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Abstract

Information matrix (IM) test (White, 1982) has been used for detecting general model
misspecification in the applied econometrics literature. Two of the most commonly used
asymptotic covariance matrix estimators (ACMEs) for the IM test are the one that White
(1982) proposed in his original paper and Chesher (1983)'s ACME. Chesher (1984) showed
that the IM test is in effect a score test for parameter constancy. In this note, I show that the
IM test with White's ACME is not only the score test but also a specification robust form of
the score test or a score test for quasi-maximum likelihood estimators. Based on this result, it
is argued that we should be careful in selecting the ACME for properly interpreting the
consequence of the IM test.
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1 Introduction

Information matrix (IM) test (White, 1982, 1983) has been used for detecting general
model misspecification in the applied econometrics literature. The IM test exploits the
well-known “information matrix equality,” which states that if a model is correctly spec-
ified, the expectation of the sum of the Hessian matrix and the outer product of the
gradient of a contribution of the log-likelihood is zero. The IM test rejects the null
hypothesis that the model is correctly specified when the sample average of the sum
is significantly different from zero. Chesher (1984) showed that the sum is equivalent
to a score function for testing parameter constancy against certain random parameter
models. Based on the result, Chesher (1983) proposed using the outer product of the
gradient (OPG) estimator as an asymptotic covariance matrix estimator (ACME) for the
IM test (see also Lancaster, 1984), which is one of the two most commonly used ACMEs;
another one is the one that White (1982) proposed in his original paper. Many papers
have attempted to improve the finite sample performance of the IM test by using dif-
ferent ACMEs as well as applying simulation methods. See, for example, Orme (1990),
Horowitz (1994), and Dhaene and Hoorelbeke (2004) among others.

In this note, I develop Chesher (1984)’s score test interpretation of the IM test. It
is shown that the IM test “with White’s ACME” is not only a score test for parameter
constancy, but also a specification robust form of the score test or a score test for quasi-
maximum likelihood estimators (QMLEs) (White, 1982, p.8).1 As shown in White (1982,
pp.3-4), the QMLE is strongly consistent for the parameter vector which minimizes the
Kullback-Leibler Information Criterion (KLIC). The result implies that the IM test with
White’s ACME rejects the null when the KLIC of a constrained model is significantly
higher than the KLIC of the unconstrained model. The result also indicates that the IM
test with White’s ACME is powerless against misspecification in that we cannot lower
the KLIC by incorporating random parameter fluctuations.

2 Information Matrix Test and Score Test

2.1 Information Matrix Test
Suppose that y1, ...,yn are n observations from i.i.d. random vectors Y1, ...,Yn. Consider
a problem to fit a model to the data using a family of parametric pdf or pmf (p.f.) g(yi|θ),
where θ = (θ1, ..., θp)

T is a p - vector of parameters. The log-likelihood function is defined
as l(θ) ≡

∑n
i=1 li(θ), where li(θ) ≡ log g(yi|θ). Hereafter, summations are always taken

from i = 1 to n and so the limits are omitted. Let di(θ) ≡ ∂li(θ)
∂θ

, and Fi(θ) ≡ ∂2li(θ)
∂θ∂θT .

Hereafter, the argument θ is suppressed where there is no ambiguity. For example, Fi(θ)
is abbreviated to Fi. I use capital letters for matrices and small letters for vectors. A
bold font is used for matrices and vectors.

It is well-known that if g(yi|θ) is correctly specified, i.e., the true model is given by
g(yi|θ0) for θ0 ∈ Θ, where Θ is the parameter space of θ, then E[Di(θ0) + Fi(θ0)] = 0,
where Di ≡ did

T
i and dT

i denotes the transpose of di. This equality is known as “the
information matrix equality.” Here, and in what follows, expectations are taken with
respect to the true distribution. The IM test proposed by White (1982) is a specification
test that detects any general model misspecification violating this equality. It is based on a
sample analogue of E(Di+Fi), namely, n−1

∑
si, where si ≡ vech(Di+Fi). Here, vech(.)

1Actually, this result is implicit in White (1982) and Chesher (1984)’s results since White’s ACME
was constructed so that it is consistent even when the model is misspecified. However, the result has not
been proved rigorously in the literature.
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is an operator stacking up only different elements in a symmetric matrix. For example, for
a 3 × 3 symmetric matrix A = [aij], we have vech(A) = (a11, a21, a31, a22, a23, a33)

T (see
Magnus and Neudecker, 1999, p.49). Obviously, if g(yi|θ) is correctly specified, E[si] = 0.

