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1. Introduction

A two-sided assignment market consists of two disjoint sets of agents, let us say buyers
and sellers or firms and workers, and a non-negative real number associated with each
possible partnership between two agents of different sectors, that represents the potential
profit of forming that pairing. Assuming transferable utility to share the profits of these
partnerships, Shapley and Shubik (1972) introduce the assignment game to model this
situation in a coalitional form where only individual coalitions and mixed-pair coalitions
are relevant. They show that the core of this game is non-empty and consists of those
individually rational allocations that are efficient and satisfy pairwise stability, that is, no
buyer-seller pair can form a partnership and produce more than the sum of their payoffs.
The core of the assignment game has been widely studied in the literature and, since it
very rarely reduces to only one point, it becomes necessary to make a selection inside the
core.

An outstanding element of the core for arbitrary coalitional games is the nucleolus
(Schmeidler, 1969), which is the unique individually rational and efficient allocation that
lexicographically minimizes the vector of non-increasingly ordered excesses of coalitions.
This definition can be interpreted as in Maschler et al. (1979), saying that the nucleolus is
fair in the sense that it is the result of an arbitrator’s desire to minimize the dissatisfaction
of the most dissatisfied coalition.

Solymosi and Raghavan (1994) provide an algorithm that computes the nucleolus of
an assignment game, based on the fact (already pointed out by Huberman, 1980) that
for assignment games, only one-player coalitions and mixed-pair coalitions play a role in
the calculation of the nucleolus.1

The kernel is another solution concept for arbitrary coalitional games. It was intro-
duced by Davis and Maschler (1965) and it always contains the nucleolus. It is shown
in Maschler et al. (1979) that for two games with the same core the intersection of the
kernel and the core also coincides. In the same paper, a geometric characterization of
those allocations in the intersection of the core and the kernel of a game is given. It is
shown there that an outcome that lies in both the kernel and the core is always the mid-
point of a certain bargaining range between each pair of players. Each endpoint of this
range is in the boundary of the core, representing a maximum demand by one player, in
that the other player can find a coalition to support him in resisting any greater demand.
This view of the kernel gives it an intuitive interpretation as a “fair division” scheme.
However, a similar geometric characterization of the locus of the nucleolus inside the core
is not possible for arbitrary games, since there are games with the same core but different
nucleolus.2 Nevertheless, it is known from Núñez (2004) that two assignment games with
the same core have the same nucleolus.3 This suggests the possibility of characterizing
the locus of the nucleolus in the core of the assignment game.

The kernel of the assignment game is always included in the core (Granot, 1995;
Driessen, 1998). Taking this into account, Driessen (1999) applies to the assignment
game the geometric interpretation of the kernel given in Maschler et al. (1979): given

1See also Raghavan and Sudhölter (2006) for examples of application of this algorithm.
2See Maschler et al. (1979) page 335.
3An analysis of different assignment games with the same core can be found in Mart́ınez-de-Albéniz

et al. (2011a) and Mart́ınez-de-Albéniz et al. (2011b).
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an allocation in the core of the assignment game and an optimally matched pair, one
can consider the maximum amount that can be transferred from one member of the pair
to her/his partner, the payoff to the remaining agents being unaltered, without getting
outside the core. In a kernel element, and for each optimal pair, the transfers of both
partners are balanced, that meaning that the kernel element is at a midpoint with respect
to certain ranges of the core. The aim of the present paper is to determine which other
bisection conditions in terms of transfers are necessary to individualize the nucleolus of
the assignment game. Under the assumption that there are as many buyers as sellers we
consider, for each core allocation and for each subset of buyers, what is the maximum
equal payoff that each of them can transfer to his optimal partner without leaving the core.
When this maximum transfer equals the maximum transfer of the coalition of partners
we say that the initial core allocation satisfies the bisection property with respect to this
coalition of buyers. Then, the nucleolus of the assignment game is characterized as the
unique core allocation that has the bisection property with respect to all coalitions.

The paper is organized as follows. Section 2 includes the preliminaries about coali-
tional games and assignment games. Section 3 contains the geometric characterization of
the nucleolus, although its proof is consigned to the appendix. Section 4 concludes.

