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1. Introduction

Which Nash equilibria in coordination games (hereafter CG) would emerge in the
long run has been intensively studied in the literature of evolutionary games. Risk-
dominant equilibria are predicted by many works (e.g., Blume (1993, 1995), Ellison
(1993), Kandori et al. (1993), Young (1993), Sandholm (1998)). Under imitation
dynamics and local interaction, Alós-Ferrer and Weidenholzer (2006) show that risk-
dominant equilibria survive uniquely in the long run when players interact with their
immediate neighbors only. But payoff-dominant equilibria will be selected when play-
ers’ interactions are neither global nor limited to their immediate neighbors. In Alós-
Ferrer and Weidenholzer (2006), it is assumed that risk-dominant equilibria are not
Pareto efficient. Here we revisit Alós-Ferrer and Weidenholzer’s (2006) model but un-
der the assumption that risk-dominant equilibria are Pareto efficient. We find that
risk-dominant equilibria, non-risk-dominant equilibria, and some non-monomorphic
states all can emerge in the long run when players interact with their immediate neigh-
bors only. The intuition is simple. When risk-dominant equilibria are not Pareto
efficient, payoff-dominant-strategy takers can clump together and expand. Then, it
is costly for risk-dominant equilibria to jump out of their basin of attraction such
that they survive uniquely. In contrast, if risk-dominant equilibria are Pareto efficient,
the expansion force of non-risk-dominant strategy takers is weakened. Then, it is less
costly for risk-dominant equilibria to jump out of their basin of attraction so that some
non-monomorphic states can survive as well.

2. The Model and Results

Let N = {1, 2, . . . , n}, n ≥ 5, be the set of players. Players are assumed to
sit sequentially and equally spaced around a circle. Each individual has exactly two
neighbors. For i ∈ N , let Ni = {i − 1, i + 1} be the set of player i’s neighbors. At
each time period t ∈ {1, 2, 3, . . .}, players meet each of their two neighbors once to
play 2 × 2 symmetric CG below.

A B

A a, a b, c

B c, b d, d

where a > c and d > b such that both (A, A) and (B, B) are strict Nash equilibria.
Alós-Ferrer and Weidenholzer (2006) further assume that d > a and a + b > c + d so
that (A, A) is risk dominant and (B, B) is Pareto efficient. Here we assume that a ≥ d
and a+b > c+d so that (A, A) is both Pareto efficient and risk-dominant, and (B, B)
is non-risk-dominant. As in Alós-Ferrer and Weidenholzer (2006), we normalize the
above game as
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A B

A 1, 1 0, α
B α, 0 β, β

where α = c−b
a−b

and β = d−b
a−b

. Hence,

α < 1, 0 < β ≤ 1 and α + β < 1. (1)

Our state space S ≡ {A, B}N is a set containing all players’ strategy profiles.

Denote ~A = (A, A, . . . , A) and ~B = (B, B, . . . , B) the states in which all players take
strategies A and B, respectively. At the beginning of each period, players’ actions and
payoffs occured (after revision) in the last period are observable to their neighbors. And
players are assumed to imitate the strategies earning the highest total payoff among
their neighbors and themselves. Given state ~s = (s1, s2, . . . , sn) ∈ S, let zi(~s) be player
i’s total payoff after playing with his neighbors. Therefore,

zi(~s) =

{

nA
i (~s) if si = A,

α · nA
i (~s) + β · (2 − nA

i (~s)) if si = B,

where nA
i (~s) = |{j ∈ Ni : sj = A}| is the number of player i’s neighbors taking strategy

A. Then, player i’s next-period rational choice, ri(~s), will satisfy

ri(~s) ∈ arg max
j∈Ni∪{i}

zj(~s). (2)

Whenever there is a tie, strategy A or B will be taken with strictly positive probability.
At the end of each period, all players are allowed to revise their rational choices with
probability ε > 0. For fixed ε, our dynamic system is a Markov chain on S. Let Q0

and Qε be the transition probability matrices for the rational and revised processes
respectively. Define r(~s) = (r1(~s), . . . , rn(~s)). Being a perturbation of Q0, we have
Qε(~s, ~u) ≈ constant · εU(~s,~u) for any ~s, ~u ∈ S, where U(~s, ~u) = minr(~s) d(r(~s), ~u) and
d(r(~s), ~u) = |{i ∈ N : ri(~s) 6= ui}| counts the total number of player i revising his
rational choice ri(~s) at state ~s.

