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1 Introduction

This note compares the expected revenue of a seller for a class of sequential auctions. The results
show that the existence of a symmetric, increasing equilibrium bidding strategy will ensure revenue
equivalence for that class of sequential auctions. We will extend the famous revenue equivalence
theorem by Riley and Samuelson (1981)[6] for single-unit (single-stage) standard auction to a
multi-unit sequential auction (where one unit is sold at each stage and there is single-unit demand
by each bidder) and state that with all other assumptions remaining the same, as long as the
expected payment of a bidder with value zero is zero, any symmetric and increasing equilibrium
of any standard sequential auction yields the same expected revenue to the seller.

Milgrom and Weber (1982)[4] consider a single object auction and show that for a given partic-
ular auction mechanism, under the assumption of independent private values, the bidders adopt
strategies which constitute a noncooperative equilibrium. If at that equilibrium, the bidder who
values the object most highly is certain to receive it and any bidder whose valuation for the object
is the lowest, has a zero expected payment, then the expected revenue generated for the seller
by the mechanism is precisely the expected value of the object to the second highest evaluator.
Therefore, they establish, that at the symmetric equilibria of the English, Dutch, �rst price and
second price auctions, the expected selling price is the same1.

Weber (1983)[7] considers sequential auctions involving multiple objects and multiple risk-neutral
bidders, where the number of objects are less than the number of bidders. He considers single-unit
demand for every bidder and establishes that under the symmetric, independent, private valuations
assumptions, the sequential �rst and second price sealed bid auctions, for which only one object
is sold at each stage and the winner from every stage exits before the next stage, yield the same
expected revenue to the seller.

Engelbrecht-Wiggans (1988)[1] generalizes the results of Milgrom and Weber (1982)[4] for single
object auctions to the context of multiple object auctions. He assumes multiple unit demand
for the bidders in a symmetric, independent, private valuations framework, where each bidder is
risk-neutral. For a single stage multiple unit auction, he establishes that, for su�ciently regular
allocation functions and distribution function (of valuation vectors) of the concatenation of other
bidders, if the expected amount paid by a bidder i at equilibrium is to be continuous in his/her
own value vectors, then the equilibrium expected payment of that bidder as a function of his/her
true valuation depends only on the allocation function, the distribution of others' values and the
value of expected payment as a function of some �xed x0 (where x denotes the valuation vector
for the bidders).

Klemperer (2004)[2] also establishes revenue equivalence for a general class of single stage multiple
unit auctions. He considers a situation where each of n risk-neutral potential buyers has a privately
known value independently drawn from a common distribution F (v) that is strictly increasing and
atomless on [v, v] and no buyer wants more than one of the k available identical indivisible objects.
For such a framework, he suggests that, any auction mechanism in which (i) the objects always
go to the k buyers with the highest values, and (ii) any bidder with value v expects zero surplus,

1In their paper, Milgrom and Weber (1982)[4], also analyze auctions involving common values and a�liated
values. Since our paper strictly deals with symmetric independent private values framework, the discussion on the
analysis of common and a�liated values auctions, presented by Milgrom and Weber (1982)[4] is forgone here.
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yields the same expected revenue, and results in a buyer with value v making the same expected
payment.

The results in this note, as stated above, deal with sequential auctions with single-unit demand. In
contrast to Weber (1983)[7] we consider here a more general framework, which includes �rst-price
and second-price sealed bid sequential auctions as special cases. It is more of a generalization
of the result given by Weber (1983), since it establishes revenue equivalence for a broader class
of auctions. Our study also di�ers from Milgrom and Weber (1982)[4], Engelbrecht-Wiggans
(1988)[1] and Klemperer (2004)[2] because all of them study single stage multi-object auctions and
our analysis is based on sequential multi-object auctions.

2 Structure of the Model

• A seller possesses K > 1 units of a homogeneous commodity.

• There are N buyers and N > K.

• Each buyer has demand for one unit of the commodity.

