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Abstract 

In this paper, we investigate the information contents of S&P 500 VIX index and range-based volatilities by comparing 
their benefits on the GJR-based volatility forecasting performance. To reveal the statistical significance and ensure 
obtaining robust results, we employ Hansen's SPA test (2005) to examine the forecasting performances of GJR and 
GJR-X models for the S&P500 stock index. The results indicate that combining VIX and range-based volatilities into 
GARCH-type model can both enhance the one-step-ahead volatility forecasts while evaluating with different kinds of 
loss functions. Moreover, regardless of under-prediction, GJR-VIX model appears to be the most preferred, which 
implies that VIX index has better information content for improving volatility forecasting performance.
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1. Introduction 
Volatility forecasting appears to be ongoing because of its broad applications in 

financial areas such as derivative products pricing, risk evaluation and hedging, 
portfolio allocation, and the derivation of value-at-risk measures. Among the literature 
about model-based volatility forecasting, GARCH-type models tend to be popular 
selections due to its success in capturing the dynamics nature of volatility. Even if 
some researches (Andersen et al., 2003; Koopman et al., 2005) showed that volatility 
forecasts generated by GARCH-type models are outperformed by using some time 
series methods based on realized volatility, we can still easily find that GARCH-type 
models are being implemented in empirical researches. Thus, it is meaningful to 
explore how to improve GARCH-based volatility forecasting. 

A common manner to enhance forecasting ability of GARCH-based models is to 
add additional information by incorporating some weakly exogenous variables (e.g. 
implied volatility, realized volatility, range-based volatility1 and trading volume etc.) 
in the variance equation. Blair et al. (2001) and Koopman et al. (2005) found that 
there is a considerable improvement in the volatility forecasting by incorporating 
realized volatility and VIX (implied volatility index) as an explanatory variable in the 
variance equation of a daily GARCH model. Similarly, Andersen et al. (1999) also 
observed a substantial improvement in the out-of-sample forecasting performance of 
the GARCH model. Martens (2001) then compared both GARCH-based methods for 
two exchanges rates. He found that the most accurate intraday GARCH model, which 
proved to be the model with highest sampling frequency, could not outperform the 
daily GARCH model extended with intraday volatility. These studies therefore 
indicate that intraday return series contain incremental information for longer-run 
volatility forecasts when used in combination with GARCH models. Moreover, the 
empirical result of Vipul and Jacob (2007) indicated that the performance of 
GJR-GARCH-based volatility forecasts can be improved by including range-based 
estimators.  

In this paper, we investigate the information contents of S&P 500 VIX index and 
range-based volatilities by comparing their benefits on the GJR-based volatility 
forecasting performance. The range-based volatilities include volatility estimators of 
Parkinson (1980) (hereafter PK), Garman and Klass (1980) (hereafter GK) and 
Rogers and Satchell (1991) (hereafter RS). As indicated by previous studies, both 
range-based estimators and VIX can provide additional information for making 
one-day-ahead volatility prediction, and therefore lead to crucial improvements of 
forecasting performance. Not surprisingly, the derivative products (i.e. index options) 

                                                 
1 Volatility estimators based on price range includes Parkinson (1980), Garman and Klass (1980), 
Rogers and Satchell (1991), and Yang and Zhang (2000). 
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do not exist in every financial market. Thus VIX data are not always available for 
every stock index. For the range-based volatilities, they can be easily computed by 
using daily ranges data (open, high, low and close prices) that are effortlessly 
observed from the market. It should be worth to mention that these two variables have 
different features relative to one another. While range-based volatilities are calculated 
by taking all trade information into account, they might lead to an improvement of the 
volatility estimates rather than the return-based volatilities when incorporating into 
the GARCH-type models. The implied volatility index is calculated based on a highly 
liquid options market, and is a key measure of market expectations of near-term 
volatility conveyed by stock index option prices. Moreover, VIX has been considered 
by many to be the world's premier barometer of investor sentiment and market 
volatility.  

