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1 Introduction

In the theory of classical cooperative games, a characteristic function
is a real-valued function defined over all the subsets of the set of play-
ers. Under the condition of “uncertainty”, there are two extensions of
the characteristic function in the literature. One is that the domain of
the characteristic function is extended to allow “fuzzy” coalition.1 The
other is that the range of the characteristic function is extended to allow
“fuzzy” value. The latter is the kind of situations that we want to discuss
in this note.

Branzei, Dimitrov and Tijs [10] provided a game theoretic model to
support decision making under interval uncertainty of coalition values,
named interval games. The model of interval games fits all the situa-
tions where players consider cooperation and know with certainty only
the lower and upper bounds of all potential revenues or costs generated
via cooperation. Methods of interval arithmetic and analysis (cf. Moore
[16]) have played a key role for new models of games based on interval
uncertainty. In the meantime, many solution concepts have been devel-
oped. Related results may be found in Alparslan Gök, Branzei and Tijs
[1, 2]; Alparslan Gök, Miquel and Tijs [3]; Branzei et al.[7, 8] , and so
on.

The Shapley value [18] is a well-known solution concept in cooper-
ative game theory. Two of the most appealing characterizations of the
Shapley value are by Shapley [18] and by Young [19], respectively. Shap-
ley proved that the Shapley value is the unique value satisfying four
axioms, efficiency, symmetry, dummy and additivity. Replacing
dummy and additivity by marginality, Young established an alter-
native axiomatic characterization of the Shapley value by three axioms,
efficiency, symmetry, and marginality.

These mentioned above raise one question in the framework of interval
games:

• whether the two axiomatic results of the Shapley value could be
described in the framework of interval games.2

1Aubin [4, 5] first suggested to allow the players to choose any level of participation
in a coalition, and he named “fuzzy game”. Fuzzy games have proved to be suitable
for modeling cooperative behavior of players in economic situations [6, 9] and political
situations [11, 15] in which some players do not fully participate in a coalition but only
to a certain extent. For example, in a class of production games, partial participation
in a coalition means to offer a part of the resources while full participation means to
offer all the resources.

2The interval Shapley value was introduced by Alparslan Gök, Branzei and Tijs
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This note is aimed at answering the question. Instead of giving di-
rect proofs, we establish a new axiomatization of the Shapley value by
means of efficiency, symmetry, and coalitional strategic equiv-
alence. Also, we provide two interesting logic relations between ax-
ioms:(1) dummy and additivity together imply coalitional strate-
gic equivalence and (2) marginality implies coalitional strategic
equivalence. Hence our result directly implies Shapley’s result and
Young’s result.

2 Preliminaries

We follow the notation and terminology of Alparslan Gök, Branzei and
Tijs [2]. Let N = {1, 2, · · · , n} be the set of players. S ⊆ N is a
coalition. The cardinality of S is denoted by |S|. Let I(R) be the set of
all nonempty and compact intervals in R. A cooperative interval game is
a pair (N,w), where w : 2N → I(R) is a characteristic function such that
w(∅) = [0, 0]. For each S ∈ 2N , the worth interval w(S) of the coalition
S in the interval game (N,w) is of the form [w(S), w(S)], where w(S)
is the minimal reward which coalition S could receive on its own and
w(S) is the maximal reward which coalition S could get. The family of
all interval games with player set N is denoted by IGN . We denote by
I(R)N the set of all such interval payoff vectors.

Let I, J ∈ I(R) with I = [I, I], J = [J, J ], |I| = I − I and α ≥ 0.
Then,

I + J = [I + J, I + J ]; (2.1)

αI = [αI, αI]. (2.2)

By (2.1) and (2.2) we see that I(R) has a cone structure.3

For (N,w1), (N,w2) ∈ IGN and α ≥ 0 we define (N,w1 + w2) and
(N,αw1) by (w1 + w2)(S) = w1(S) + w2(S) and (αw1)(S) = αw1(S) for
each S ∈ 2N .

We define I − J , only if |I| ≥ |J |, by I − J = [I − J, I − J ]. Note
that I − J ≤ I − J .

[2] in the context of interval games. This is a generalization of the Shapley value for
TU games. Also, they proved that the Shapley value is the unique solution satisfying
four axioms, efficiency, symmetry, dummy and additivity.