• The objective of the seller is to ensure e�cient allocation of this commodity in the sense
that the units of the homogeneous commodity should end up going to those who value it the
most. This process therefore amounts to a multi-unit auction with single-unit demand. Here
the buyers are the bidders.

• We assume the symmetric, independent, private values (or SIPV) framework.

• The private value vector for bidder i in this case can be written as X i = (X i
1, 0,..., 0) (since

bidder i has a non-negative valuation for the �rst unit and from the second unit onwards to
every unit, bidder i de�nitely attaches a value zero ). For simplicity's sake we denote X i

1 as
Xi.

• Each Xi is independently and identically distributed on some interval [0, ω]. According to
the increasing distribution function F . We have assumed that F has a continuous density
and f ≡ F / and has full support.

• Bidder i knows the realization xi of Xi only and also knows that the valuations of the other
bidders are independently distributed according to F .

• Bidders are risk neutral - they seek to maximize their expected pro�ts.

• All components of the model other than the realized values are assumed to be commonly
known to all bidders. In particular, the distribution F is common knowledge, as is the
number of bidders. And after each period the highest bid of that period also becomes
common knowledge to the rest of the bidders.

• It is also assumed that bidders are not subject to any liquidity or budget constraints.
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• In this game the strategy for each bidder is his/her bid. This means to say that every
bidder can choose to report a bid in order to maximize his/her expected payo�. The bidding
strategy for a bidder is a function βk : [0, ω] → R+ which determines his or her bid for any
value2. βk (.) is assumed to be an increasing function of valuation and di�erentiable in its
domain, for all k.

• It is assumed that the seller has a valuation 0 for each of the objects.

• The seller designs multi-stage sequential auctions to sell her commodities, where at each stage
the highest bidder of the previous stage gets eliminated. In each period only one unit of a
particular homogeneous, indivisible commodity is o�ered for sale through standard auction.

• Finally we assume that β constitutes a symmetric and increasing equilibrium of the auction.

3 Revenue Equivalence in Sequential Standard Auctions

First we consider a case where only two units are sold (K = 2), so that a symmetric equilibrium
consists of two functions (β1, β2), denoting the equilibrium bidding strategies in the �rst and second
periods, respectively. The �rst-period bidding strategy is a function β1 : [0, ω]→ R+ that depends
only on the bidder's value. The bid in the second period depends on both the bidder's value
and the valuation of the winning bidder of the �rst auction. We denote by Y N−1

1 the highest of
(N − 1) values (the highest order statistic), by Y N−1

2 the second highest, and so on and similarly by

Y N−2
1 the highest of the (N − 2) values, by Y N−2

2 the second highest and so on. Let G
[1]
j and G

[2]
j be

the distributions of the jth highest order statistics in the �rst and the second periods respectively.

Since the �rst period bidding strategy β1(.) is assumed to be invertible, the value of the winning
bidders in the �rst period is commonly known in the second period; it is just y1 = β−1

1 (p1), where
p1 is the price paid by the winning bidder in the �rst stage. Thus the second period strategy can
be thought of as a function β2 : [0, ω]× [0, ω]→ R+, so that a bidder with value x bids an amount
β2 (x, y1) if Y N−1

1 = y1. We are interested in equilibria that are sequentially rational - that is,
equilibria with the property that following any outcome of the �rst-period auction, the strategies
in the second period form an equilibrium.

We begin with the second period, considering the decision problem facing a particular bidder, say
i whose value is x. Let us suppose that all other bidders follow the equilibrium strategy β2 (., y1)in
the second stage of the auction. Since the bidders competing against bidder i in the second auction
have values Y N−1

2 , Y N−1
3 , ..., Y N−1

N−1 and in equilibrium, Y N−2
1 < y1, it makes no sense for bidder i

to bid an amount greater than β2 (y1, y1). His expected payo� in the second auction if he bids
β2 (z, y1)for some z ≤ y1can be written as:

Π2 (z, x, y1) =
(
x−M [2]

1 (β2 (z))
)

G
[2]
1 (z)

F (y1)N−2 −
N−1∑
j=2

M
[2]
j (β2 (z))