2. Definitions and notations

Let N = {1, 2, ..., n} denote a finite set of players, and 2N the set of all possible coalitions
or subsets of N . The cardinality of coalition S is denoted by |S|. Given two coalitions S
and T , S ⊆ T denotes inclusion while S ⊂ T denotes strict inclusion.

A cooperative game in coalitional form (a game) is a pair (N, v), where v : 2N −→ R,
with v(∅) = 0, is the characteristic function which assigns to each coalition S the worth
v(S) it can attain.

Given a game (N, v), a payoff vector is x ∈ RN , where xi stands for the payoff to
player i ∈ N . The restriction of x to a coalition S is denoted by x|S. An imputation is a
payoff vector x that is efficient,

∑
i∈N xi = v(N), and individually rational, xi ≥ v({i})

for all i ∈ N . The set of all imputations of a game (N, v) is denoted by I(v), and when
I(v) 6= ∅ the game is said to be essential. The excess of a coalition S at an imputation
x ∈ I(v) is ev(S, x) = v(S)−∑

i∈S xi.
A solution concept defined on the set of games with player set N is a rule that assigns

to each such game a subset of efficient payoff vectors. The best known set-solution concept
for coalitional games is the core. The core of a game (N, v), denoted by C(v), is the set
of payoff vectors that are efficient and coalitionally rational, that is,

∑
i∈S xi ≥ v(S) for

all S ⊆ N . A game with a non-empty core is called balanced. Given a balanced game, a
well known single–valued core selection is the nucleolus (Schmeidler, 1969).

Let us define the vector θ(x) ∈ R2n−2 of excesses of all coalitions (different from
the grand coalition and the empty set) at x , arranged in a nonincreasing order. Then,
the nucleolus of the game (N, v) is the imputation η(v) which minimizes θ(x) with
respect to the lexicographic order over the set of imputations: θ(η(v)) ≤Lex θ(x) for all
x ∈ I(v) . This means that, for all x ∈ I(v) , either θ(η(v)) = θ(x) or θ(η(v))1 < θ(x)1

or there exists k ∈ {1, 2, . . . , 2n − 3} such that θ(η(v))i = θ(x)i for all 1 ≤ i ≤ k and
θ(η(v))k+1 < θ(x)k+1 .

The kernel (Davis and Maschler, 1965) is another set-solution concept for cooperative
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games. For zero–monotonic games,4 as it is the case of assignment games, the kernel
can be described by K(v) = {z ∈ I(v) | sv

ij(z) = sv
ji(z) for all i, j ∈ N , i 6= j } ,

where sv
ij(z) = max {ev(S, z)|S ⊆ N , i ∈ S , j 6∈ S } . We will just write sij(z) when no

confusion regarding the game v can arise.

2.1. The assignment model

A two-sided assignment market (M, M ′, A) is defined by a finite set of buyers M, a finite
set of sellers M ′, and a nonnegative matrix A = (aij)(i,j)∈M×M ′ . The real number aij

represents the profit obtained by the mixed-pair (i, j) ∈ M ×M ′ if they trade. Let us
assume there are |M | = m buyers and |M ′| = m′ sellers, and n = m+m′ is the cardinality
of N = M ∪M ′.

A matching µ ⊆ M×M ′ between M and M ′ is a bijection from M0 ⊆ M to M ′
0 ⊆ M ′,

such that |M0| = |M ′
0| = min {|M | , |M ′|} . We write (i, j) ∈ µ as well as j = µ (i) or

i = µ−1 (j) . The set of all matchings is denoted byM (M, M ′) . If m = m′, the assignment
market is said to be square.

A matching µ ∈ M (M, M ′) is optimal for the assignment market (M,M ′, A) if for
all µ′ ∈M (M,M ′) we have

∑
(i,j)∈µ aij ≥

∑
(i,j)∈µ′ aij, and we denote the set of optimal

matchings by M∗
A (M,M ′) .