Let s ≡
∑

si, Gi ≡ ∂si(θ)
∂θT and V ≡ E(viv

T
i ), where vi ≡ si − E(Gi)[E(Fi)]

−1di. Under
the null hypothesis that the model is correctly specified and several regularity conditions,

White (1982, Theorem 4.1, p.11) showed that n−1/2s(θ̂)
d−→ N(0,V(θ0)), where θ̂ is the

maximum likelihood estimate (MLE) of the unknown parameter vector θ, and θ0 denotes
the true value of θ (throughout the note, I assume that the regularity conditions in White,
1982, are satisfied). An ACME proposed by White (1982) is

VW ≡ n−1
∑

[si − (n−1G)(n−1F)−1di] [si − (n−1G)(n−1F)−1di]
T

= n−1
(
S−GF−1C−CTF−1GT + GF−1DF−1GT

)
,

where D ≡
∑

Di, F ≡
∑

Fi, G ≡
∑

Gi, S ≡
∑

Si, C ≡
∑

Ci, Si ≡ sis
T
i , and

Ci ≡ dis
T
i . Let QW ≡ S−GF−1C−CTF−1GT +GF−1DF−1GT . The IM test is defined

as:
IM ≡ n−1s(θ̂)TV−1

W (θ̂)s(θ̂) or s(θ̂)TQ−1
W (θ̂)s(θ̂), (1)

which is shown to be distributed asymptotically as χ2(q), i.e., the chi-square distribution
with q degrees of freedom when the model is correctly specified, where q ≡ p(p + 1)/2 is
the number of elements of si.

2.2 Score Test for Parameter Constancy
Consider the same model in Section 2.1 except that θ is replaced by an i.i.d. p-variate
random parameter vector βi = (βi1, ..., βip)

T . Assuming this sort of random parameter
fluctuation over i is a convenient way to incorporate individual heterogeneity. The con-
ditional pdf of Yi is denoted by g(yi|βi). I assume the following two assumptions:

Assumption 1: The distribution of βi is the p-variate normal with mean vector θ and
covariance matrix Ω = [ωij], and thus the pdf is f(βi|θ,Ω) ≡ (2π)−p/2|Ω|−1/2 exp[−(βi−
θ)TΩ−1(βi − θ)/2].

Assumption 2: For each yi, the function g(yi|βi) of βi is continuous at βi = θ and its
partial derivatives with respect to βik k = 1, ..., p exist to fourth order in a p-ball B(θ),
and these partial derivatives are continuous at βi = θ.

Assumption 2 is the smoothness assumption for applying the main tool in this note, the
Dirac delta function, which is obtained as the limit of f(βi|θ,Ω) for which Ω → 0.2

Assumption 1 can be relaxed so that βi is an unknown function of a multivariate normal
random vector since the resulting score test statistics take the same form as long as the
functions are continuous and monotonically increasing.3

Let the unknown (fixed) model parameters be ψ ≡ (θT ,ωT )T , where ω ≡ vech(Ω).
The pdf of the marginal distribution of Yi, denoted by h(yi|ψ), is obtained by integrating
out the unobserved random vector βi, i.e., h(yi|ψ) =

∫
g(yi|βi)f(βi|θ,Ω)dβi. Here and

hereafter, integrations are taken over Rp. Then, the log-likelihood function is defined as
l(ψ) ≡

∑
log h(yi|ψ). Hereafter, h(yi|ψ), g(yi|βi), and f(βi|θ,Ω) are abbreviated to

hi, gi, and fi, respectively, and the subscript i is suppressed where there is no ambiguity.

2Formally, the Dirac delta function is defined as the limit of a delta sequence and a normal pdf is its
typical example.

3The proof of this result is available from the author upon request.
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For a differentiable real-valued function φ(.) of an m× k matrix A = [aij], where m and
k are positive integers, I denote the m× k matrix [∂φ/∂aij] by the symbol ∂φ/∂A.

The first goal in this section is to derive a score test for the null hypothesis Ω = 0 (or
ω = 0). The following Lemma plays an important role:

Lemma 1 Let f(β|θ,Ω) be the pdf given in Assumption 1. Then

∂f

∂Ω
=

1

2

[
Ω−1(β − θ)(β − θ)TΩ−1 −Ω−1

]
f(β|θ,Ω) =

1

2

∂2f

∂β∂βT
. (2)

From the above equation, we can see that ∂f
∂Ω

is indeterminate under the null hypothesis
H0 : Ω = 0. To circumvent this difficulty, I define the score vector under the null
hypothesis as the limit for which Ω → 0.

