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Abstract

The financial crisis of 2007-2009 has begun in July 2007 when a loss of confidence by investors in the value of
securitized mortgages in the United States resulted in a liquidity crisis. World stock markets peaked in October 2007
and then entered a period of high volatility which culminated with the market crashes in September and October 2008.
Since March 2009, the world stock markets have rebounded, but strong uncertainties still remain. In order to get more
insights into the current world markets operation, we consider log-periodic models of price movements, which has
been largely used in the past to forecast financial crashes and "anti-bubbles". Both the original and an extended model
which accounts for heteroskedasticity and autocorrelation are fitted to the American S&P500 index. The empirical
analysis reveal three interesting points: i) the log-periodic models outperform standard financial models when long-term
out-of-sample forecasting is of concern. ii) the log-periodic-AR(1)- GARCH(1,1) model has residuals with better
statistical properties than the original model and iii) the current market rebound should peak at the beginning of 2010.
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1 Introduction

Sornette et al. (1996), Sornette and Johansen (1997), Johansen et al. (2000) and Sornette (2003)
suggested that, prior to crashes, the mean function of a index price time series is characterized by a
power law acceleration decorated with log-periodic oscillations, leading to a finite-time singularity that
describes the onset of the market crash. Within this model, this behavior would hold for months and
years in advance, allowing the anticipation of the crash from the log-periodic oscillations exhibited by the
prices. The underlying hypothesis of this model is the existence of a growing cooperative action of the
market traders due to an imitative behavior among them. In the pre-crash regime, clusters of correlated
trades with arbitrary sizes would drive the financial system, and therefore the observed financial variables
would exhibit scaling invariant properties. Particularly, Johansen et al. (2000) put forward the idea that
stock market crashes are caused by the slow buildup of long-range correlations leading to a collapse
of the stock market in one critical instant: in mathematical terms, complex dynamical systems can go
through the so-called “critical” points, defined as the explosion to infinity of a normally well-behaved
quantity. It is then natural to think of the stock market in terms of complex systems with analogies to
dynamically driven out-of-equilibrium systems such as earthquakes, avalanches, crack propagation etc.
However, there is a non-negligible and extremely important difference: the “microscopic” building blocks,
i.e. the traders, are conscious of their action. This has been masterly captured by Keynes under the
parable of the beauty contest. As a consequence, Johansen et al. (2000) develop an interesting model
based on the interplay between economic theory and statistical physics. Since then, several authors have
reported a large number of empirical results for a variety of unrelated crashes in worldwide stock markets
indices. We refer to Sornette (2003) for a recent review of the theoretical framework of the log-periodic
model and a compilation of empirical evidences. Johansen and Sornette (1999) and Zhou and Sornette
(2005) examined the problem of whether the cooperative herding behavior of traders might also produce
market evolutions that are symmetric to the accelerating speculative bubbles often ending in crashes.
More specifically, they show that there seems to exist critical times t. at which the market peaks with,
either a power law increase with accelerating log-periodic oscillations ending with a crash (i.e. a bubble),
or a power law decrease after the critical time t. with decelerating log-periodic oscillations: in the latter
case we have a so called “anti-bubble”. Johansen and Sornette (1999) and Zhou and Sornette (2005)
show that the traders’ herding behavior can progressively occur and strengthen itself also in “bearish”
decreasing market phases, thus forming anti-bubbles with decelerating market devaluations following
market peaks.

What we do in this paper is to use log-periodic models to model and forecast the global financial crisis of
2007-2009 as a special case of “anti-bubble”. By observing that world stock markets peaked in October
2007, which thus represents our critical time t., we present an econometric investigation of the log-periodic
models, which looks at the residuals properties and tackles potential inferential problems arising from
autocorrelation and heteroskedasticity. Particularly, we consider the AR(1)-GARCH(1,1) log-periodic
model recently proposed by Gazola et al. (2008), which is intended to aggregate latent dynamical
features and mechanisms of the normal phase of the market onto the critical long-range dynamics of
price fluctuations encompassed by the original log-periodic model. We then compare the previous set of
log-periodic models with standard times series models in terms of long-term out-of-sample forecasting
performances. In this perspective, we perform forecasting exercises with the American SP500 stock
index, considering 120-step ahead and 180-step ahead forecasts, showing that the AR(1)-GARCH(1,1)
log-periodic model clearly outperforms standard financial models. Interestingly, we find out that the
current rebound should peak at the beginning of 2010.