Shapley and Shubik (1972) associate to any assignment market (M,M ′, A) a coopera-
tive game in coalitional form, with player set N = M∪M ′ and characteristic function wA,

defined by: for S ⊆ M and T ⊆ M ′, wA (S ∪ T ) = max
{∑

(i,j)∈µ aij | µ ∈M (S, T )
}

,

M (S, T ) being the set of matchings between S and T . The core of the assignment game
is always non-empty, and it is enough to impose coalitional rationality for one-player
coalitions and mixed-pair coalitions:

C (wA) =

{
(u, v) ∈ RM

+ × RM ′
+

∣∣∣∣
∑

i∈M ui +
∑

j∈M ′ vj = wA (N) ,

ui + vj ≥ aij, for all (i, j) ∈ M ×M ′

}
, (1)

where R+ stands for the set of non-negative real numbers. It follows from (1) that, if µ
is an optimal matching, unassigned agents receive null payoff and, moreover,

if (i, j) ∈ µ, then ui + vj = aij. (2)

Since the assignment game has a non-empty core, its nucleolus always lies in the core.
Moreover, it can be deduced from Huberman (1980) that only individual coalitions and
mixed-pair coalitions need to be taken into account in the computation of the nucleolus
of an assignment game. Solymosi and Raghavan (1994) provide an algorithm to compute
the nucleolus of the assignment game.

As for the kernel of assignment games, it turns out that it is always included in the
core, K(wA) ⊆ C(wA) (Granot, 1995; Driessen, 1998). Moreover, if (u, v) ∈ C(wA), then
(a) sij(z) = 0 whenever i, j ∈ M or i, j ∈ M ′, and (b) if i ∈ M and j ∈ M ′, then sij(z)
is always attained at the excess of some individual coalition or mixed–pair coalition:

sij(u, v) = max
k∈M ′\{j}

{−ui, aik − ui − vk}.

4A game (N, v) is zero-monotonic if for any pair of coalitions S, T , S ⊂ T ⊆ N it holds v(S) +∑
i∈T\S v({i}) ≤ v(T ).
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As a consequence, given (u, v) ∈ C(wA), we get that (u, v) ∈ K(wA) if and only if
sij(u, v) = sji(u, v) for all (i, j) belonging to all the optimal matchings, since the remaining
equalities hold trivially.

By adding dummy players, that is, null rows or columns in the assignment matrix,
we can assume from now on, without loss of generality, that the number of sellers equals
the number of buyers, since this does not modify the nucleolus payoff of the non-dummy
agents.5

3. Characterization of the nucleolus

Given an arbitrary coalitional game (N, v), with any core allocation z ∈ C(v) and any
pair of different agents i, j ∈ N , there is associated a non-negative real number δv

ij(z)
designating the largest amount that can be transferred from player i to player j with
respect to the core allocation z while remaining in the core of the game (N, v):

δv
ij(z) = max{ε ≥ 0 | z − εei + εej ∈ C(v)},

where, for all i ∈ N , ei ∈ RN is the vector defined by ei
i = 1 and ei

k = 0 for all
k 6= i, k ∈ N . This critical number δv

ij(z) was introduced by Maschler et al. (1979).
For any core element z ∈ C(v), this number δv

ij(z) is related to the excess sv
ij(z) in the

definition of the kernel by δv
ij(z) = −sv

ij(z). They prove in the aforementioned paper that
a bisection property characterizes those elements in the intersection of the kernel and the
core: z ∈ C(v) ∩ K(v) if and only if z is the midpoint of the core segment with extreme
points z− δv

ij(z)ei + δv
ij(z)ej and z + δv

ji(z)ei− δv
ji(z)ej, for all i, j ∈ N . In this section we

introduce a stronger bisection property that characterizes the nucleolus of the assignment
game.

Let (M,M ′, A) be an assignment market with as many buyers as sellers, that is,
|M | = |M ′| = m. For any R ⊆ M or R ⊆ M ′, the vector eR ∈ Rm stands for eR

k = 1 if
k ∈ R and eR

k = 0 if k 6∈ R. Then, for each S ⊆ M and T ⊆ M ′, S, T 6= ∅, we define the
largest amount that can be transferred from players in S to players in T with respect to
the core allocation (u, v) while remaining in the core of wA by

δwA
S,T (u, v) = max{ε ≥ 0 | (u− εeS, v + εeT ) ∈ C(wA)}. (3)

Similarly,
δwA
T,S(u, v) = max{ε ≥ 0 | (u + εeS, v − εeT ) ∈ C(wA)}. (4)

We write δS,T (u, v) and δT,S(u, v), respectively, if no confusion arises regarding the as-
signment game (M ∪M

′
, wA).