G
[2]
j (z)

F (y1)N−2

= x
G

[2]
1 (z)

F (y1)N−2 −
N−1∑
j=1

M
[2]
j (β2 (z))

G
[2]
j (z)

F (y1)N−2

2k denotes the stage.
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where, G
[2]
j (z) =N−2 Cj−1F (z)(N−2)−(j−1) (1− F (z))j−1 denotes the probability distribution of the

jth highest order statistic for the (N − 2) bidders other than bidder i in the second period, with
the corresponding density being

g
[2]
j (z) = N−2Cj−1

[
{(N − 2)− (j − 1)}F (z)(N−2)−(j−1)−1 (1− F (z))j−1 f (z)

− (j − 1)F (z)(N−2)−(j−1) (1− F (z))j−2 f (z)
]

and
G

[2]
j (z)

F (y1)N−1 denotes the conditional probability that bidder i is the jth highest bidder in the

second period, given that the winning valuation in the �rst period is y1(which becomes a common

knowledge in the second stage). Here M
[2]
j (β2 (z))denotes the payment when bidder i is the jth

highest bidder in the second period. From the �rst order condition of maximization of the expected
payo�, we obtain,

∂Π2(z,x,y1)
∂z

= 0

⇒ x
g
[2]
1 (z)

F (y1)N−2 −
N−1∑
j=1

[
M

[2]
j (β2 (z))

g
[2]
j (z)

F (y1)N−2 +M
[2]/
j (β2 (z)) β

/
2 (z)

G
[2]
j (z)

F (y1)N−2

]
= 0

⇒ xg
[2]
1 (z) =

N−1∑
j=1

M
[2]
j (β2 (z)) g

[2]
j (z) +

N−1∑
j=1

M
[2]/
j (β2 (z)) β

/
2 (z)G

[2]
j (z)

At a symmetric equilibrium z = x and therefore we have

xg
[2]
1 (x) =

N−1∑
j=1

M
[2]
j (β2 (x)) g

[2]
j (x) +

N−1∑
j=1

M
[2]/
j (β2 (x)) β

/
2 (x)G

[2]
j (x)

⇒
x∫
0

yg
[2]
1 (y) dy =

N−1∑
j=1

M
[2]
j (β2 (x))G

[2]
j (x)

⇒ xG
[2]
1 (x)−

x∫
0

yG
[2]
1 (y) dy =

N−1∑
j=1

M
[2]
j (β2 (x))G

[2]
j (x)

For our note, we have already assumed that β
/
2 (x) > 0. We have,

Π2 (z, x, y1)

= x
G

[2]
1 (z)

F (y1)N−2 −
N−1∑
j=1

M
[2]
j (β2 (z))

G
[2]
j (z)

F (y1)N−2

= x
G

[2]
1 (z)

F (y1)N−2 − 1

F (y1)N−2

z∫
0

yg
[2]
1 (y) dy

= (x− z)
G

[2]
1 (z)

F (y1)N−2 + 1

F (y1)N−2

z∫
0

G
[2]
1 (y) dy

so that,
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Π2 (x, x, y1)− Π2 (z, x, y1)

= 1

F (y1)N−2

x∫
0

G
[2]
1 (y) dy − (x− z)

G
[2]
1 (z)

F (y1)N−2 − 1

F (y1)N−2

z∫
0

G
[2]
1 (y) dy

= 1

F (y1)N−2

x∫
z

yG
[2]
1 (y) dy − (x− z)

G
[2]
1 (z)

F (y1)N−2

which is positive irrespective of x ≥ z or x ≤ z. Thus if the bidding function is increasing in
valuations, then the existence of a symmetric equilibrium is always ensured in the second stage.