The rest of the paper is structured as follows. In Section 2 we review the log-periodic models for “anti-
bubble” modelling, whereas in Section 3 we show an empirical application with the American S&P500
index. We perform extensive forecasting exercises in Section 4, while Section 5 briefly concludes.

2 Methodology

We consider the following log-periodic model for the price evolution trajectory of an anti-bubble:
p(t) = A+ B(t —t.)° + C(t — t.)" cos[wn(t — t.) + @] + u; (1)

where p(t) is the stock index price, B < 0 for a (bearish) anti-bubble to exist, C # 0 guarantees the
significance of the log-periodic oscillations, 3 should be positive to ensure a finite price at the critical
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initiation time ¢, of the anti-bubble and quantifies the primary power law acceleration of prices, w is the
angular log-frequency which measures the frequency of oscillations of the correction term in logarithmic
time units, ¢ is a phase which can be absorbed in a re-definition of the unit of the time, while t — ¢, is
the distance to the critical time ¢, which is the starting point of the anti-bubble.

The previous deterministic component describes decreasing oscillations whose period increases as the
time departs from the critical time t.: as discussed in Sornette (2003 a,b) and Zhou and Sornette
(2006), the power law acceleration B(t — t.)? and the log-periodicity cos[wIn(t — t.) + ¢] are both
intimately linked to the herding behavior of agents whose investments involve a competition between
positive and negative feedbacks leading to a critical point. Furthermore, previous empirical studies as
well as theoretical fundamentals discussed in Johansen et al. (2000) and Sornette (2003) suggest that the
parameter governing the bubble growth should satisfy 0 < 8 < 1, whereas the log-frequency parameter
should satisfy 2 < w < 15, meaning that there must be some oscillations embedded in the fit to give
weight to the model. Particularly, for w close to zero, we would not observe any oscillations in the whole
sample, so that the present modelling would not be very representative of the data under analysis. On
the other hand, very high values for w would imply a lot of oscillations, thus resulting in an over-fitting
of the noise. Besides, being ¢ a phase parameter, Gazola et al. (2008) proposed 0 < ¢ < 27, which has
also the advantage of ruling out some obvious non-identifiability problems. The time index ¢ is converted
in units of one year, so that 1 day = 1/365=0.0027397260 of the year.

Under normality assumption for the error term wu;, the maximum likelihood estimator for the parameter
vector II = [A, B, C, t., 3, w, ¢] is obtained through the minimization of the squared residuals. Therefore,
the estimates II for the log-periodic specification are estimated by nonlinear least squares (NLS).

In order to improve the optimization procedure, each parameter of the log-periodic model (1) denoted by
6 and defined in a restricted interval denoted by [a, b], can be re-parameterized according to the following

monotonic transformation: _ 5
gy @ | ( exn(d) o)
1+ exp(h) 1+ exp(h)

This monotonic transformation turns the original estimation problem over a restricted space of solutions
into an unrestricted problem, which eases estimation particularly when poor starting values are chosen.
In this situation, the standard errors of the estimates can be computed by using the delta method. We
remind that the delta method is used to compute an estimator for the variance of functions of estimators
and the corresponding confidence bands. Let V[f] be an estimated variance-covariance matrix of ¢, then

by the delta method, a variance-covariance matrix for a general nonlinear transformation g(f) is given
by (see Greene (2002) or Hayashi (2000) for more details):

Vi) = 25215, 22

However, the delta method is only a first order approximation and may work very poorly in small samples
like the ones used in our empirical analysis. A viable alternative is to maximize the log-likelihood with
respect to 6 in a first step, and then use the estimated transformed parameters 0 as starting values in a
second maximization using only the original parameters 6.