Notice that if there exists an optimal matching µ ∈ M∗
A(M, M ′) such that S and T

do not correspond each other by this optimal matching (µ(S) 6= T ), then δS,T (u, v) =
δT,S(u, v) = 0 for all (u, v) ∈ C(wA). The reason is that if there exists i ∈ S such that
µ(i) 6∈ T (and similarly for j ∈ T such that µ−1(j) 6∈ S) we have that the payoff vector
(u′, v′) = (u − εeS, v + εeT ) will lie outside the core for all ε > 0, since u′i + v′µ(i) =
ui − ε + vµ(i) 6= aiµ(i). This is why we will only consider transfers between coalitions that
correspond by an optimal matching.

5A detailed argument can be found in Núñez (2004).
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Definition 1. Let (M,M ′, A) be an assignment market, µ ∈ M∗
A(M,M ′) and S ⊆

M, S 6= ∅. The core allocation (u, v) has the S-bisection property with respect to µ if
and only if δS,µ(S)(u, v) = δµ(S),S(u, v).

Both for theoretical and practical purposes, it will be useful to have an explicit ex-
pression of the critical numbers δS,T (u, v) when S ⊆ M and µ(S) = T by some optimal
matching µ. Given (u, v) ∈ C(wA), if we want the allocation (u′, v′) = (u− εeS, v + εeT )
to remain in the core of the assignment game (see expression (1)), only the inequalities
ui − ε ≥ 0 for all i ∈ S and ui − ε + vj ≥ aij for all i ∈ S and all j ∈ M ′ \ T must
hold. This means that, for all (u, v) ∈ C(wA), given a non-empty coalition S ⊆ M and
µ ∈M∗

A(M,M ′),
δS,µ(S)(u, v) = min

i∈S,j∈M ′\µ(S)
{ui, ui + vj − aij}. (5)

and, similarly,
δµ(S),S(u, v) = min

i∈M\S,j∈µ(S)
{vj, ui + vj − aij}. (6)

At this point it is worth to remark that, by Maschler et al. (1979) and Driessen
(1999), the kernel of the assignment game is the set of core allocations satisfying the
{i}-bisection property for all i ∈ M . Since the nucleolus belongs to the kernel, it satisfies
this property. What we state in the next theorem is that the nucleolus of the assignment
game can be characterized by the S-bisection property, for all S ⊆ M, S 6= ∅, and with
respect to any optimal matching µ.

Theorem 1. Let (M,M ′, A) be a square assignment market. The nucleolus is the unique
core allocation satisfying the S-bisection property, for all S ⊆ M, S 6= ∅. Formally, if
(u, v) ∈ C(wA) and µ ∈M∗

A(M,M ′), then

(u, v) = η(wA) if and only if δs,µ(S)(u, v) = δµ(S),S(u, v) for all S ⊆ M,S 6= ∅.

The proof of the theorem is a bit technical and it is consigned to the appendix. The
idea behind the proof is the following. Take an optimal matching µ and a coalition
S ∪µ(S), and consider the core segment obtained from the nucleolus by making an equal
transfer between agents in each pair (i, µ(i)) with i ∈ S, the payoff of the other agents
remaining fixed. We compute the excesses of all mixed-pair and individual coalitions at an
arbitrary element of the segment. Most of these excesses are constant along the segment
and thus do not play a role when computing the lexicographic minimum of the non-
increasingly ordered vector of excesses over the segment. With the non-constant excesses
we compute this lexicographic minimum and find it is the midpoint of the segment.
Hence, the nucleolus has the S-bisection property.

Let us stress that Theorem 1 is useful to check if a given allocation in the core of
an assignment game (M ∪M ′, wA) is in fact its nucleolus. Moreover, whenever several
optimal matchings exist, the difficulty of the problem may be reduced. It is enough
to check that the given allocation satisfies the S-bisection property for all coalitions
S ⊆ M that have the same image by all optimal matchings µ ∈ M∗

A(M,M ′). Formally,
if S = {S ⊆ M | µ(S) = µ′(S) for all µ, µ′ ∈M∗

A(M,M ′)} , then

η(wA) =
{
(u, v) ∈ C(wA) | δS, µ(S)(u, v) = δµ(S), S(u, v) for allS ∈ S}

. (7)
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Also, after Theorem 1 one may wonder if the nucleolus of the assignment game could
be characterized by imposing the bisection property for some smaller subset of coalitions
of M . The next example shows that imposing the bisection property for individual
coalitions and the grand coalition is not enough to obtain the nucleolus.