To reveal the statistical significance, the Superior Predictive Ability (SPA) test of 
Hansen (2005) is adopted to examine which variables can deliver better benefits to 
GARCH-based volatility forecasting. If GARCH-type models incorporated with daily 
range-based volatilities are not significantly outperformed by those with implied 
volatility, then there exists reasons for us to adopt range-based volatilities to improve 
GARCH-type-based volatility forecasts when implied volatility are not available. For 
the research objective, we employ several loss functions to empirically examine the 
one-step-ahead forecasting performances for the S&P500 stock index. 

The remainder of this study is organized as follows. Section 2 outlines the 
methodology, including GJR-GARCH-based forecasting model and evaluation 
methods. Data description and main findings are reported in section 3. Finally, 
summary and conclusion are presented in the last section.  
 

2. Methodology 
2.1 GJR-GARCH model 

Let tp  denote the stock index and the compounded daily stock return can be 

computed as t t t 1r log(p p ) 100−= ×

0,1)

p
j t jh

=∑

                                                

. The conditional mean equation2 of GJR-GARCH 
models we adopt in this paper is formulated as follows: 

iid
0.5

t t t t t t t 1r ,   h z ,   z | ~ N(−= μ + ε ε = Ω                               (1) 

t i

q 2
t i i { 0} t ii 1 j 1

h (  I )
−ε < − −=

= ω+ α + γ ε + β∑                           (2) 

 
2 The empirical result of Awartani and Corradi (2005) indicated that the performance rankings of 
GARCH-type models will be consistent under different specifications of mean equation. While returns 
series are not auto-correlated, we do not make additional specification for mean equation. 
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where  is the information set and t 1 t 1 t 2 1{r , r , , r }− − −Ω = … tε  denotes the innovation 

process, while N(0,1) is a density function with a mean of zero and a unit variance. 
Based on the rule of parsimonious principle, the lag length parameters of these 
conditional variance equation are set by p = 1 and q = 1 in our study. It is well known 
that GJR-GARCH model is a popular GARCH-type model, which is often employed 

to deal with the observed leverage effect. When iγ  takes a positive (negative) value, 

it is clear that from GJR-GARCH model that a negative t i−ε  value has a larger 

(smaller) impact on . th

  This study examines the benefits of combining the range-based estimators and 
implied volatility index (VIX) with GARCH-type model on the lines of the 
approaches of Day and Lewis (1992). This is done by including the variance 
estimated by PK, GK, and RS estimators and also VIX as exogenous variables in the 
variance equation (2) of GJR-GARCH model (hereafter GJR-PK, GJR-GK, GJR-RS 
and GJR-VIX models, and we use GJR-X to denote this type of model), as follows: 

t 1

2
−

2 2 2
t 1 1 { 0} t 1 1 t 1 1 X,t 1ˆ(  I )ε < − − −σ = ω+ α + γ ε +β σ + δ σ                              (3) 

where  (X = PK, GK, RS and VIX) is respectively the mentioned-above 

volatility estimated for the trading period t-1. The significance of 

2
X,t 1ˆ −σ

1δ  would indicate 

if any of these variables, taken one at a time, contains some additional information for 
forecasting the conditional volatility. The likelihood ratio of the restricted model (2) to 
the unrestricted model (3) is used to test the significance of information content of the 
range-based estimators and implied volatility index.  

In the following, we give a brief description of these range-based estimators. They 
are Parkinson (1980), Garman and Klass (1980), and Rogers and Satchell (1991). 
These three estimators are all developed under the assumption that the stock price 
follows a geometric Brownian motion, but with slight differences. Rogers and 
Satchell estimators allows a nonzero drift in the continuous path, but the drifts of 
Parkinson and Garman and Klass estimators assume a driftless price process. 
Parkinson (PK estimator) uses the scaled high-low range values for the variance and 
the PK estimator is given below:  

2
2 t t
PK,t

(H L )ˆ
4ln 2
−

σ =                                                 (4) 

where Ht and Lt denote the log-transformed highest and lowest prices on the trading 
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day t. Specially for less-liquid or non-continuous trading securities, the PK estimator 
calculated from observed high-low values at day t produces a downward bias. 