3Let I = [I, I] ∈ I(R), we call I and I are the lower bound and upper bound, re-
spectively. Equation (2.1) guarantees that the lower (upper) bound satisfies additivity.
Equation (2.2) guarantees that the lower (upper) bound satisfies scale invariance.
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The model of interval cooperative games is an extension of the model
of classical TU-games. We recall that a classical TU-game4 < N, v > is
defined by v : 2N → R and v(∅) = 0. The unanimity game based on S,
uS : 2N → R is defined by for all T ⊆ N ,

uS(T ) =
{ 1 , S ⊆ T

0 , otherwise.

A TU-game < N, v > is monotonic if v(S) ≤ v(T ) for all S, T ∈ 2N

with S ⊆ T . We call an interval game (N,w) size monotonic if its length
TU game < N, |w| > is monotonic, where |w|(S) = w(S) − w(S) for
all S ⊆ N . We denote by SMIGN the class of size monotonic interval
games with player set N .

Let S ∈ 2N\{∅}, I ∈ I(R) and let uS be the unanimity game based
on S. The cooperative interval game (N, IuS) is defined by (IuS)(T ) =
uS(T )I for all T ⊆ N . We denote by KIGN the additive cone generated
by the set

K = {ISuS|S ∈ 2N\{∅}}
where IS ∈ I(R). That is, each element in KIGN is a finite sum of
elements of K. We notice that KIGN ⊆ SMIGN .

3 Interval Shapley value and Axioms

In the sequel, we focus on the set of games, KIGN . A solution on KIGN

is a map φ assigning to each interval game (N,w) ∈ KIGN an element
φ(N,w) ∈ I(R)N . The interval Shapley value5 Φ : KIGN → I(R)N is
defined by

Φi(N,w) :=
∑
S:i∈S

(|S| − 1)!|N \ S|!
|N |!

{w(S)− w(S \ {i})},

for each i ∈ N and for each (N,w) ∈ KIGN .

Remark 3.1 An alternative definition of the interval Shapley value for
an interval game (N,w) is as follows.

Φi(N,w) =
∑
S⊆N

i∈S

IS(w)

|S|
=
∑
S⊆N

i∈S

dS(w),

4We use < N, v > and (N, v) to denote a TU game and an interval game, respec-
tively.

5Alparslan Gök, Branzei and Tijs [2] defined the interval Shapley value on
SMIGN .
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where (N,w) ∈ KIGN with w =
∑

S∈2N\∅ IS(w)uS =
∑

S∈2N\∅ |S|dS(w)uS.

From now on, if it is no ambiguous, we use w instead of (N,w).
We need the following axioms.

Efficiency (Eff):
∑

i∈N φi(w) = w(N) for all w ∈ KIGN .

Let w ∈ KIGN and i, j ∈ N . i and j are called symmetric players in
w, if w(S ∪ {i})− w(S) = w(S ∪ {j})− w(S), for all S ⊆ N \ {i, j}.

Symmetry (Sym): if i, j ∈ N are symmetric players in w, φi(w) =
φj(w) for all w ∈ KIGN .

Let w ∈ KIGN and i ∈ N . Then, i is called a dummy player in w if
w(S ∪ {i}) = w(S) + w({i}), for all S ⊆ N \ {i}.

Dummy player property (Dpp): if i is a dummy player in w, φi(w) =
w({i}) for all w ∈ KIGN .

Additivity (Add): φ(v + w) = φ(v) + φ(w) for all v, w ∈ KIGN .

Let w ∈ KIGN and i ∈ N , let 4iw(S) be defined by

4iw(S) =

{
w(S)− w(S \ {i}) if i ∈ S,
w(S ∪ {i})− w(S) if i /∈ S.

4iw(S) represents the marginal contribution interval of i to S, and 4iw
is the marginal contribution interval vector of i.

Marginality (Mar): if 4iv = 4iw, then φi(v) = φi(w), where v, w ∈
KIGN and i ∈ N .

Coalitional strategic equivalence (Cse): for all T ⊆ N such that
T 6= ∅, and for all I ∈ I(R), if v = w + IuT , then φi(v) = φi(w) for all
i ∈ N \ T , where v, w ∈ KIGN .

Strategic equivalence, introduced by von Neumann and Morgenstern
[17], requires that adding a constant to the worths of all coalitions con-
taining a given player i does not affect the payoffs of other players. Chun
[14] introduced a variant version of strategic equivalence in TU games,
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coalitional strategic equivalence.6 It requires that adding a constant
to the worths of all coalitions containing a given coalition T does not
affect the payoffs of players that do not belong to T . Here we provide
a version of coalitional strategic equivalence in the framework of
interval games.

Lemma 3.1 The interval Shapley value satisfies Eff, Sym, Dpp, Add,
Mar and Cse.

Proof. The proof is straightforward, we omit it.