When Ω → 0, the limit of the pdf of a p-variate normal distribution is the p-
dimensional Dirac delta function, which is denoted by δp(β−θ). The Dirac delta function
can be viewed as a pdf with all the probability mass at a point. See, for example, Kan-
wal (1998) and Hoskins (1999) for details about the Dirac delta function, and see Peers
(1971), Kobayashi (1991), Kobayashi and Shi (2005), and Kobayashi (2006) for a usage
of Dirac delta function in statistics. The appendix of Kobayashi (2006) is useful for a
quick review on properties of the Dirac delta function.

The p-dimensional Dirac delta function is known to satisfy

( a )
∫

g(β)δp(β − θ)dβ = g(θ), ( b )
∫

g(β)∂δp

∂β
dβ = − ∂g

∂β

∣∣∣
β=θ

, and

( c )
∫

g(β) ∂2δp

∂β∂βT dβ = ∂2g
∂β∂βT

∣∣∣
β=θ

,

for a sufficiently smooth function g(β). Here ∂δp

∂β
and ∂2δp

∂β∂βT are obtained as the limits of
∂f
∂β

and ∂2f
∂β∂βT for which Ω → 0, respectively. Under the assumptions, we can differentiate

under the integral sign, hence, the matrix of the first derivatives of log h = log
∫

gfdβ
with respect to θ and Ω are given, respectively, as 1

h
∂h
∂θ

or 1
h

∫
g ∂f

∂θ
dβ and 1

h
∂h
∂Ω

or
1
h

∫
g ∂f

∂Ω
dβ. Since f is the p-dimensional Dirac delta function under the null hypoth-

esis, and ∂f
∂θ

= − ∂f
∂β

, we have, from (a), (b), and (c), that

( a′ ) lim
Ω→0

h = lim
Ω→0

∫
gfdβ = g|β=θ, ( b′ ) lim

Ω→0

∫
g ∂f

∂θ
dβ = ∂g

∂β

∣∣∣
β=θ

, and

( c′ ) lim
Ω→0

∫
g ∂f

∂Ω
dβ = 1

2
lim
Ω→0

∫
g ∂2f

∂β∂βT dβ = 1
2

∂2g
∂β∂βT

∣∣∣
β=θ

.

Here, the first equality in (c′) comes from (2). Thus, the score vectors are given as sθ ≡
lim
Ω→0

∂l(ψ)
∂θ

=
∑[

1
gi

∂gi

∂β

]
βi=θ

=
∑

di and sω ≡ lim
Ω→0

∂l(ψ)
∂ω

= 1
2

∑
vech

[
1
gi

∂2gi

∂βi∂βT
i

]
βi=θ

. Noting

that 1
gi

∂2gi

∂β∂βT = ∂ log gi

∂β
∂ log gi

∂βT +∂2 log gi

∂β∂βT , we can write sω = 1
2

∑
vech

[
∂ log gi

∂βi

∂ log gi

∂βT
i

+ ∂2 log gi

∂βi∂βT
i

]
βi=θ

= 1
2

∑
si. Chesher (1984) derived this equation with a different approach (under different

assumptions). Finally, the score test statistic is defined as

ST ≡ sT
ω(θ̂) [ RQ(θ̂)−1RT ] sω(θ̂), (3)

where R ≡ [ 0q×p Iq], Q ≡ nE

[
Di

1
2
Ci

1
2
CT

i
1
4
Si

]
, 0q×p is the q × p zero vector, and Iq is

the q× q identity matrix. Here, θ̂ denotes the restricted MLE for the log-likelihood l(ψ)
under the restriction ω = 0, which is numerically the same as the MLE in (1), and so
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I use the same notation. We can show that under the null hypothesis, the score test
statistic follows asymptotically the chi-square distribution with q ≡ p(p + 1)/2 degrees
of freedom. See Davidson and MacKinnon (1993, p275) for a detailed description on the
asymptotic properties of score tests.