Garman and Klass (1980) improved the Parkinson’s approach by using the opening 
and closing prices in addition to the high and low prices. They made the same 
assumptions as those of the PK estimator. Their estimator (GK estimator) is  

2 2
GK,t t t t t t t t t t t tˆ 0.511(H L ) 0.019{(C O )(H L 2O ) 2(H O )(L O )}σ = − − − + − − − −  

2
t t0.383(C O )− −                                           (5) 

where Ot and Ct are the log-transformed opening and closing prices of day t. It makes 
use of the squared range, which subtracted the squared open-to-close return, to adjust 
the drift. The process makes the GK estimator to become less biased. 

Both of the Parkinson and the Garman and Klass estimator are proposed under the 
assumption that the drifts follow driftless processes. Rogers and Satchell (1991) 
release the restriction and develop an estimator that allows a nonzero drift term. Their 
estimator (RS estimator) is defined as 

2
RS,t t t t t t t t tˆ (H C )(H O ) (L C )(L O )σ = − − + − −                           (6) 

when the security price has a drift, the RS is claimed to be more efficient than PK and 
GK estimators. 
 

2.2 Evaluation of volatility forecast performance 
2.2.1 Symmetric Loss Function 

The forecasting performance of competing models is evaluated using the mean 
squared error (MSE) and mean absolute error (MAE), defined as follows:                

(
T 2

1 2
true k,t

t 1

ˆˆMSE T h−

=

= σ −∑ )                                         (7) 

    
T

1 2
true k,t

t 1

ˆˆMAE T h−

=

= σ −∑                                          (8) 

where  and � 2
σ true

�
k,th  respectively denote the true volatility proxy3 and the 

forecasted variance produced by model k at day t. The MSE criterion gives relatively 
more weight to forecast errors than MAE does. For the application of estimating 
market risk, such as value-at-risk, one who cares more about accurate forecasting of 
high volatility rather than low volatility may adopt MSE to reflect his (her) own 
concerns. 
 

                                                 
3 In this paper we adopt daily PK estimator as the true volatility proxy, which is also used by 
Christoffersen (2003) and Sadorsky and Mckenzie (2008).  
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2.2.2 Asymmetric Loss Function 
Following Pagan and Schwert (1990) and Brailsford and Faff (1996), the second 

research objective also utilizes mean mixed error statistics which account for potential 
asymmetry in the loss function. The mean mixed error statistics which penalize 
under-predictions (MME(U))4 and over-predictions (MME(O)) of volatility more 
heavily are as follows:  

O U
1 2 2

t k,t t k,t
t 1 t 1

ˆ ˆˆ ˆMME(U) T h h−

= =

⎡ ⎤= σ − + σ −⎢⎣
∑ ∑ ⎥⎦

                         (9) 

O U
1 2 2

t k,t t k,t
t 1 t 1

ˆ ˆˆ ˆMME(O) T h h−

= =

⎡ ⎤= σ − + σ −⎢ ⎥⎣ ⎦
∑ ∑                         (10) 

where U (O) is the number of under-(over)-predictions, while T ( U O= + ) denotes the 
number of forecast data points. The aforesaid asymmetric loss functions are important 

ers an

To analyze the improving degree of forecasting performance from risk management 
perspective, we employ  as an alternative loss 
fu

δ + + + +
=

where + and 

for traders with long and short positions as well as option buy d sellers. As 
mentioned by Brailsford and Faff (1996), an under-prediction of stock price volatility 
will lead to a downward bias to estimates of the call option price. As such, a seller 
will pay more attention to the under-estimate of the underlying volatility than a buyer, 
while the reverse is true of over-prediction cases. To the best of our knowledge, little 
previous studies employed asymmetric loss functions in evaluating out-of-sample 
volatility forecasting performance (McMillan et al., 2000; Balaban, 2004). 
 

2.2.3 VaR-based Loss function 

VaR (Value-at-Risk) application
nction. Following González-Rivera et al. (2004), the VaR-based error (VaRE) 

measurement  

( )( )
T

1VaRE T m (r ,VaR ) r VaR− α α= α − −∑                     (11) t 1 t 1 t 1 t 1
t 1

[ ] 1(a b) }1
t 1 t 1 t 1VaR ( )α −
+ += μ +Φ α σ −m (a, b) {1 expδ = +

umulative distribution (in this paper we consider normal case and the case o

confidence level ) of standardized return. 