Two logical relations between axioms are as follows.7

Lemma 3.2 Dpp and Add together imply Cse.

Proof. Let v, w ∈ KIGN be two games satisfying the hypotheses of
Cse, i.e., v = w + IuT for some T ⊆ N and for some I ∈ I(R). For all
i ∈ N \ T and for all S with i /∈ S, IuT (S ∪ {i})− IuT (S) = IuT ({i}) =
[0, 0], so that, by Dpp, we have

φi(IuT ) = IuT ({i}) = [0, 0] for all i ∈ N \ T. (3.1)

On the other hand, by Add, we have

φi(v) = φi(w) + φi(IuT ) for all i ∈ N. (3.2)

From Equations (3.1) and (3.2), we have, for all i ∈ N \ T ,

φi(v) = φi(w) + φi(IuT ) = φi(w).

Remark 3.2 The converse of Lemma 3.2 is not true in general. Let φ
be the solution on KIGN defined by for all v ∈ KIGN ,

φi(v) =

{
[1, 1] , if i = 1
[0, 0] , otherwise,

where i ∈ N .
Then φ satisfies Cse but it does not satisfy either Dpp or Add.

6In the framework of TU games, Chun [14] provided another axiomatization of
the Shapley value by means of efficiency, triviality, fair ranking, and coalitional
strategic equivalence.

7Chun [14] established the two interesting results in the framework of TU games.
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Lemma 3.3 Mar implies Cse.

Proof. Let v, w ∈ KIGN be two games satisfying the hypotheses of
Cse, i.e., v = w + IuT for some T ⊆ N and for some I ∈ I(R). It is
easy to see that for all i ∈ N \ T , 4iv = 4iw. Hence, by Mar, we have
φi(v) = φi(w) for all i ∈ N \ T .

Remark 3.3 In the framework of TU games it was recently proved the
equivalence between Cse and Mar (Casajus [12], Casajus and Huettner
[13]). This equivalence is still true here. The proof is similar to that of
Proposition (Casajus and Huettner [13]) and, hence, it is left to reader.

4 Main Result

In this section, we present an axiomatic characterization of the interval
Shapley value by means of Eff, Sym, and Cse.

Theorem 4.1 The interval Shapley value is the unique solution satisfy-
ing Eff, Sym, and Cse.

Proof. We only need to show the “uniqueness”. Let φ be a solution
satisfying Eff, Sym and Cse. We first exploit the fact noted in Remark
3.1 that every interval game v ∈ KIGN can be expressed as

v =
∑
∅6=T⊆N

ITuT . (4.1)

The interval Shapley value can be expressed as Φi(v) =
∑

∅6=T⊆N

Φi(ITuT ) =∑
T :i∈T

IT

|T | .

Define the index B of v to be the minimum number of non-zero terms
in expression for v of Equation (4.1). The proof continues by induction
on B.

If B = 0, then v is the trivial interval game. That is, v(S) = [0, 0] for
all S ⊆ N . By Eff and Sym, φi(v) = [0, 0] for all i ∈ N .

Assume now that φ(v) is the interval Shapley value whenever the
index of v is at most B, and let v have index B + 1 with expression

v =
B+1∑
k=1

ITk
uTk

, all ITk
6= [0, 0].
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Define the game v−p =
B+1∑

k=1:k 6=p

ITk
uTk

for all p = 1, 2, · · · , B + 1. Then

for all p = 1, 2, · · · , B + 1,

v = v−p + ITpuTp .

By applying Cse (B + 1) times to all p = 1, 2, · · · , B + 1, we have that
for all p = 1, 2, · · · , B + 1,

φi(v) = φi(v−p) for all i ∈ N \ Tp. (4.2)

Since for all p = 1, 2, · · · , B+ 1, the index of v−p is B, by the hypothesis
of induction, we derive that for all i ∈ N \ Tp,

φi(v−p) = Φi(v−p). (4.3)

For all p = 1, 2, · · · , B + 1, combining the fact “Φi(v) = Φi(v−p) for
all i ∈ N \ Tp” with Equations (4.2) and (4.3), we derive that for all
i ∈ N \ Tp,

φi(v) = φi(v−p) = Φi(v−p) = Φi(v).

Hence for all i /∈
B+1⋂
k=1

Tk,

φi(v) = Φi(v) =
∑

k=i∈Tk

ITk

|Tk|
.

It remains to show that φi(v) = Φi(v) for all i ∈
B+1⋂
k=1

Tk. By Sym,

φi(v) is a same interval J for all members of
B+1⋂
k=1

Tk; likewise Φi(v) is

some interval J ′ for all members of
B+1⋂
k=1

Tk. Since both solutions sum to

v(N) and are equal for all i /∈
B+1⋂
k=1

Tk, it follows that J = J ′.