Because Qε(~s, ~u) > 0 for all ~s, ~u ∈ S, the revision makes our dynamic system
{Xt} ergodic. Let µε be the associated unique invariant distribution under Qε. We

are interested in the limit probability distribution µ∗
def
= limε→0 µε and its support

S∗ ≡ {~s ∈ S : µ∗(~s) > 0}. Each element in S∗ is called a long run equilibrium
(hereafter LRE). A non-monomorphic state consists of A-strings alternating with equal
number of B-strings since all players sit around a circle as follows.

· · ·A · · ·A
︸ ︷︷ ︸

ak

B · · ·B
︸ ︷︷ ︸

bk

A · · ·A
︸ ︷︷ ︸

a1

B · · ·B
︸ ︷︷ ︸

b1

A · · ·A
︸ ︷︷ ︸

a2

B · · ·B
︸ ︷︷ ︸

b2

· · · , (3)

where ai, bi are the lengths of its i-th A-string and B-string respectively. Let M≥m, p
def
=

{~s ∈ S : all ai ≥ m and bj = p in (3)} consisting of non-monomorphic states with
all A-strings of length ≥ m and all B-strings of length p. The LREs of our dynamic
system are given below.
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Theorem 1: Under the imitation rule (2), S∗ = { ~A} except the following two cases:

(i) When α > 1/2, S∗ = { ~B} if 5 ≤ n ≤ 6, S∗ = { ~A, ~B} ∪ M≥3, 1 if 7 ≤ n ≤ 12, and

S∗ = { ~A} ∪ M≥3, 1 if n ≥ 13.

(ii) When α = 1/2, S∗ = { ~A, ~B} if 5 ≤ n ≤ 6, and S∗ = { ~A} if n ≥ 7.
Proof. See the Appendix A.

Theorem 1 shows that risk-dominant equilibria, non-risk-dominant equilibria, and
some non-monomorphic states can be LREs. The payoff structure and population size
determine which equilibria will emerge in the long run. For large population, risk-
dominant equilibrium ~A is in favor. This is no wonder. But it is not the unique LRE
as shown by Theorem 1(i). Due to the space limit, we provide the intuition of Theorem
1(i) below.

Since S∗ ⊆ S0 (i.e., the set of all ergodic states under Q0), the first step is to

determine S0. Certainly, { ~A, ~B} ⊆ S0. Moreover, all non-monomorphic states in
M≥3, 1 are absorbing under Q0 as well. It is easy to check that

state . . . B A B B A A A B A A B B B . . .
total payoff . . . . . . 0 α + β α + β 1 2 1 2α 1 1 α + β 2β . . . . . .

When α > 1/2, we have α > β and 2β < 1 by (1). Thus, a single A-player will change
to strategy B in the next period under Q0, while a single B-player will retain his
strategy in the next period iff he is isolated or confronted with an isolated A-player.
Moreover, each string of A-player with length ≥ 3 can hold and expand until it is
surrounded by singleton B-players. Thus, M≥3, 1 ⊆ S0. However, which of ~A, ~B and
M≥3, 1 are LREs are determined by which states can be reached from the others at the

minimum cost. Let ~s0
k
→ ~s1 represent that state ~s0 can reach state ~s1 by k mutants,

and ~s0
k
↔ ~s1 indicates that state ~s1 can reach ~s0 by k mutants as well. Then, any two

states in { ~A} ∪ M≥3, 1 can communicate with each other by a sequence of one-mutant
transitions because

· · A · · ·A
︸ ︷︷ ︸

≥3

•

B A · · ·A
︸ ︷︷ ︸

≥3

··
1
↔ · · A·

•

A ·A
︸ ︷︷ ︸

≥5

· · and ~A
1
↔ A · · ·A

︸ ︷︷ ︸

n−1

B.

Next, since an A-string with length 2 can grow until a single B left or ~A reached,
the minimum cost from ~B to any state in { ~A}∪M≥3, 1 is 2. In contrast, the minimum

cost of states in { ~A} ∪ M≥3, 1 reaching ~B depends on population sizes. For n = 5, we
have

AAAAB
1
→ ABAAB

0
→ ~B,

and
AAAAAB

1
→ AABAAB

0
→ ~B

for n = 6. It means that ~B is the unique LRE for n = 5, 6. However, for n ≥ 7,
the minimum-cost path to ~B from states in { ~A} ∪ M≥3, 1 must first attain a non-
monomorphic state alternating A-strings with length 5 and B-strings with length 1.