The expected payo� in the �rst stage of auction can be written as:

Π1 (z, x) =
(
x−M [1]

1 (β1 (z))
)
G

[1]
1 (z)−

N∑
j=2

M
[1]
j (β1 (z))G

[1]
j (z)

+
(

1−G[1]
1 (z)

)
E
[
Π2 (x, x) |Y N−1

1 > z
]

= xG
[1]
1 (z)−

N∑
j=1

M
[1]
j (β1 (z))G

[1]
j (z) +

(
1−G[1]

1 (z)
)
E
[
Π2 (x, x) |Y N−1

1 > z
]

whereG
[1]
j (z) =N−1 Cj−1F (z)N−1 (1− F (z))j−1denotes the probability distribution of the jthhighest

order statistic for the (N − 1) bidders other than bidder i in the �rst period, with the corresponding
density being

g
[1]
1 (z) =N−1 Cj−1[((N − 1)− (j − 1))F (z)(N−1)−(j−1)−1 (1− F (z))j−1 f (z)

− (j − 1)F (z)(N−1)−(j−1) (1− F (z))j−2 f (z)

Here, E
[
Π2 (x, x) |Y N−1

1 > z
]
denotes the expected payo� in the second period, conditional on the

fact that Y N−1
1 > z i.e. the highest order statistic among the (N − 1)bidders other than bidder i

exceeds z.

Now,

E
[
Π2 (x, x) |Y N−1

1 > z
]

= E

[
1

F(Y N−1
1 )

N−2

x∫
0

G
[2]
1 (y) dy|Y N−1

1 > z

]
=

(
x∫
0

G
[2]
1 (y) dy

)
E

[
1

F(Y N−1
1 )

N−2 |Y N−1
1 > z

]
=

(
x∫
0

G
[2]
1 (y) dy

)
1

1−G
[1]
1 (z)

ω∫
0

(N−1)F(Y N−1
1 )

N−2
f(Y N−1

1 )
F(Y N−1

1 )
N−2 dY N−1

1

=

(
x∫
0

G
[2]
1 (y) dy

)
(N−1)

1−G
[1]
1 (z)

(1− F (z))

Therefore the expected payo� function for the �rst stage of auction can be written as

Π1 (z, x) = xG
[1]
1 (z)−

N∑
j=1

M
[1]
j (β1 (z))G

[1]
j (z) + (N − 1) (1− F (z))

x∫
0

G
[2]
1 (y) dy
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From the �rst order condition for maximization of Π1 (z, x) we obtain:

∂Π1(z,x)
∂z

= 0

⇒ xg
[1]
1 (z)−

N∑
j=1

[
M

[1]
j (β1 (z))

]
g

[1]
1 (z) +M

[1]/
j (β1 (z)) β/ (z)G

[1]
j (z)− (N − 1) f (z)

x∫
0

G
[2]
1 (y) dy = 0

⇒ xg
[1]
1 (z) =

N∑
j=1

[
M

[1]
j (β1 (z)) g

[1]
1 (z) +M

[1]/
j (β1 (z)) β/ (z)G

[1]
j (z)

]
− (N − 1) f (z)

x∫
0

G
[2]
1 (y) dy

At a symmetric equilibrium z = x , so that

xg
[1]
1 (x) =

N∑
j=1

[
M

[1]
j (β1 (x)) g

[1]
1 (x) +M

[1]/
j (β1 (x)) β

/
1 (x)G

[1]
j (x)

]
− (N − 1) f (x)

x∫
0

G
[2]
1 (y) dy

⇒
N∑
j=1

M
[1]
j (β1 (x))G

[1]
j (x) =

x∫
0

yg
[1]
1 (y) dy − (N − 1)

x∫
0

(
v∫
0

G
[2]
1 (y) dy

)
f (v) dv

⇒
N∑
j=1

M
[1]
j (β1 (x))G

[1]
j (x) = xG

[1]
1 (x)−

x∫
0

G
[1]
1 (y) dy −

x∫
0

(
v∫
0

G
[2]
1 (y) dy

)
f (v) dv

We have already assumed that β
/
1 (x) > 0. We have,

Π1 (z, x)

= xG
[1]
1 (z)−

N∑
j=1

M
[1]
j (β1 (z))G

[1]
j (z) + (N − 1) (1− F (z))

x∫
0

G
[2]
1 (y) dy

= xG
[1]
1 (z)− zG[1]