Example 1. Let it be the assignment market with set of buyers M = {1, 2, 3}, set of
sellers M ′ = {4, 5, 6} and defined by matrix

A =




7 6 3
5 4 1
3 2 1


 .

There are two optimal matchings: µ1 = {(1, 4), (2, 5), (3, 6)} and µ2 = {(1, 5), (2, 4), (3, 6)}.
Thus, to check that a given allocation is the nucleolus we only need to verify that it
satisfies the bisection property for those S ⊆ M such that µ1(S) = µ2(S). In this
case, η(wA) = (3.5, 1.5, 0.5; 3.5, 2.5, 0.5) since it satisfies the bisection property with
respect to coalitions {3}, {1, 2} and {1, 2, 3}. Moreover, if we consider the core ele-
ment (u, v) = (3, 1, 0.5; 4, 3, 0.5) we realize that δ{3},{6}(u, v) = 0.5 = δ{6},{3}(u, v),
δM,M ′(u, v) = 0.5 = δM ′,M(u, v), but δ{1,2},{4,5}(u, v) = 0.5 while δ{4,5},{1,2}(u, v) = 1.5.

4. Concluding remarks

The kernel of an assignment game is a subset of the core and it is characterized as the set
of core allocations that satisfy the bisection property for each pair in an optimal matching.
This means that a kernel element is the midpoint of all maximal core segments obtained
by transfers between a pair of optimally matched partners. It is also known (Granot
and Granot, 1992) that the kernel of an assignment game need not be a convex set, so
finding a geometric characterization of one particular kernel point (the nucleolus) seems
an interesting problem. The presented characterization of the nucleolus is a strengthening
of the bisection property of kernel points, it only needs to be required for some additional
line segments inside the core, each obtained by transferring the same payoffs from a group
of players in one side of the market to their optimally matched partners. This geometric
characterization is specially useful to check if a given core element is the nucleolus of the
assignment game.

Appendix. Proof of Theorem 1

Proof. We first prove that the nucleolus satisfies the S-bisection property for all S ⊆
M, S 6= ∅. Let us denote (for short) by η = (η|M , η|M ′) the nucleolus η(wA), and let us
fix a coalition S ⊆ M, S 6= ∅. We now consider the core segment [η−S , η+

S ] that can be
obtained from η by means of doing equal transfers from agents in S to agents in µ(S)
(and reciprocally). By (3) and (4), the extreme points of the segment are

η−S =
(
η|M − δS,µ(S)(η)eS, η|M ′ + δS,µ(S)(η)eµ(S)

)
and

η+
S =

(
η|M + δµ(S),S(η)eS, η|M ′ − δµ(S),S(η)eµ(S)

)
.

For simplicity of notation we will omit the subscript and write η− and η+.
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Let K = δS,µ(S)(η) + δµ(S),S(η), then the segment [η−, η+] can be described as the set
of those payoff vectors (u, v) ∈ RM × RM ′

for which there exists ε(u,v) ∈ [0, K] such that

ui = η+
i − ε(u,v) for all i ∈ S, ui = η+

i for all i ∈ M \ S
vj = η+

j + ε(u,v) for all j ∈ µ(S), vj = η+
j for all j ∈ M ′ \ µ(S).

(8)

Note, from the definition of η+ and η−, that εη+ = 0 and εη− = K. Moreover, the nucleolus
η is obtained taking εη = δµ(S),S.

Since by definition the vector of ordered excesses (with respect to individual and
mixed-pair coalitions) of the nucleolus, θ(η), satisfies θ(η) ≤L θ(u, v) for all (u, v) ∈
C(wA), we have, in particular, that θ(η) lexicographically minimizes the vector of excesses
θ(u, v) over [η−, η+]. We will see that η satisfies the equation δS,µ(S)(η) = δµ(S),S(η) or,
equivalently, εη = K

2
.