678



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 675-684

Then, by adding one mutant in the middle of each A-string of this state, the non-
monomorphic state will reach ~B at zero cost, i.e.,

· · B
︸︷︷︸

1

AA
•

A AA
︸ ︷︷ ︸

5

B
︸︷︷︸

1

··
1
→ · · B

︸︷︷︸

1

AA
•

B AA
︸ ︷︷ ︸

5

B
︸︷︷︸

1

··
0
→ · · B . . . B

︸ ︷︷ ︸

7

· · .

Thus, the total of bn
6
c mutants are needed if n is a multiple of 6. Otherwise, an extra

mutant is needed to eliminate the remaining block containing some A’s. Accordingly,
dn

6
e mutants are required to reach ~B from states in { ~A} ∪ M≥3, 1. Thus, the relative

sizes of 2 and dn
6
e determine which stationary states are LREs. For 7 ≤ n ≤ 12, ~A, ~B,

and M≥3, 1 are all LREs, and { ~A} ∪ M≥3, 1 will be the LREs for n ≥ 13.

3. Conclusion

In conclusion, under imitation dynamics, Alós-Ferrer and Weidenholzer (2006)
show that selecting risk-dominant equilibria is sensitive to players’ interacting ways.
Our results further demonstrate that the selection is sensitive to games’ payoff struc-
tures as well.

Appendix A

Proof of Theorem 1. Only the case of α > 0 is considered, the rest can be treated
similarly. Ellison’s (2000) Radius and Coradius Theorem is adopted when |S∗| = 1,
while the Freidlin-Wentzell Method (1984) is used when S∗ is complicated as in case (i).
Since S∗ ⊆ S0, the set of all ergodic states under Q0, the first step is to determine S0.

Certainly, { ~A, ~B} ⊆ S0. Let M
def
= S0 \ { ~A, ~B} be the set of non-monomorphic ergodic

states. Using α > 0 and (1), we have 0 = min{1, 0, α, β} < 1 = max{1, 0, α, β}. Since
ri(~s) depends only on the strategies (si−2, si−1, si, si+1, si+2) taken by five consecutive
players from i − 2 to i + 2 and are independent of the time t and the label of player

i, we define r(si−2, si−1, si, si+1, si+2)
def
= ri(~s) for brevity. Figure A in the Appendix B

implies that with ∗ = A or B independently,

r(∗, B, A, B, ∗) = B, (4)

which means that an isolated A-player would change to strategy B in the next period
under Q0. The following classifications are used to determine other strategy-updating
rules under Q0.

Case (i) α > 1/2. For 2α ≥ 1, we can use α + β < 1 in (1) to get α > β and 2β < 1.
Under Q0, we get from Figures B and BB that

r(∗, A, B, A, ∗) = B, r(B, A, B, B, ∗) = B and r(A, A, B, B, ∗) = A. (5)
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Certainly, r(∗, B, B, A, B) = B and r(∗, B, B, A, A) = A by symmetry. Eq (5) means
that a B-player will keep his strategy B in the next period iff he is isolated or confronted
with an isolated A-player. As to a non-isolated A-player, Figure AA shows that

r(A, B, A, A, B) = B and r(∗, B, A, A, A) = r(B, B, A, A, B) = A. (6)

Using (4)-(6) and the definition of S0, we have observations as follows:
(O1) If ~s ∈ M and ~t is reachable from ~s under Q0, then ~t is ergodic as well.
(O2) Any A-string with length ≥ 3 can hold and grow until it is surrounded by
singleton B-strings, which can hold under Q0. In particular, M≥3, 1 ⊆ M .
(O3) A singleton A-string will be absorbed into a larger B-string under Q0 and the
singleton A will not be recovered afterwards. Hence, ai ≥ 2 for all ~s ∈ M .
(O4) Since ai ≥ 2 for all ~s ∈ M by (O3), any B-string with length ≥ 2 in ~s ∈ M
will shrink until it disappears or becomes a singleton. Note that the length of any its
neighboring A-strings does not decrease in the process. When encountered by some
A-string of length 2, a singleton B-string could expand under Q0 to length 2 or 3 in
the next period. By (O1) and (O3), it will disappear in the next period under Q0 in
the former case. In the latter case it will shrink back to be singleton under Q0. Hence,
bi = 1 or 3 for all ~s ∈ M .
(O5) Any A-string of length 2 will be eliminated in the next period when surrounded
by singleton B-strings. By (O2) and (O4), we deduce that if ~s ∈ M has some A-string
with length ≥ 3, then ~s ∈ M≥3, 1.
(O6) Let M∗ = M \ M≥3, 1. By (O5), all ai = 2 for ~s ∈ M ∗. Using (O2) and
(O4) again, two successive B-strings in ~s must have length 1 and 3 respectively. Say,
bi−1 = 3 and bi = 1. Because ai−1 = ai+1 = 2, the same argument shows bi−2 = 1 and
bi+1 = 3. Repeating over and over, we conclude that if exists, any ~s ∈ M ∗ must have
the following periodic structure:

~s =
•

A ABB
◦

B AAB
︸ ︷︷ ︸

repeat n

8
times

· · ·
0
↔

•

B AAB
◦

A ABB
︸ ︷︷ ︸

repeat n

8
times

· · · = ~s′. (7)

Hereafter, ~u
c
→ ~v means U(~u,~v) = c and ~u

c
↔ ~v means U(~v, ~u) = c as well. It follows

from (7) that M ∗ 6= ∅ iff 8|n.

Next, we need to find v(~s), the minimum cost among all spanning trees rooted at
~s. Certainly, only ~s ∈ S0 needs to be considered. Write M≥3,1 = ∪k≥1Mk, where k is
the number of A-strings in representation (3) for ~s.

Step 1. For convenience, define M0 = { ~A}. The following diagram shows that any
~s ∈ Mk with k ≥ 1 can reach some state in Mk−1 at the minimum cost 1 and vice versa
:

· · · B
︸︷︷︸

1

A · · ·A
︸ ︷︷ ︸

ai≥2

•

B
︸︷︷︸

1

A · · ·A
︸ ︷︷ ︸

ai+1≥2

B
︸︷︷︸

1

· · ·
1
↔ · · · B

︸︷︷︸

1

A · · ·A
•

A A · · ·A
︸ ︷︷ ︸

ai+1+ai+1

B
︸︷︷︸

1

· · · . (8)

Since |M0| = 1, (8) implies that all states in { ~A}∪M≥3, 1 can reach any ~s ∈ { ~A}∪M≥3, 1

at cost 1 for each state. So, the total cost is |M≥3, 1|.
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Step 2. By (4)-(6), the most economical path for ~B to reach { ~A}∪M≥3,1 is as follows.
Depending on whether 2|n or not, we get as in (O4) that

~B
2
→ · · BB

•

A
•

A BB · ·
0
→ · · BA

•

A
•

A AB · ·
0
→ ··

0
→ ~A or AA · · ·AAAAB ∈ M1.

Step 3. When 8|n, states ~s, ~s′ in (7) form an irreducible class under Q0 as Q0(~s, ~s′) =
Q0(~s′, ~s) = 1. The following path shows an optimal way for the class to reach out:

~s′
0
↔ ~s = AAB

•

B BAAB
︸ ︷︷ ︸

··
1
→ BAA

•

A AABB
︸ ︷︷ ︸

··
0
→ AAA

•

A AAAB
︸ ︷︷ ︸

· · · · ··
0
→ ~A

as the newly formed A-string absorbs its neighboring B’s until it reaches ~A. Since |M∗|

=8, all states in M ∗ can reach ~A at a minimum total cost of 8/2 = 4.

Step 4. When 8|n so M ∗ 6= ∅, (O2) indicates that the following path is optimal to

reach M∗ from { ~A} ∪ M≥3, 1 :

Mn

4
3 AA

•

A B
•

A AAB
︸ ︷︷ ︸

repeat n

8
times

· · ·
n

4→ AA
•

B B
•

B AAB
︸ ︷︷ ︸

repeat n

8
times

· · · = ~w ∈ M∗. (9)