While the previous log-periodic model (1) can model long-range dynamics of price fluctuations, never-
theless it is unable to consider the short-term market dynamics, thus showing residual terms ; which
are strongly autocorrelated and heteroskedastic. As a consequence, Gazola et al. (2008) proposed the
following AR(1)-GARCH(1,1) log-periodic model:

pe = A+B(t—t.)’ +C(t—t.)" cosfwn(t —t.) + @] + uy (3)
Ut = PUt—1 TNt
m = o, e~N(0,1)
of = a0+ oy +oop
where e; is a standard white noise term satisfying E[e;] = 0 and E[¢?] = 1, whereas the conditional

variance o? follows a GARCH(1,1) process. We propose here a slightly different formulation for the



autoregressive structure in the conditional mean that we found much easier to estimate compared to (3):

pr = A+ B(t— tc)ﬁ +C(t— tC)B cosfwln(t — t.) + ¢] + ppe—1 + m¢ (4)
e = oy, €~ N(0,1)
o = aot+ouni g+ 07,

The two formulations are very close and can be shown to differ only for the initial conditions. However,
model (4) reached numerical convergence when applied to the times series of the SP500 in the years 2007-
2009, while model (3) did not, thus confirming similar problems in Gazola et al. (2008). Moreover, the
chosen lag orders in the mean and variance specifications in (4) minimized a set of information criteria:
AIC, BIC and their modified versions proposed by Ng and Perron (2001). Besides, model (4) passed a
large set of specification tests, as we will discuss in more details in Section 3.2 .

We remark that in case of processes with a deterministic linear trend and white noise shocks, the usual
t and F-statistics have the same asymptotic distributions as those for the stationary processes, but with
different convergence rates. Unfortunately, similar results for processes with deterministic non-linear
trends (such as the ones exhibited by the log-periodic models) are not standard as in the linear case,
and some care must be exercised when looking at the inferential results in the next section. However, an
unreported preliminary small-scale simulation study seems to confirm that the ¢ and F-statistics in case
of nonlinear deterministic trends have the same asymptotic distributions as in the case of linear trends.

3 Empirical Analysis

We explore the possibility that log-periodic models provide a better empirical description than standard
time series models of the long-run price dynamics of the American SP&500 market index, during the
global financial crisis in the years 2007-2009. To answer this question, we estimate models (1) and (4)
using data ranging between 10/10/2007 and 13/04/2009 for a total of 379 observations.

3.1 Estimation Results

When estimating the log-periodic models, we found out (not surprisingly) that the critical time ¢, was
very close to the market peak on the 09/10/2007, when the SP500 reached the value of 1565.15. Therefore,
we fixed t. = 7.773, i.e. October the 9th 2007, so to increase the degrees of freedom and improve the
estimation efficiency. Besides, the numerical maximization of the log likelihood resulted in being much
less cumbersome. The estimated parameters for the log-periodic model (1) and the AR(1)-GARCH(1,1)
log-periodic model (4) are reported below in Tables I-II.

Table I: Estimation Results: Log-periodic model (1)

(4 0 Std.err(*) T-stat P-value
A 1525.27 10.94  139.43 0.00
B -388.71 16.50 -23.56 0.00
B 0.99 0.06 16.33 0.00
C 168.06 11.86 14.17 0.00
w 4.88 0.14 33.71 0.00
¢ 2.11 0.08 25.34 0.00
Log lik. -2022.90 Schwarz criterion 10.77

(*) Newey-West HAC Standard Errors

Table II: Estimation Results: AR(1)-GARCH(1,1) Log-periodic model (4)