If the segment [η−, η+] reduces to a single point, we are done. Otherwise, let us fix an
arbitrary allocation (u, v) ∈ [η−, η+] and analyze first the excesses of mixed-pair coalitions
at (u, v):

• If (i, j) ∈ S × µ(S), and taking (8) into account, there exists ε(u,v) ∈ [0, K] such
that

e({i, j}, (u, v)) = aij−ui−vj = aij−(η+
i −ε(u,v))−(η+

j +ε(u,v)) = aij−η+
i −η+

j = e({i, j}, η+).
(9)

• Similarly, if (i, j) ∈ (M \ S)× (M ′ \ µ(S)), then

e({i, j}, (u, v)) = aij − ui − vj = aij − η+
i − η+

j = e({i, j}, η+). (10)

Since the excesses of the above coalitions are constant on [η−, η+] they need not be
considered in the lexicographically minimization of the vector of excesses θ(u, v) over
the segment [η−, η+]. Thus, the relevant excesses of mixed-pair coalitions are those with
either one agent in S and the other one in M ′ \µ(S) or one agent in M \S and the other
one in µ(S):

• If (i, j) ∈ S × (M ′ \ µ(S)), by (8) and the fact that η+
i = η−i + K and η+

j = η−j , we
have

e({i, j}, (u, v)) = aij−ui−vj = aij−(η+
i −ε(u,v))−η+

j = aij−η−i −η−j −K+ε(u,v) ≤ −K+ε(u,v).
(11)

• Similarly, if (i, j) ∈ (M \ S)× µ(S), then, by (8),

e({i, j}, (u, v)) = aij − ui − vj = aij − η+
i − (η+

j + ε(u,v)) ≤ −ε(u,v). (12)

Let us now analyze the excesses of individual coalitions at the allocation (u, v) ∈
[η−, η+]. Notice that if i ∈ M \ S, by (8) we have e({i}, (u, v)) = −η+

i and similarly,
if j ∈ M ′ \ µ(S) it holds e({j}, (u, v)) = −η+

j . Again, since the excesses of the above
individual coalitions are constant on [η−, η+] they need not be taken into account in the
computation of the lexicographic minimum of the vector of ordered excesses over [η−, η+].
It remains to consider the excesses of individual coalitions at (u, v) with i ∈ S or j ∈ µ(S):
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• If i ∈ S, then by (8) and taking into account that η+
i = η−i + K, we have

e({i}, (u, v)) = −(η+
i − ε(u,v)) = −η−i −K + ε(u,v) ≤ −K + ε(u,v). (13)

• If j ∈ µ(S), by (8) we get

e({j}, (u, v)) = −(η+
j + ε(u,v)) ≤ −ε(u,v). (14)

Now, by definition of η+, there must be some core constraint that is tight at the
extreme point η+ and not tight at all other points of the segment [η−, η+]. If this core
constraint were related to a coalition {i} with i ∈ S, then η+

i = 0 would imply, by (8),
ui = −ε(u,v) ≥ 0 or, equivalently, ε(u,v) = 0, for all (u, v) ∈ [η−, η+], in contradiction with
the assumption that [η−, η+] is not a singleton. Also, if the constraint that is tight at
η+ is {i, j} with (i, j) ∈ S × (M ′ \ µ(S)) we have, by the second equality in (11), that
for all (u, v) ∈ [η−, η+], e({i, j}, (u, v)) = ε(u,v) and since excesses at core allocations are
always non-positive we obtain ε(u,v) = 0 for all (u, v) ∈ [η−, η+], which implies, as before,
a contradiction. This means that either:

a) There exists (i∗, j∗) ∈ (M \ S) × µ(S) such that η+
i∗ + η+

j∗ = ai∗j∗, and then for all
(u, v) ∈ [η−, η+], and taking (12) and (14) into account, we have

e({i∗, j∗}, (u, v)) = ai∗,j∗ − η+
i∗ − (η+

j∗ + ε(u,v)) = −ε(u,v) ≥ e(T, (u, v)), (15)

for all T = {i, j} with (i, j) ∈ (M \ S)× µ(S) and all T = {j} with j ∈ µ(S).

b) Or there exists j∗ ∈ µ(S) with η+
j∗ = 0, and then for all (u, v) ∈ [η−, η+], again taking

(12) and (14) into account, we have

e({j∗}, (u, v)) = −ε(u,v) ≥ e(T, (u, v)), (16)

for all T = {i, j} with (i, j) ∈ (M \ S)× µ(S) and all T = {j} with j ∈ µ(S).