In (3), Q(θ̂) can be replaced by any consistent estimator. Two of the most commonly
used estimators are the outer product of the gradient (OPG) estimator and the empirical
Hessian (EH) estimator, which are defined, respectively, as

(OPG estimator) Qopg ≡
[

D 1
2
C

1
2
CT 1

4
S

]
, (EH estimator) Qeh ≡ −H,

where H is the Hessian matrix of the log likelihood with respect to the parameter vector ψ

evaluated under the null hypothesis ω = 0. Let H be partitioned as H =

[
Hθθ HT

ωθ

Hωθ Hωω

]
,

where, for example, Hθθ is the Hessian matrix with respect to θ, etc. Again by using
the Dirac delta function approach and ∂2f

∂θ∂θT = ∂2f
∂β∂βT , we can easily show that Hθθ ≡

lim
Ω→0

∂2l(ψ)
∂θ∂θT =

∑ ∂2 log gi

∂βi∂βT
i

∣∣∣
βi=θ

= F. Elements of other submatrices, i,e, Hωθ ≡ lim
Ω→0

∂2l(ψ)
∂ω∂θT

and Hωω ≡ lim
Ω→0

∂2l(ψ)
∂ω∂ωT are given in the following proposition:

Proposition 1 (Elements of the Hessian Matrix)

lim
Ω→0

∂2l(ψ)

∂ωjk∂θv

=
1

2

∑ [
1

gi

∂3gi

∂βj∂βk∂βv

− 1

g2
i

∂2gi

∂βj∂βk

∂gi

∂βv

]
βi=θ

, (4)

lim
Ω→0

∂2l(ψ)
∂ωjk∂ωvw

= 1
4

∑[
1
gi

∂4gi

∂βj∂βk∂βv∂βw

]
βi=θ

− 1
4

∑[
1
g2

i

∂2gi

∂βj∂βk

∂2gi

∂βv∂βw

]
βi=θ

, (5)

for j, k, v, w =1,...,p. Here, for example, I abbreviate βik to βk etc.

From the identity 1
gi

∂3gi

∂βj∂βk∂βv
− 1

g2
i

∂2gi

∂βj∂βk

∂gi

∂βv
= ∂3 log gi

∂βj∂βk∂βv
+ ∂2 log gi

∂βj∂βv

∂ log gi

∂βk
+ ∂2 log gi

∂βk∂βv

∂ log gi

∂βj
, we

can see that the right-hand side in (4) is an element of 1
2
G, and thus we have Hωθ = 1

2
G.

Noting that the second term on the right-hand side in (5) is an element of 1
4
S, we can

see that Hωω = 1
4

(A− S) , where

A
q×q

≡


∑[

1
gi

∂4gi

(∂β1)4

]
βi=θ

∑[
1
gi

∂4gi

(∂β1)3∂β2

]
βi=θ

· · ·
∑[

1
gi

∂4gi

(∂β1)2∂(βp)2

]
βi=θ

...
...

...∑[
1
gi

∂4gi

(∂βp)2(∂β1)2

]
βi=θ

∑[
1
gi

∂4gi

(∂βp)2∂β1∂β2

]
βi=θ

· · ·
∑[

1
gi

∂4gi

(∂βp)4

]
βi=θ

 .

From these arguments, we have

Qeh =

[
−F −1

2
GT

−1
2
G 1

4
(S−A)

]
.

This EH estimator for the score test has not been derived in the literature and is used
to show the equivalence between a specification robust form of the score test and the IM
test with White’s ACME in the next subsection.

2.3 Specification Robust Form of the Score Test
Let Ψ be the parameter space of ψ. In the previous subsection, I supposed that the true
model belongs to the known model structure h(yi|ψ), i.e., the true pdf is given by h(yi|ψ0)
for some ψ0 ∈ Ψ; the proposed score test examines whether ψ0 = (θT

0 ,ωT
0 )T = (θT

0 ,0T )T .
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In practice, this assumption is rarely true. If the true pdf is not given by h(yi|ψ) for

any ψ ∈ Ψ, that is, the model is misspecified, then the MLE ψ̂, or a solution that max-
imizes the misspecified log likelihood, is called a “quasi-maximum likelihood estimator”
(QMLE). A QMLE may be consistent for a parameter of interest. For example, for a
classical linear regression model, the QMLE for the coefficient vector under Gaussian er-
ror assumption is consistent even when the true distribution of the errors is not Gaussian.
White (1982, p.4) showed that the QMLE is strongly consistent for the parameter vector
which minimizes the Kullback Leibler Information Criterion (KLIC) (see White, 1982,
p.3 for the definition). Intuitively the KLIC measures our ignorance about the true model
structure, and hence White (1982) called the QMLE “minimum ignorance estimator.”