6 4 Std.err T-stat P-value
A 184.78 35.14 5.26 0.00
B -45.21 10.06 -4.49 0.00
1¢] 0.96 0.15 6.60 0.00
C 21.20 4.18 5.08 0.00
w 4.52 0.30 15.29 0.00
¢ 2.23 0.13 17.45 0.00
P 0.88 0.02 38.64 0.00
ag 17.94 10.21 1.76 0.08
ai 0.09 0.04 2.52 0.01
e 0.87 0.05 18.06 0.00
Log lik. -1695.26 Schwarz criterion 9.13




Comparing Tables (I) and (II), it is possible to observe that all the log-periodic parameters are strongly
significant and with the correct sign. Furthermore, the fundamental parameters 5, w and ¢ are rather
robust against the incorporation of the residual structure. On the other hand, the autocorrelation
parameter p is strongly significant and smaller than 1 (we will see in the next section that the residuals
are stationary), while the GARCH parameters take values well known in the financial literature, that
is a small oy for the short-term shocks and a large as for the long-term volatility persistence (see Tsay
(2005) for a review of GARCH models). Figure 1 displays the plot of the SP500 stock index in the years
2007-2009 and the fitted curve according to the log-periodic specification given by model (1).

Figure 1: SP500 (10/10/2007 - 13/04/2009) and the log-periodic fit.
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3.2 Specification Tests

The estimation of statistical models for non-stationary series like financial assets can be problematic, due
to the possibility of a spurious regression. In this case, the residuals would be non-stationary and the
parameter estimates would lack any statistical meaning. We test for unit roots in the residual series of the
log-periodic specification (1) and (4) by using the Augmented Dickey-Fuller (ADF), the Dickey-Fuller test
with GLS Detrending (DF-GLS) by Elliott et al. (1996) and the test by Kwiatkowski, Phillips, Schmidt
and Shin (KPPS, 1992), which is based on the null of covariance stationarity rather than integratedness.

Table III: Tests statistics for ADF, DF-GLS and KPSS unit root tests applied to the residuals of the
log-periodic models (1) and (4)

Residuals ADF DF-GLS KPSS

Log-periodic model (1) -4.823 (**) -2.878 (**) 0.037

AR(1)-GARCH(1,1) Log-periodic model (4) -21.236 (**) -21.193 (**) 0.054
(*x) Significant at the 1% level.

A careful analysis of the tests results reported in Table III shows that stationarity is the main feature
of the residuals under scrutiny, similarly to the results found in Gazola et al. (2008). We then tested
the goodness-of-fit of the log-periodic models employed for the conditional marginal distributions by
using Ljung-Box tests on the residuals in levels and squares to test the null of no autocorrelation in the
mean and in the variance, together with the specification tests discussed in Granger et al. (2006): we
used standard empirical distribution tests for density specification (see D’Agostino and Stephens (1986)),
together with the “Hit” test in order to test jointly for the adequacy of the dynamics and the density
specification in the marginal distribution models, where the null hypothesis is that the density model is
well specified. The latter test divides the support of the density into five regions and then applies interval
forecast evaluation techniques to each region separately, and then to all regions jointly (see Granger et
al. (2006) for more details). For the sake of space and interest, we report in Table IV only the p-values
of each test.

The AR(1)-GARCH(1,1) log-periodic model (4) passes all the tests without any problem, thus highlight-
ing that it is correctly specified, whereas the original log-periodic model (1) clearly shows some forms of



Table IV: P-values for the specification tests.

Model Ljung-Box (levels) Ljung-Box (squares) Jarque-Bera Test Lilliefors (D)
(25) (25) (Hop: Normal) (Ho: Normal)
(1) 0.000 0.000 0.006 0.040
(4) 0.254 0.423 0.225 >0.1
Model Cramer-von Mises (W2) Watson (U2) Anderson-Darling (A2) Joint Hit Test
(Ho: Normal) (Hp: Normal) (Hop: Normal)
(1) 0.000 0.000 0.000 0.000
(4) 0.241 0.314 0.207 0.581

misspecifications. This result was expected, given that model (1) considers only the long-range dynamics
of price movements, without taking the short-term dynamics into account.