Similarly, there must be some core constraint that is tight at η− and not tight at
all other points of [η−, η+]. If this core constraint were related to a coalition {j} with
j ∈ µ(S), then η−j = 0 would imply, by (8), vj = η+

j +ε(u,v) = η−j −K+ε(u,v) = −K+ε(u,v).
Since ε(u,v) ∈ [0, K] and vj ≥ 0, we have vj = 0 for all (u, v) ∈ [η−, η+]. Also, if the
constraint that is tight at η− is {i, j} with (i, j) ∈ (M \ S)× µ(S) we have by (12), and
the fact that η−i = η+

i and η−j = η+
j + K, e({i, j}, (u, v)) = aij − η+

i − (η+
j + ε(u,v)) =

aij − η−i − (η−j − K + ε(u,v)) = K − ε(u,v) ≤ −ε(u,v), for all (u, v) ∈ [η−, η+], which
implies K = 0 or, equivalently, the reduction of the segment [η−, η+] to only one point,
in contradiction with our assumption. This means that either:

c) There exists (i∗, j∗) ∈ S × (M ′ \ µ(S)) such that η−i∗ + η−j∗ = ai∗j∗, and then for all
(u, v) ∈ [η−, η+], and taking (11) and (13) into account, we have

e({i∗, j∗}, (u, v)) = −K + ε(u,v) ≥ e(T, (u, v)), (17)

for all T = {i, j} with (i, j) ∈ S × (M ′ \ µ(S)) and all T = {i} with i ∈ S.
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d) Or there exists i∗ ∈ S with η−i∗ = 0, and then for all (u, v) ∈ [η−, η+], again taking
(11) and (13) into account, we have

e({i∗}, (u, v)) = −K + ε(u,v) ≥ e(T, (u, v)), (18)

for all T = {i, j} with (i, j) ∈ S × (M ′ \ µ(S)) and all T = {i} with i ∈ S.

To sum up, let us denote by C the set of coalitions that are to be taken into account
for the lexicographic minimization of the vector of ordered excesses over the segment
[η−, η+]. That is

C = {{i} | i ∈ S}∪{{j} | j ∈ µ(S)}∪{{i, j} | (i, j) ∈ (S×(M ′\µ(S)))∪((M\S)×µ(S))}.

Then, for all (u, v) ∈ [η−, η+] we have

max
S∈C

e(S, (u, v)) = max{−ε(u,v),−K + ε(u,v)}

and thus
min

(u,v)∈[η−,η+]
max
S∈C

e(S, (u, v))

is attained at the point (u, v) ∈ [η−, η+] such that −ε(u,v) = −K+ε(u,v), that is ε(u,v) = K
2
.

Since the nucleolus lexicographically minimizes the vector of excesses over the segment
[η−, η+] we deduce that εη = K

2
and thus, since εη = δµ(S),S(η), we have δS,µ(S)(η) =

δµ(S),S(η), which proves the S-bisection property of the nucleolus with respect to the
arbitrary coalition S ⊆ M .

To conclude the proof we must see that a core allocation different from the nucleolus
fails to satisfy the S-bisection property for some coalition S ⊆ M, S 6= ∅. Let us consider
z ∈ C(wA) such that z 6= η. Then, either there exists i ∈ M such that zi > ηi or there
exists i ∈ M such that zi < ηi. In the first case, there exists a non-empty coalition
S ⊆ M such that zi > ηi for all i ∈ S and zi ≤ ηi for all i ∈ M \ S. As a consequence,
it follows from (2) that zj < ηj for all j ∈ µ(S) and zj ≥ ηj for all j ∈ M ′ \ µ(S). Then,
making use of expressions (5) and (6),

δS,µ(S)(z) = min
i∈S,j∈M ′\µ(S)

{zi, zi + zj − aij} > min
i∈S,j∈M ′\µ(S)

{ηi, ηi + ηj − aij}
= min

j∈µ(S),i∈M\S
{ηj, ηi + ηj − aij} > min

j∈µ(S),i∈M\S
{zj, zi + zj − aij} = δµ(S),S(z),

where the second equality follows from the fact that δS,µ(S)(η) = δµ(S),S(η). Then,
δS,µ(S)(z) > δµ(S),S(z) implies that z does not satisfies the S-bisection property.

The proof in the second case, that is when there exists i ∈ M such that zi < ηi, is
analogous.
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