δ − . Note that ( )Φ ⋅  

is the c  

δ δ

f

95%α =  m (a,b) 1 m (b,a)= − , and the 

paramete er many values of 
report the re

                                                

r 0δ >  controls the smoothness. We consid and only 
sult for 25δ = . 

 

δ  

 
4 Notably, as the absolute values of forecast errors are less than unity, taking their square root will place 
a heavier weighting on the under-predictions. If the absolute value of all forecast errors were greater 
than unity, the MME(U) would need to square the errors in order to achieve the desired penalty 
(Brailsford and Faff, 1996). 
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2.2.4 Superior Predictive Ability Test 
Recent work has focused on a testing framework for determining whether a 

particular model is ou r development of the 
W

k model and the null hypothesis is that none of 
th

tperformed by another model. A furthe
hite’s reality check test (White, 2000) is known as the superior predictive ability 

(SPA) test and is proposed by Hansen (2005) where it is also shown that SPA has 
good power properties and is robust. 

Consider l+1 different models Mk for k = 0,1,…,l and which are discussed in 
previous section. M0 is the benchmar

e models k = 1,2,…,l outperforms the benchmark in terms of the specific loss 
function chosen. For each model Mk, we generate n volatility forecast � k,th  for t = 
1,2,…,n. For every forecast, we generate the loss function Lk,t describing as follows. 

Let k,tL ≡ 2
t k,t

ˆˆL( , h )σ  denote the loss if one makes the prediction � k,th  with k-th 

model w  volatility turns out to be 
tˆhen the true 2σ . The performance of model k 

relative to the benchmark model (at time t), can be defined as:  

k,t 0,t k,tf L L= −  for k = 1,2,…,l ; t = 1,2,…,n                         (12) 

ity for k,tf , we can define the expected relative performance of Assuming stationar

model k relative to the benchmark as k k,tE[f ]μ =  for k=1,2,…,l. If model w 

outperforms the benchmark, then the value of wμ  will be positive. Therefore, we can 

analyze whether any of the competing models significantly outperform the benchmark, 

ktesting the null hypothesis that 0μ ≤ , for k=1,2,…,l. Consequently, the null 

superiority over the benchmark itself) can be formulated as: 

The iate test statistic p

hypothesis that none of models is better than the benchmark (i.e. no predictive 

H0: max kk 1, ,l
max 0
=

μ ≡ μ ≤
"

                                           (13) 

assoc roposed by Hansen (2005) is given by  

1, ,
max

ˆ=
=

…

k

k l

n fT
ω

                                      
kk

           (14)     

with 2ˆkkω n1f n f−= ∑ ,  as a consistent estimate of 2
kkω , and where k k,tt 1=

2 ar( )=kk kn fω . A consistent estimator of klim v
→∞N

 kω  and p-value of n test statistic T ca
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be obtained via a sta
details of this procedure are detailed in Hansen (2005) and Hansen and Lunde (2005).  

The data for this study consists of S&P500 ng, closing, high 
and low prices during the period  to December 31, 2007, which 
co

tionary bootstrap procedure of Politis and Romano (1994). More 

 

3. Empirical results 

3.1 Data description 
stock index daily openi

 from January 2, 2001
nstitutes a total of 1758 observations. The daily data is retrieved from the database 

of Yahoo Finance website (http://finance.yahoo.com/). The VIX5 data used in this 
paper are downloaded from the CBOE (Chicago Board Option Exchange) one-line 
database. For the research objective, the whole data period is divided into estimation 
and forecasted periods. The observations of estimation period are 1250, and the 
forecasting performance of GJR-X models for the last 500 days of the data set is the 
focus of our out-of-sample evaluation and comparison. 