By Lemmas 3.1-3.3, Theorem 4.1 directly implies the following two
theorems.

Theorem 4.2 (Alparslan Gök, Branzei and Tijs [2]) The interval Shap-
ley value is the unique solution satisfying Eff, Sym, Dpp and Add.

Theorem 4.3 The interval Shapley value is the unique solution satisfy-
ing Eff, Sym, and Mar.
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5 Independence of the Axioms

The following examples show that the independence of axioms in Theo-
rem 4.1.

Example 5.1 Let φ1 be the solution on KIGN defined by for all v ∈
KIGN and for all i ∈ N ,

φ1
i (v) = [0, 0].

Then φ1 satisfies Sym and Cse but it violates Eff.

Example 5.2 We first recall that every interval game v ∈ KIGN can
be expressed as v =

∑
∅6=T⊆N

ITuT and the interval Shapley value can be

expressed as Φi(v) =
∑

T :i∈T

IT

|T | . Let φ2 be a “weighted” interval Shapley

value defined by for all i ∈ N ,

φ2
i (v) =

∑
T :i∈T

λi∑
j∈T

λj

IT ,

where λi = i∑
j∈N

j
.

Then φ2 satisfies Eff and Cse but it violates Sym.

Example 5.3 Let φ3 be the solution on KIGN defined by for all v ∈
KIGN and for all i ∈ N ,

φ3
i (v) =

v(N)

n
.

Then φ3 satisfies Eff and Sym but it violates Cse.

6 Discussion

In general, interval games can be mathematically seen as special instances
as vector-valued games with two ordered components. More precisely, in
vector-valued games the worth of a coalition is given by a vector of real
numbers rather than by a real number. The components of such vectors
are sharp values for the worth of all coalitions from the point of view
of a finite number of criteria under consideration. Since any interval of
real numbers can be regarded as a point in R2, an interval game can be
seen as a special vector-valued game with two components, where the
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first component should not be greater than the second component. The
referee pointed out an interesting question:
From “real numbers” to “intervals of real numbers” only makes a dif-
ference in dimension. Intuitively, it might be that many results from
classical theory (TU games) could just be imported to this new the-
ory (interval games) by replicating the proof. The referee’s question
is: whether this new theory can yield new and surprising results that
have no counterparts in the classical theory? We do not have too many
ideas. We only know that some results in TU games does not apply to
interval games because the subtraction of two intervals is limited. For
example, the core satisfies the translation invariance property, but the
interval core8 violates the translation invariance property. We first intro-
duce some well-known definitions and notation in order to illustrate this
fact.

The interval imputation set I(w) of the interval game w, is defined
by

I(w) = {(Ii)i∈N |
∑
i∈N

Ii = w(N), I i ≥ w({i}), I i ≥ w({i}) ∀i ∈ N},

and the interval core C(w) of the interval game w, is defined by

C(w) = {I ∈ I(w) |
∑
i∈S

I i ≥ w(S),
∑
i∈S

I i ≥ w(S) ∀S ∈ 2N \ {∅}}.

The following example illustrates that the interval core does not satisfy
the translation invariance property. That is, there exist an interval game
w and an interval payoff vector a ∈ I(R)N such that C(w+a) 6= C(w)+a,
where (w+a)(S) = w(S) +

∑
i∈S ai for all S ∈ 2N \ {∅}, and C(w) +a =

{b+ a | b ∈ C(w)}.
Let N = {1, 2} and w({1}) = [0, 0], w({2}) = [−1, 0], w({1, 2}) =

[0, 0], and a = ([1, 3], [1, 1]). Then (w + a)({1}) = [1, 3], (w + a)({2}) =
[0, 1], (w + a)({1, 2}) = [2, 4]. Let I = ([I1, I1], [I2, I2]) ∈ C(w). By
the definition of C(w), I1 ≥ 0, I1 ≥ 0, I2 ≥ −1, I2 ≥ 0, I1 + I2 = 0,
and I1 + I2 = 0. Since I1 ≤ I1, this forced I1 = I1 = 0. So, C(w) =
{([0, 0], [0, 0])}. Hence C(w) + a = {a} = {([1, 3], [1, 1])}. On the other
hand, it is also easy to see that x = ([2, 3], [0, 1]) ∈ C(w + a). But
x /∈ C(w) + a. Hence C(w + a) 6= C(w) + a.

8The interval core was introduced by Alparslan Gök, Branzei and Tijs [1].
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