Let ψ∗ ≡ (θT
∗ ,ωT

∗ )T denote the parameter vector which minimizes the KLIC for
the misspecified log-likelihood l(ψ) =

∑
log h(yi|ψ) (if the model is correctly specified,

ψ∗ = ψ0). We may wish to test whether ψ∗ satisfies a certain constrain; however, the
asymptotic distribution of the usual form of score tests under model misspecification is
different from that under correct model specification. White (1982) proposed a robust
form of score tests applicable to QMLEs for testing the null hypothesis H0 : w(ψ∗) = 0,
where w : Rm → Rr is a continuous vector function of ψ∗ such that its Jacobian at ψ∗ is
finite with full row rank r, against the alternative H1 : w(ψ∗) 6= 0. In the present case,
H0 : ω∗ = 0 and the robust form of the score test is given as

ST∗ ≡ sT
ω(θ̂) [ RQ−1

eh (θ̂)RT ] [ RQsw(θ̂)RT ]−1 [ RQ−1
eh (θ̂)RT ] sω(θ̂), (6)

where θ̂ is the restricted QMLE, i.e., a solution that maximizes the misspecified restricted
log-likelihood l(θ) =

∑
log g(yi|θ), and Qsw is a so-called “sandwich estimator”, which

is defined as
(Sandwich estimator) Qsw ≡ Q−1

eh QopgQ
−1
eh .

It can be shown that ST∗ asymptotically follows χ2(q) under the null hypothesis ω∗ = 0
(White, 1982, Theorem 3.5). The following Proposition is the main result in this note:

Proposition 2 The two test statistics, IM and ST∗, defined in (1) and (6), respectively,
are numerically the same if we use the same estimator for θ.

Proposition 2 shows that the IM test with White’s ACME is equivalent to the specification
robust form of the score test. Recall that the information matrix equality is merely a
necessary condition for a model to be correctly specified. If E[Di(θ∗) + Fi(θ∗)] = 0
holds, then the IM test with White’s ACME is totally powerless against this situation
even though the model is misspecified. On the other hand, if our objective is to compare
two models, constant parameter and random parameter models, and both models possibly
be misspecified models, we should use the specification robust form of the score test.

3. Concluding Remarks

Recently Gan and Jiang (1999) have given an interesting interpretation to the IM test;
the IM test examines whether a root of the likelihood equation corresponds with a global
maximum. The assumption that the random parameter vectors are independent can be
relaxed so that the random parameter vector follows a stochastic process, and a score
test for this case would be derived by a similar approach. See Kobayashi and Shi (2005)
for a usage of Dirac delta function in this context for specific cases.
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Appendix

Proof of Lemma 1: The logarithm of f is given by lf (β|θ,Ω) = −p
2
log(2π)− 1

2
log |Ω|−

1
2
q(β;θ,Ω),where q(β;θ,Ω) ≡ (β − θ)TΩ−1(β − θ). Noting that trace[q(β;θ,Ω)] =

q(β;θ,Ω) (since q(β;θ,Ω) is a scalar), the derivative of q(β;θ,Ω) with respect to (i, j)
element of Ω, i.e., ωij, is

∂q

∂ωij

= trace
[
(β − θ)T ∂Ω−1

∂ωij
(β − θ)

]
= −trace

[
(β − θ)TΩ−1 ∂Ω

∂ωij
Ω−1(β − θ)

]
= −trace

[
∂Ω
∂ωij

Ω−1(β − θ)(β − θ)TΩ−1
]

= −mij,

(7)

where mij is (i, j) element of the matrix M ≡ Ω−1(β− θ)(β− θ)TΩ−1. The second and

third equalities are obtained by using that ∂Ω−1

∂ωij
= −Ω−1( ∂Ω

∂ωij
)Ω−1 and trace(ABC) =

trace(BCA) for conformable matrices, A,B, and C. Note that ∂Ω
∂ωij

is the p × p matrix

whose (i, j) element is one and all other elements are zero. Pre-multiplying M by ∂Ω
∂ωij

and taking its trace leads to (i, j) element of M. From (7), we have

∂q

∂Ω
=

 −m11 · · · −m1p
...

. . .
...

