average of the Gini risk index on the whole forecast period, we obtain the 
following classification (see exhibit 2 ):  
 

Exhibit 2 
Classification of the securities via the RTIG average (%)  

1) Accor 2) Carrefour 3) Wanadoo 4) TF1 5) Michelin 
46.12 26.71 11.13 9.92 6.09 

 
Theses results confirm that Accor is the most volatile security of the portfolio but now 
Michelin is the least risky security during the forecast period (t = 1,…,108).  
The second classification is concerned with the RTI indicator (in t = 108).  
 

Exhibit 3 
Classification of the risk via RTI (%), t = 108 

1) Michelin 2) Carrefour 3) Wanadoo 4) Accor  5) TF1 
57.03 17.82  14.26   9.68 1.19 

 
The results are different compared with the Gini ratio decomposition. Michelin seems to be 
the most risky security while TF1 is the least risky. Therefore, the evolution of these 
percentages during the whole period of forecasting is of interest.  
 

Exhibit 4 
                                                 RTI of each security  (%): t = 1,…,108 
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On the one hand, exhibit 4 indicates that Michelin and Carrefour can be extremely volatile. 
On the other hand, following the decomposed Variance risk measure, it is difficult to interpret 
the results since the variance indicator does not distinguish the “good” risk from the “bad” 
risk according to the preference of the investors. From this index, it is impossible to say that a 
security can diminish the overall risk of a portfolio. Contrary to this, the Gini risk enables one 
to select the securities that tend to decrease the overall risk portfolio.  
Representing the risk index issued from the Gini decomposition (exhibit 5), we strengthen the 
fact that Michelin is extremely volatile, in the good sense, since it reduces the risk of the 
portfolio whereas Carrefour increases the potential losses.  
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Exhibit 5 
RTIG (%) of Michelin and Carrefour: t = 1,…,108  
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We can notice that Michelin yields some powerful negative variations, that is, a strong 
decrease of the risk portfolio. On the other hand, we have seen (exhibit 2) that in average 
Accor is the most risky share. But, we observe that Carrefour provides the strongest positive 
variations, that is, the most important growths of the risk portfolio [see exhibit 5 and 6]. 
   

Exhibit 6 
RTIG (%) of Accor and Carrefour: t = 1,…,108 
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5. Conclusion 
The main objective of this paper was to describe a technique of assessing the risk 
contributions of each security in a portfolio using the Shapley Value and to define two risk 
trading indexes (RTI and RTIG) according to a precise risk definition. In the Gini Risk Index 
(RTIG), the risk relies on the expected difference between two returns drawn at random with 
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repetition. Contrary to the variance ratio (RTI), this new risk index avoids the difficulties 
associated with the gaussian assumptions and the essential Markowitz’s theory.  
Calculating the marginal contribution of each title, the two techniques yield suitable 
information for investors. The main difference between the two measures relies on the 
computation of the return volatility. The RTIG ratio involves all the pairwise return 
differences. This implies that the risk portfolio depends on a wider quantity of information, 
whereas the RTI risk index includes only the return differences with the mean return 
portfolio. Then, it seems reasonable to pay attention to this new decomposed index that can 
be used in finance and in others fields where it is necessary to set up a risk classification.  
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