Preliminary analysis of daily returns of S&P500 for the whole sample period is 
reported in Table 1. From panel A, the average daily returns are positive and very 
sm

P 500 daily returns 
tatistics 

all compared with the variable’s standard deviation. The returns series is skewed 
towards the right, while the returns series is characterized by a distribution with tails 
that are significantly thicker than for a normal distribution. J-B test statistic further 
confirms that the daily return is non-normal distributed. Moreover, the Q2 and 
LM-test statistics display linear dependence of squared returns and strong ARCH 
effects. Accordingly, these preliminary analyses of the data encourage the adoption of 
a sophisticated distribution, which embody fat-tailed features, and of conditional 
models to allow for time-varying volatility. Panel B of Table 1 reports the Phillips and 
Perron (1988) (PP) unit root tests and KPSS (Kwiatkowski et al., 1992) unit root tests. 
The test results indicate no evidence of non-stationarity in the S&P500 returns serie. 
Finally, the test statistic of Engle and Ng (1993) indicates that returns volatility 
exhibits asymmetric behavior which supports us to adopt GJR-GARCH specification 
for capturing the dynamics of volatility process. 
 

Table 1 Preliminary analysis of S&
Panel A. Summary s

Mean % Std. Dev. Skewness Kurtosis J-B Q2(12) LM(12) 
0.007 1.06 .010* 364.090* 6 0.082 5.714* 539.155* 1070

    
el B tests 

   
Pan . Unit root 

PP Band  an
4.015* 0 .054 0 

width  KPSS B dwidth 
-4  0

                                                 
5 We choose new methodology for VIX data, and the calculation procedure of VIX can be referred to 
the CBOE website. 
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Pan  & Ng test r asymmetr ility 

 
el C. Engle fo ic volat

Test (3)) 26 7* 
Notes: 1. denotes sign cs of Jarque amd Bera 

(1987)’s normal st for 12th order serial 
on e squa s. 4. LM test also examines for autocorrelation of the squared 

statistic (~ 2χ .93
 * ificantly at the 1% level. 2. J-B represents the statisti

distribution test. 3. Q2(12) denotes the Ljung-Box Q te
correlati  of th red return
returns. 5. PP and KPSS are the test statistics for stationarity of return series. The PP-test rejects 
the null hypothesis of non-stationarity if the test statistic is negative and the absolute value of 
the test statistic exceeds the critical value of the respective significance level: 1%: -3.969; 5%: 
-3.415; 10%: -3.130. The KPSS-test rejects the null hypothesis of stationarity if the test statistic 
exceeds the critical value of the respective significance level: 1%: 0.739; 5%: 0.463; 10%: 
0.347.  

3.2 Model Estimates 
In this study, the parameters are estimated by quasi maximum likelihood estimation 

(QMLE) in terms of the BFGS etric package 
of

ghly significant. The coefficients  of all 
m

Table 2 Estimates of GJR and GJR-X models with alternative exogenous variables 
Parameter  GJR GJR-VIX GJR-PK GJR-GK GJR-RS 

optimization algorithm using the econom
 WinRATS 7.1 model estimates and diagnostic tests for S&P500 returns during the 

in-sample period are provided in Table 2. 
As shown in Table 2, the parameters in the conditional variance equation of GJR 

model are all positive and found to be hi 1δ

odels are significant and indicate that these exogenous variables are helpful to 
explain the conditional variance. As indicated by Akaike information criterion (AIC), 
the in-sample fit of GJR-PK is highest among these models. Diagnostics of the 
standardized residuals of these GJR and GJR-X models confirm that the GJR(1,1) 
specification is sufficient to correct the serial correlation of the S&P500 return series 
in the conditional variance equation. 
 
 

μ   
-0.040 a -0.022 -0.017  -0.024 -0.020 

] [0.021] [0.023] [0.023] [0.022] [0.020

ω   
0

 

.101 c 

[0.002] 
-0.190 c 

[0.006] 
0.010 

[0.006] 
0.011 c 

[0.003] 
0.013 b 

[0.006] 

1α  0.035 c 

[0.007] 
-0.028 

[0.017] 
-0.163 c 

[0.005] 
-0.166 c 

[0.005] 
-0.070 c 

[0.015] 

1β   
0.772 c 

[0.007] 
0.716 c 

[0.013] 
0.828 c 

[0.018] 
0.829 c 

[0.005] 
0.802 c 

[0.032] 

1γ   

 