−mp1 · · · −mpp

 = −Ω−1(β − θ)(β − θ)TΩ−1. (8)

From (8) and ∂ log |Ω|
∂Ω

= Ω−1, we have
∂lf
∂Ω

= 1
2

[
Ω−1(β − θ)(β − θ)TΩ−1 −Ω−1

]
. From

this equation and the identity, ∂f
∂Ω

= f(
∂lf
∂Ω

), the first equality in (2) follows. By a stan-

dard matrix calculus (see, e.g., Magnus and Neudecker, 1999) we can show that
∂lf
∂β

=

−Ω−1(β−θ), and
∂2lf

∂β∂βT = −Ω−1, from which and the identity, ∂2f
∂β∂βT = f

[
∂lf
∂β

∂lf
∂βT +

∂2lf
∂β∂βT

]
,

we have the second equality in (2), which completes the proof of Lemma 1. �

Proof of Proposition 1: Since h =
∫

gfdβ, we have (A) ∂ log h
∂ωjk

= 1
h

∂h
∂ωjk

= 1
h

∫
g ∂f

∂ωjk
dβ.

Differentiating the most left and the most right hand sides of this equation with respect
to ωvw, we have (B) ∂2 log h

∂ωjk∂ωvw
= − 1

h2
∂h

∂ωvw

∫
g ∂f

∂ωjk
dβ + 1

h

∫
g ∂2f

∂ωjk∂ωvw
dβ. From Lemma 1,

we have ∂2f
∂βj∂βk

= 2 ∂f
∂ωjk

, and thus (C) ∂4f
∂βj∂βk∂βv∂βw

= ∂2

∂βv∂βw

[
2 ∂f

∂ωjk

]
= 2 ∂

∂ωjk

[
∂2f

∂βv∂βw

]
=

4 ∂2f
∂ωjk∂ωvw

. From (A), (B), and (C), we have

∂2 log h

∂ωjk∂ωvw

= −
(

1

h

∂h

∂ωjk

) (
1

h

∂h

∂ωvw

)
+

1

4h

∫
Rp

g
∂4f

∂βj∂βk∂βv∂βw

dβ. (9)

Under the null hypothesis Ω → 0, f is the p dimensional Dirac delta function, which

satisfies
∫

g(β) ∂4δp(β−θ)
∂βj∂βk∂βv∂βw

dβ = ∂4g(β)
∂βj∂βk∂βv∂βw

∣∣∣
β=θ

for a sufficiently smooth function g(β)

and for j, k, v, w =1, ...p. Thus, under the null hypothesis and Assumption 2, the integral

in (9) reduces to ∂4g
∂βj∂βk∂βv∂βw

∣∣∣
β=θ

. Hence, we have

lim
Ω→0

∂ log h

∂ωjk∂ωvw

=

[
− 1

4g2

∂2g

∂βj∂βk

∂2g

∂βv∂βw

+
1

4g

∂4g

∂βj∂βk∂βv∂βw

]
β=θ

.

Equation (5) in Proposition 1 follows from this equation. The first equation in Proposi-
tion 1 can be obtained in the same fashion, thus the proof is omitted. �
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Proof of Proposition 2: I suppose that the same estimator for θ is used in calcu-
lating both statistics, and hence the argument θ is suppressed throughout the proof. Let

Q−1
eh be partitioned as Q−1

eh =

[
B11 B12

BT
12 B22

]
. Note that B22 = RQ−1

eh RT . After a simple

calculation, we can show that

RQswRT = RQ−1
eh QopgQ

−1
eh RT

= BT
12DB12 + 1

2
BT

12CB22 + 1
2
B22CB12 + 1

4
B22SB22.

Applying the usual matrix inversion formula for partitioned matrices, it is easy to show
BT

12 = −1
2
B22GF−1, and so B−1

22 BT
12 = −1

2
GF−1. Hence, we have(

RQ−1
eh RT

)−1 (
RQswRT

) (
RQ−1

eh RT
)−1

= B−1
22

[
BT

12DB12 + 1
2
BT

12CB22 + 1
2
B22CB12 + 1

4
B22SB22

]
B−1

22

= B−1
22 BT

12DB12B
−1
22 + 1

2
B−1

22 BT
12C + 1

2
CB12B

−1
22 + 1

4
S

= 1
4

[
GF−1DF−1GT −GF−1C−CTF−1GT + S

]
= 1

4
QW ,

from which and sω = s/2, we have

ST∗ = sT
ω

[(
RQ−1

eh RT
)−1 (

RQswRT
) (

RQ−1
eh RT

)−1
]−1

sω

= sTQ−1
W s. �
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