1 (z) +
z∫
0

G
[1]
1 (y) dy +

z∫
0

(
v∫
0

G
[2]
1 (y) dy

)
f (v) dv + (N − 1) (1− F (z))

x∫
0

G
[2]
1 (y) dy

= (x− z)G
[1]
1 (z) +

z∫
0

G
[1]
1 (y) dy +

z∫
0

(
v∫
0

G
[2]
1 (y) dy

)
f (v) dv + (N − 1) (1− F (z))

x∫
0

G
[2]
1 (y) dy

So we have

Π1 (x, x)− Π1 (z, x) =
x∫
z

G
[1]
1 (y) dy +

x∫
z

(
v∫
0

G
[2]
1 (y) dy

)
f (v) dv

+ (N − 1) (F (z)− F (x))
x∫
0

G
[2]
1 (y) dy − (x− z)G

[1]
1 (z)

which is positive irrespective of x ≥ z or x ≤ z. Thus if the bidding function is increasing in
valuations, then the existence of a symmetric equilibrium is always ensured in the �rst stage. Note

that the expected payments to the seller at equilibrium, in both the stages,
N∑
j=1

M
[k]
j (βk (z))G

[k]
j (z)

∀k = 1, 2 do not depend on the payment rules set by the seller. Therefore, we have found that the
revenue equivalence theorem holds for each individual stage, and hence for the entire sequential
auction.
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We have checked that if a symmetric and increasing equilibrium exists, then for a two-stage se-
quential auction, the expected payment of a bidder with value zero is zero in both the stages of a
two-stage sequential standard auction. To check whether it holds for any �nite sequential standard
auction, we resort to the method of induction. We will assume that in each of the stages of the
sequential auction an increasing, symmetric equilibrium bidding strategy exists. It is routine to
check that the revenue equivalence holds for the �nal stage of the sequential auctions3. We will
run the induction backward. So, supposing that revenue equivalence holds for the Sthstage, where
S < K, we are interested in checking whether it holds for the (S − 1)thstage as well.

Let us de�ne

HS(x, x) =

[
xG

[S]
1 (x)−

N−S+1∑
j=1

M
[S]
j (βS (x))G

[S]
j (x) + (N − S)HS+1 (x, x) (1− F (x))

]
∀S ∈ [1, K − 1]

and

HK(x, x) =

[
xG

[K]
1 (x)−

N−K+1∑
j=1

M
[K]
j (βK (x))G

[K]
j (x)

]

In the Sthstage , there are (N − S + 1) bidders, and in the (S − 1)th stage there are (N − S + 2)

bidders. The expected payo� in the (S − 1)thstage be ΠS (x, x) = HS(x,x)

F(Y N−S+1
1 )

N−S = HS(x,x)

F (y1)N−S where

Y N−S+1
1 = y1 (say). Note that

ΠS−1 (z, x) = 1

F(Y N−S+2
1 )

N−S+1

[(
x−M [S−1]

1 (βS−1 (z))
)
G

[S−1]
1 (z)−

N−S+2∑
j=2

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z)

+
(

1− F (z)N−S+1
)
E
[
ΠS (x, x)

∣∣Y N−S+1
1 > z

]]
where 1

F(Y N−S+2
1 )

N−S+1 is equal to 1 if S = 24. Note that ∀k ∈ [2, K] Y k−1
1 > Y k

1 , as we are

assuming an increasing equilibrium, therefore expected pro�t function of a bidder in the kth stage
depends only on the value of Y k−1

1 and does not depend on Y 1
1 , · · · , Y k−2

1 .