Q(1

0.234 c

[0.020] 
0.192 c 

[0.031] 
0.122 c 

[0.024] 
0.122 c 

[0.014] 
0.131 c 

[0.031] 

1δ   0.021 c

[0.000] 
0.357 c

[0.007] 
0.360 c

[0.007] 
0.300 c

[0.042] 
2)  11.607 11.218 15.613 14.589 14.635 

Q2(1  14.824 
LL -179 903 -  -  -  -  

3  3  3  3  3  
N Standard or the s are in n parenth a, b and ate 

nificant %,  le ively. nd Q2 e 
jung-Box or s lation tandard uals d 

information criterion (AIC) is calculated as -2LL+2p where p is the number of coefficients 

2)
 

 
 

18.491 17.810 17.542 15.486 
4. 1732.871 1724.974 1735.516 1729.919

AIC  599.806 475.742 466.418 481.032 469.838
otes: 1.  errors f estimator cluded i eses. 2.  c indic

sig ly at the 10 5% and 1% vel, respect 3. Q(12) a (12) are th
L  Q test f erial corre  in the s ized resid and square
standardized residuals with 12 lags. 5. LL refers to the log-likelihood value. 6. The Akaike 
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that is estimated.  
 

The volatility forecasting results of alternative loss function values and the p-values 
of SPA test for GJR and GJR-X m  be seen, the 
GJ

                                                

3.3 SPA test results of alternative loss functions 

odels are presented in Table 3. As can
 has lowest function values for symmetric (MR-VIX model SE and MAE), 

asymmetric (MME(O)6) and also VaR-based loss functions, which indicate that GJR 
model incorporated with implied volatility index (VIX) can better improve volatility 
forecasts while evaluating with these loss functions. In other words, implied volatility 
index provides more information than range-based estimators in volatility forecasting.  

However, when a particular loss function is smaller for model A than for model B, 
we can not clearly conclude that the forecasting performance of model A is superior to 
that of model B. Such a conclusion cannot be made on the basis of just one criterion 
and just one sample. For this reason, we present a multiple comparison of the 
benchmark model with all of the remaining models by employing SPA test of Hansen 
(2005). The p-values of SPA test are computed by using the stationary bootstrap of 
Politics and Romano (1994) generating 10000 bootstrap re-samples with smoothing 
parameter q = 0.5. The null hypothesis is that the best of the competing models is no 
better than the benchmark. As reported in Table 3, the GJR model is dominated by 
competing models (GJR-X models) for most loss functions, which means that the 
range-based estimators and VIX can both significantly improve GARCH-type models 
in one-step-ahead volatility forecasts. This is consistent with the findings of Day and 
Lewis (1992), Blair et al. (2001), Koopman et al. (2005) and Vipul and Jacob (2007). 
  Except for the asymmetric loss function MME(U), we find that the GJR-VIX 
model has largest Hansen’s p-values (SPAc and SPAl) and seems to be the most 
preferred. Based on the results, we can conclude that GARCH-type model 
incorporated with VIX can provide significant improvement in the bias and efficiency 
of one-step-ahead volatility forecasts while evaluating with MAE and MSE criteria. 
Also, the inference holds from the risk management perspective. To consider the 
possible effects of over- and under-predictions for different volatility applications, 
such as buyers and sellers of call and put options, we adopt mean mixed error (MME) 
to investigate this issue. For the over-prediction case (MME(O)), the conclusion 
remains the same as MAE, MSE and VaRE. For the under-prediction case (MME(U)), 
surprisingly, GJR-GK model takes the place of GJR-VIX model and turns out to be 
the most preferred model though the difference of their function value is small. The 
result implies that, for a seller, GJR-GK model should be used to calculate the call or 

 
6 For the sake of achieving the desired penalty, the forecasted volatilities and the true volatility proxy 

are both divided by 10 to make the forecast errors less than unity. 
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put options so as to generate reasonable profit.  
 

 
Table 3 SPA test results of alternative loss functions 

anel A. Performance based on mean squared error (MSE) P
Benchmark (M0) MSE Rank  SPAc Rank  SPAl Rank 

GJR  0.378 3  0.058 5  0.050 5 
GJR-VIX  0.778 1 

0.101 4 
0.