Step 5. We now find an optimal path from { ~A} ∪ M≥3, 1 to { ~B}. To avoid A-strings
with length ≥ 3 which can hold under Q0 as shown in (O2), it saves to start from some
~s ∈ M≥3, 1 which has as many B’s as possible. Moreover, it takes at least ` revisions
under Qε to eliminate an A-string with length ≥ 3`+2 in ~s ∈ M≥3, 1. Since an A-string
in ~s ∈ M≥3, 1 needs at least one revision to be eliminated under Qε, some calculation
shows that it is the most economical to have block BAAAAA duplicated in ~s ∈ M≥3, 1

up to the maximum allowed
⌊

n
6

⌋

times and that one revision is enough to eliminate

the five A’s in such blocks. As to the remaining blocks with length r = n − 6
⌊

n
6

⌋

, an

optimal choice for being both in M≥3, 1 and economical is ∅, A, AA, AAA, BAAA and
BAAAA for r = 0, 1, 2, 3, 4 and 5 respectively. Of course, an extra mutation is needed
if r ≥ 1. Let ~s ∈ M≥3, 1 be such a state, an optimal path from { ~A} ∪ M≥3, 1 to ~B is as
follows:

~s
dn

6 e
→ BAA

•

B AA
︸ ︷︷ ︸

repeatbn

6ctimes

· · · (∅,
•

B,
•

B A,
•

B AA, A
•

B AA, ABA
•

B A)
0
→ ~B.

Since n
4
≥

⌈
n
6

⌉

for 8|n, it is also an optimal path from { ~A} ∪ M≥3, 1 to { ~B}.

All together, we have v({ ~B}) = |M≥3, 1| +
⌈

n
6

⌉

+ 4 · χ{8|n} and v({~s}) = |M≥3, 1| +

2+4 ·χ{8|n} for ~s ∈ { ~A}∪M≥3, 1. If 8|n, (9) shows that v({~w}) = |M≥3, 1|+2+
⌈

n
4

⌉

+3

for ~w ∈ M∗. Since S∗ = {~s ∈ S0 : v(~s) = min~w∈S0
v(~w)} by Theorems 4.1 in Chen and

Chow (2009), the conclusion follows by comparing
⌈

n
6

⌉

with 2. For instance, if n ≥ 13

then
⌈

n
6

⌉

> 2 and S∗ = { ~A} ∪ M≥3, 1.
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Case (ii) α = 1/2. All the updating rules in Case (i) remain valid except the first
rules in both (5) and (6) are revised as follows:

0 < Prob(r(A, A, B, A, ∗) = B) < 1 and 0 < Prob(r(A, B, A, A, B) = B) < 1.

Consequently, we have that, with positive probability under Q0,
(O7) an A-string with length ≥ 2 can hold and grow until it reaches ~A.

By (4) and (5), any non-monomorphic state without an A-string of length ≥ 2

belongs to the basin of attraction of ~B. Hence, S0 = { ~A, ~B}. By (4) and (O7), the

following path shows v({ ~A}) = 2:

~B
2
→ · · BB

•

A
•

A BB · ·
0
→ · · BA

•

A
•

A AB · ·
0
→ ··

0
→ ~A. (10)

Because we still have Prob(r(A, A, A, B, ∗) = A) = 1, an A-string of length ≥ 3 should

be avoided in order to reach ~B from ~A. Hence, the following path is optimal:

~A
dn

3 e
→ AA

•

B
︸ ︷︷ ︸

repeatbn

3ctimes

· · (∅,
•

B, A
•

B)
0
→ ~B, thus v({ ~B}) =

⌈
n

3

⌉

.

The conclusion follows by comparing 2 with
⌈

n
3

⌉

. Note that n ≥ 5 by assumption.

Case (iii) α < 1/2 and β < 1/2. While (4) remains valid, Figure BB implies

r(B, A, B, B, ∗) = B, r(A, A, B, B, A) = A and r(A, A, B, B, B) = A (11)

under Q0. Moreover, Figures AA and B imply that a non-isolated A-player and an iso-
lated B-player would rationally update their strategies in the next period respectively
according to

r(∗, A, A, B, ∗) = A, r(B, A, B, A, B) = B and r(A, A, B, A, ∗) = A. (12)

The first rule above and (11) imply that (O7) holds with probability 1 under Q0 .

Therefore, S0 = { ~A, ~B} as the basin of attraction at ~B remains the same as that in

Case (ii). The path of (10) shows CR({ ~A}) = 2. Because of (O7), an A-string of length

≥ 2 should be avoided in order to escape from ~A. Hence, R({ ~A}) ≥ 3 > CR({ ~A}).
The definitions of radius (R(~s)) and coradius (CR(~s)) at state ~s can be found in Ellison

(2000). Then, by Ellison’s (2000) Radius and Coradius Theorem, S∗ = { ~A} as claimed
in the theorem.