Now it is clear that arg maxz ΠS−1(z, x) = arg maxz Π∗
S−1(z, x) where

Π∗
S−1 (z, x) =

(
x−M [S−1]

1 (βS−1 (z))
)
G

[S−1]
1 (z)−

N−S+2∑
j=2

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z)

+
(

1− F (z)N−S+1
)
E
[
ΠS (x, x)

∣∣Y N−S+1
1 > z

]
Now,

3The formal proof is very similar to the proof of revenue equivalence in the 2nd stage as presented above
4i.e. stage 1.
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Π∗
S−1 (z, x) =

(
x−M [S−1]

1 (βS−1 (z))
)
G

[S−1]
1 (z)−

N−S+2∑
j=2

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z)

+
(

1− F (z)N−S+1
)
E
[
ΠS (x, x)

∣∣Y N−S+1
1 > z

]
= xG

[S−1]
1 (z)−

N−S+2∑
j=1

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z) +

(
1− F (z)N−S+1

)
E

[
HS(x,x)

F(Y N−S+1
1 )

N−S

∣∣Y N−S+1
1 > z

]
= xG

[S−1]
1 (z)−

N−S+2∑
j=1

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z)

+
(

1− F (z)N−S+1
)

HS(x,x)

(1−F (z)N−S+1)

ω∫
z

(N−S+1)F(Y N−S+1
1 )

N−S
f(Y N−S+1

1 )
F(Y N−S+1

1 )
N−S dY N−S+1

1

= xG
[S−1]
1 (z)−

N−S+2∑
j=1

M
[S−1]
j (βS−1 (z))G

[S−1]
j (z) + (N − S + 1)HS (x, x) (1− F (z))

Therefore, from the �rst order condition of a maximization we obtain

∂Π∗
S−1(z,x)

∂z
= 0

⇒ xg
[S−1]
1 (z)−

N−S+2∑
j=1

[
M

[S−1]
j (βS−1 (z))

]
g

[S−1]
1 (z)− β/

S−1 (z)
N−S+2∑
j=1

M
[S−1]/
j (βS−1 (z))G

[S−1]
j (z)

− (N − S + 1)Hs (x, x) f (z) = 0

⇒
N−S+2∑
j=1

[
M

[S−1]
j (βS−1 (z))

]
g

[S−1]
1 (z) + β

/
S−1 (z)

N−S+2∑
j=1

M
[S−1]/
j (βS−1 (z))G

[S−1]
j (z)

= xg
[S−1]
1 (z)− (N − S + 1)Hs (x, x) f (z)

At a symmetric equilibrium z = x and we thus obtain

N−S+2∑
j=1

[
M

[S−1]
j (βS−1 (x))

]
g

[S−1]
1 (x) + β

/
S−1 (x)

N−S+2∑
j=1

M
[S−1]/
j (βS−1 (x))G

[S−1]
j (x)

= xg
[S−1]
1 (x)− (N − S + 1)Hs (x, x) f (x)

⇒
N−S+2∑
j=1

M
[S−1]
j (βS−1 (x))G

[S−1]
j (x) =

x∫
0

yg
[S−1]
1 (y) dy − (N − S + 1)

x∫
0

Hs (y, y) f (y) dy

Note that as we have assumed that the revenue equivalence holds up to Sth stage, we know that
Hs(., .) is independent of M [i](.) ∀i ∈ [S,K]. The �nal expression of the above equation shows
that revenue equivalence holds for the (S − 1)thstage as well. Therefore, we can infer that the
revenue equivalence holds for each individual stage of a sequential standard auction with �nite
number of stages, if the bid function is increasing in valuations in each stage (and therefore the
existence of a symmetric equilibrium is ensured) and the expected payment of bidder with value
zero is zero.

4 Conclusion

This paper makes an attempt to generalize the existing result for revenue equivalence of Weber
(1983) for �rst and second price sealed bid sequential auctions with single-unit demand by proving
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that revenue equivalence holds for any standard sequential auction, in a SIPV framework, with
�nite number of stages and single-unit demand whenever a symmetric and increasing equilibrium
exists and the expected payment of a bidder with valuation zero becomes zero. Further scope of
research in this direction lies in analyzing the multiple unit sequential auctions, where only one
unit is sold at each stage, involving multiple unit demand, thus generalizing the context suggested
by Engelbrecht-Wiggans (1988)[1] to the case of sequential auctions.
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