Pa orm nce b  mean absolut  error  

0.351 1  0.989 1  
0.383 4  0.115 4  GJR-PK  

GJR-GK  0.374 2  0.184 2 
3 

 
 

108 
0.126 

3 
2 GJR-RS  0.387 5  0.126 

ne erfl B. P a ased on e  (MAE) 
B R R  R  enchmark  MAE ank  SPAc ank  SPAl ank

GJR  0.396 5  0.000 5  0.000 5 
G  JR-VIX
GJR-PK 

 
 

0.369 
0.379 

1 
3 

 
 

0.867 
0.302 

1 
4 

 
 

0.571 
0.270 

1 
4 

GJR-GK  0.374 2  0.552 2 
3 

 
 

0.

Pan ormance b  mean xed ror (M

345 
0.295 

2 
3 GJR-RS  0.379 3  0.329 

e rfl C. Pe ased on  mi  er ME) 
B M ) R R  R  enchmark  ME(O ank  SPAc ank  SPAl ank

GJR  0.142 5  0.000 5  0.000 5 
G  JR-VIX
GJR-PK 

 
 

0.133 
0.137 

1 
2 

 
 

0.962 
0.197 

1 
4 

 
 

0.600 
0.173 

1 
3 

GJR-GK  0.137 2  0.206 3 
2 

 
 

0.

  M ) Rank R  R  

173 
0.177 

3 
2 GJR-RS  0.137 2  0.210 

ME(U  
 

SPAc ank  SPAl ank
GJR  0.074 5 0.052 5  0.052 5 

GJR-VIX  0.072 2  0.490 2  0.350 2 
GJR-PK  0.072 2  0.195 4  0.166 4 
GJR-GK  0.071 1  0.950 1  0.686 1 
GJR  

Pa form nce b  VaR- ed error (Va
-RS

l D. P
 0.072 2  0.350 3  0.267 3 

ne er a ased on bas RE) 
B V ) R R  R  enchmark  aRE(O ank  SPAc ank  SPAl ank

GJR  0.157 3  0.082 4  0.065 5 
G  JR-VIX  0.154 1  0.971 

 
1 
5 

 
 

0.607 
0.068 

1 
4 GJR-PK  0.158 5  0.068

GJR-GK  0.157 3  0.153 0.3 
2 

 
 

119 
0.155

3 
2 GJR-RS  0.156 2  0.302  

 
4. Conclusions 

ape , we investigate the inform 500 index d 
nge-based volatilities by comparing their benefits on the GJR-based volatility 

forecasting performance. To exte y and widen the implication of 
vo

In this p r ation contents of S&P  VIX  an
ra

nd previous stud
latility forecasts, we not only adopt the symmetric loss functions to evaluate the 

bias and efficiency problems, but also address the issues for risk management and 
over-and under-predictions by using VaR-based and asymmetric loss functions. 
Moreover, to reveal the statistical significance and ensure obtaining robust results, we 
employ Hansen’s SPA test (2005) to empirically examine the one-step-ahead 
forecasting performances of GJR and GJR-X models for the S&P500 stock index for 
the last 500 observations of our research period.  
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The results indicate that combining VIX and range-based estimators into 
GARCH-type model can both enhance the one-step-ahead volatility forecasts for all 
considered loss functions, which is consistent with previous studies. Overall, 

 Market 
Volatility: Sample Frequency vis-á-vis Forecast Horizon” Journal of Empirical 
Finance 6(5), 457-477. 

Andersen, T. G.., Bollerslev, T., Die nd P. Labys (2003) “Modeling and 

Awa
H Models: the Role of Asymmetries” International 

Bala Symmetric and 

Blair 1) “Forecasting S&P 100 Volatility: the 

Brail “An Evaluation of Volatility Forecasting 

Chri

-2), 267-287. 

urnal of Finance 48(5), 1749-1778. 
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Hans f Business and 
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(7), 

Jarque, C. M. and A. K. Bera (1987) “A Test for Normality of Observations and 
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GJR-VIX model appears to be the most preferred, which implies that VIX index has 
better information content for improving volatility forecasting performance.  
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