4 Forecasting Exercises

In this section we perform some forecasting exercises with the American SP500 stock index, considering
120-step ahead and 180-step ahead forecasts in order to assess the accuracy of our approach with regard
to a long-term forecasting. The competing models are the following ones:

1. The original log-periodic model (1);

2. The AR(1)-GARCH(1,1) log-periodic model (4);

3. An AR(p)-GARCH(1,1) model computed with log-returns;

4. An ARMA(1,1)-GARCH(1,1) model computed with log-returns.
5. A simple Random Walk.

The third and fourth models are standard models in the financial literature, while the random walk is
the most classical benchmark in forecasting. We use the observations ranging between 10/10/2007 and
26/06/2008 as the first initialization sample, while those from 27/06/2008 till 13/04/2009 are used to
perform 120-step ahead and 180-step ahead forecasts. A summary of the forecasting performances is
reported in Table V.

Table V: Root Mean Squared Error and Mean Absolute Error for the 120 and 180-step ahead forecasts

RMSE MAE
120-step ahead  180-step ahead — 120-step ahead  180-step ahead
LOG-PERIODIC 269.20 244.84 236.41 241.34
AR(1)-GARCH(1,1) -LOG-PERIODIC 250.48 170.17 223.50 158.22
AR(P)-GARCH(1,1) 266.16 220.95 244.81 214.03
ARMA(1,1)-GARCH(1,1) 266.95 227.05 244.78 221.52
RANDOM WALK 274.23 217.60 254.25 213.99

The previous table shows that the AR(1)-GARCH(1,1) log-periodic model yields better forecasting statis-
tics than the competing models for both the 120-step ahead and the 180-step ahead forecasts, and the
improvement increases with the forecasting distance. This result was expected since the main advantage
of log-periodic models is to take the long range dynamics of price fluctuations into account, which is
missing in standard financial models like the random walk. Instead, the original log-periodic model (1)
shows mixed results, probably due to the misspecifications arising from not considering the short-term
dynamics and which could have caused biased estimates and poor forecasts.

In order to compare the predictive accuracy of our models, we perform the Hansen and Lunde’s (2005)
and Hansen’s (2005) Superior Predictive Ability (SPA) test, which compares the performances of two
or more forecasting models. The forecasts are evaluated using a loss function like the MAE and the
RMSE. The best forecasting model is the model that produces the smallest expected loss. The SPA test
compares for the best standardized forecasting performance relative to a benchmark model, and the null
hypothesis is that none of the competing models is better than the benchmark, see Hansen (2005) for
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Table VI: Hansen’s SPA test. P-values smaller than 0.05 are reported in bold fonts.

RMSE MAE
Benchmark 120-step ahead  180-step ahead — 120-step ahead  180-step ahead
LOG-PERIODIC 0.01 0.00 0.11 0.00
AR(1)-GARCH(1,1) -LOG-PERIODIC 0.52 0.51 0.61 0.51
AR(P)-GARCH(1,1) 0.31 0.00 0.34 0.00
ARMA(1,1)-GARCH(1,1) 0.27 0.00 0.32 0.00
RANDOM WALK 0.00 0.00 0.00 0.00

more details. The p-values produced by the SPA test with the RMSE and the MAE as loss functions are
presented in Table VI.

The reported Hansen’s SPA-consistent p-values show whether there is evidence against the hypothesis
that the benchmark model is the best forecasting one. A low p-value (less that 0.05) means that the
benchmark model is inferior to one or more of the competing models: the empirical results highlight that
the sample being analyzed does yield strong evidence that all the competing models are outperformed by
the AR(1)-GARCH(1,1) log-periodic model in case of the 180 step-ahead forecasts. As for the 120 step-
ahead forecasts, the random walk and the original log-periodic model (1) can be outperformed by some
other competing model, but this is not true for the AR(p)-GARCH(1,1), the ARMA(1,1)-GARCH(1,1)
and the AR(1)-GARCH(1,1)-log-periodic models. This confirms our previous discussion with forecasting
performances reported in Table V.