Case (iv) α < 1/2 ≤ β. Similar to Case (i), we have β > α. All updating rules
in Case (iii) remain valid, except that the last rule in (11) needs to be modified.
Depending on β = 1/2 or β > 1/2, we have 0 < Prob(r(A, A, B, B, B) = A) <

1 or Prob(r(A, A, B, B, B) = B) = 1. As in Case (iii), we have S∗ = { ~A} for β = 1/2.

For β > 1/2, Prob(r(A, A, B, B, B) = B) = 1 means that a B-string of length ≥ 3
can hold when surrounded by A-strings of length ≥ 2. By (O3) and (12), it is not

682



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 675-684

difficult to show that M = M≥2,≥3. Write M≥2,≥3 = ∪k≥1Mk and define M0 = { ~A} as
in Case (i). By shrinking B-strings at the cost 1 of each move, any ~s ∈ Mk with k ≥ 1
can move within Mk and reach M≥2,3 as shown below:

··A · ·A
︸ ︷︷ ︸

ai

B · ·B
•

B
︸ ︷︷ ︸

bi≥3

A · · ·A
︸ ︷︷ ︸

ai+1

··
1
↔ ··A · ·A

︸ ︷︷ ︸

ai

B · ·BB
︸ ︷︷ ︸

bi−1

•

A · · A
︸ ︷︷ ︸

ai+1+1

··
1
↔ ··

1
↔ ··A · ·A

︸ ︷︷ ︸

ai

BBB
︸ ︷︷ ︸

3

A · ·A
︸ ︷︷ ︸

ai+1+bi−3

··.

Then by the second rule in (11),

· ·A · · ·A
︸ ︷︷ ︸

ai≥2

BB
•

B
︸ ︷︷ ︸

3

A · · ·A
︸ ︷︷ ︸

ai+1≥2

··
1
→ · ·A · · ·A

︸ ︷︷ ︸

ai

BB
︸︷︷︸

2

•

A A · · ·A
︸ ︷︷ ︸

ai+1+1

··
0
→ · ·A · · ·A

•

A A · · ·A
︸ ︷︷ ︸

ai+3+ai+1

·· ∈ Mk−1.

Together with (10), this suggests that the modified coradius of ~A is CR∗({ ~A}) = 2.

Note that the state after ~B in (10) is in M1. Since R({ ~A}) ≥ 3 by the first rule in (12),

S∗ = { ~A} as in Case (iii).

Appendix B

In Figures A, B, AA, BB, the state columns depict strategies adopted by five consec-
utive players i − 2, i − 1, i, i + 1 and i + 2.

Figure A
State ~s Total payoffs for players i − 1, i, and i + 1

· · ·ABABA · · · zi−1(~s) = 2α, zi(~s) = 0, zi+1(~s) = 2α
· · ·ABABB · · · zi−1(~s) = 2α, zi(~s) = 0, zi+1(~s) = α + β
· · ·BBABB · · · zi−1(~s) = α + β, zi(~s) = 0, zi+1(~s) = α + β

Figure B
State ~s Total payoffs for players i − 1, i, and i + 1

· · ·AABAA · · · zi−1(~s) = 1, zi(~s) = 2α, zi+1(~s) = 1
· · ·AABAB · · · zi−1(~s) = 1, zi(~s) = 2α, zi+1(~s) = 0
· · ·BABAB · · · zi−1(~s) = 0, zi(~s) = 2α, zi+1(~s) = 0

Figure AA
State ~s Total payoffs for players i − 1, i, and i + 1

· · ·AAABA · · · zi−1(~s) = 2, zi(~s) = 1, zi+1(~s) = 2α
· · ·AAABB · · · zi−1(~s) = 2, zi(~s) = 1, zi+1(~s) = α + β
· · ·BAABA · · · zi−1(~s) = 1, zi(~s) = 1, zi+1(~s) = 2α
· · ·BAABB · · · zi−1(~s) = 1, zi(~s) = 1, zi+1(~s) = α + β

Figure BB
State ~s Total payoffs for players i − 1, i, and i + 1

· · ·AABBA · · · zi−1(~s) = 1, zi(~s) = α + β, zi+1(~s) = α + β
· · ·AABBB · · · zi−1(~s) = 1, zi(~s) = α + β, zi+1(~s) = 2β
· · ·BABBA · · · zi−1(~s) = 0, zi(~s) = α + β, zi+1(~s) = α + β
· · ·BABBB · · · zi−1(~s) = 0, zi(~s) = α + β, zi+1(~s) = 2β
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