Finally, we report in Figure 2 the long-term out-of-sample forecast produced by the AR(1)-GARCH(1,1)
log-periodic model from the 14/04/2009 till the 09/10/2010, together with 95% bootstrap confidence
bands.

Figure 2: SP500 forecast: 14/04/2009 - 09/10/2010. Time ¢ converted in units of one year.
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We considered here a forecast reaching a maximum distance of 3 years from the critical point ., i.e.
the market peak on the 09/10/2007. We do so because the log-periodic models considered here are first
order approximations valid only in the neighborhood of the critical point. Sornette and Johansen (1997)
proposed a more general formula with additional degrees of freedom to better capture behavior away
from the critical point up to 10 years. Moreover, Zhou and Sornette (2005) highlighted that, as time
flows, the cumulative effect of exogenous news may detune progressively the anti-bubble pattern. This
phenomenon may be accelerated in the presence of strong exogenous shocks such as the Federal Reserve
interest rate and monetary policies.

The previous forecast of a renewed future market downturn in 2010 seems to be indirectly confirmed by
the data on credit default swaps (CDS) reported online by the Depository Trust & Clearing Corpora-
tion’s (DTCC’s) Trade Information Warehouse!. These figures include the aggregate CDS gross notional

IDTCC is the world’s largest post-trade financial services company and in 2007 it settled the vast majority of securities
transactions in the United States, more than $ 1.86 quadrillion in value.
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positions for Warehouse records as well as the aggregate number of contracts (see Figure 3 below).

Figure 3: CDS Gross notional positions and number of contracts (data retrieved on the 27/03/2009)
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These data seem to suggest that the peak of the current crisis will be reached in the years 2012-2013,
after which the situation should start normalizing. It will be very interesting to see whether this rather
simple but extremely powerful forecasting tool will be confirmed by reality.

5 Conclusions

This paper proposed the use of log-periodic models to model and forecast the global financial crisis of
2007-2009 as a special case of “anti-bubble”. By observing that world stock markets peaked in October
2007, we presented an econometric investigation of the log-periodic models, which tackled potential
inferential problems arising from autocorrelation and heteroskedasticity. We considered the AR(1)-
GARCH(1,1) log-periodic model recently proposed by Gazola et al. (2008), which aggregates latent
dynamical features and mechanisms of the normal phase of the market, with the critical long-range
dynamics of price fluctuations encompassed by the original log-periodic model. We then compared the
previous set of log-periodic models with standard times series models in terms of long-term out-of-
sample forecasting performances. We performed forecasting exercises with the American SP500 stock
index, considering 120-step ahead and 180-step ahead forecasts. We showed that the AR(1)-GARCH(1,1)
log-periodic model yielded better forecasting statistics than the competing models for both the 120-step
ahead and the 180-step ahead forecasts, and the improvements increased with the forecasting distance.
Instead, the original log-periodic model (1) showed mixed results, probably due to the misspecifications
resulting from not considering the short-term dynamics: such misspecifications may have determined
biased parameter estimates and poor forecasts. Interestingly, we found out that the current market
rebound should peak at the beginning of 2010.

The main implication that we draw here is that the traders’ herding behavior during the "Second Great
Contraction" (using the definition by Reinhart and Rogoff (2009)) has progressively strengthened itself
in bearish market phases, thus forming an anti-bubble. It remains to be seen whether the latter will last
only 3 years, similarly to what happened with the SP500 in the years 2000-2003 and discussed by Zhou
and Sornette (2005), or much longer like the Japanese anti-bubble in the 90’s which was discussed in
Johansen and Sornette (1999).

The future work will be directed to studying the small sample properties and the computational aspects
of the ML estimators in case of models with nonlinear trends, similarly to the Monte Carlo studies
recently performed in Fantazzini (2009, 2010).
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