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1. Introduction

More than half of non-residential fixed investment is the expenditure for building structure,
which typically takes several quarters of time.1 Therefore, many macroeconomic studies
explicitly consider time-to-build, since Kydland and Prescott (1982) started to specify in-
vestment lag in real business cycle model.2

The proportion of total costs in a particular period of a multi-period investment project
could be regarded as “completion rate.” One of the most common assumptions about comple-
tion rates is that equal amount of costs is paid over time-to-build periods. This assumption
is used by Kydland and Prescott (1982), Gomme et al. (2001), Casares (2006), and Edge
(2007). However, empirical evidence suggests that aggregate completion rates have an
asymmetric distribution. Montgomery (1995) calculates the completion rates for U.S. pri-
vate nonresidential structures using survey data from the U.S. Department of Commerce.
He finds that more resources are required in the earlier stages of an aggregate investment
project, as in Figure 1. His study implies that a uniform completion pattern may not be
appropriate to describe the fluctuations in aggregate investment.

This paper proposes the use of the beta distribution in the estimation of time-to-build
completion rates. Section 2 describes a simple time-to-build model to be estimated. Section

1Mayer (1960) claims that 15 months are required on average to complete a typical construction project.
Almon (1968) estimates that there is a seven-quarter lag from the time of appropriation to investment
expenditure. According to Montgomery (1995), the value-weighted construction periods for nonresidential
structures are between five and six quarters.

2For example, Wen (1998), Gomme et al. (2001), Christiano and Todd (2002), and Christiano and Vig-
fusson (2003), Casares (2006), and Edge (2007) consider investment lags explicitly.
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Figure 1: Value-Weighted Average Completion Pattern, 1961-1991
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3 introduces two alternative restrictions on the completion rates. The model from section
2 is estimated using different restrictions as discussed in section 3. Section 4 reports those
estimation results. Section 5 concludes.

2. A Time-to-Build Model

A standard real business cycle model is used as a building block. The features of the model
are as follows: First, the time-to-build specification proposed by Kydland and Prescott
(1982) is employed. Second, variable capital utilization is allowed, so that the representative
household can deal with the demand for capital service without changing the level of capital
stock. This assumption is necessary for time-to-build models since new capital stock would
not be ready shortly after a shock.

The representative household owns capital stock and provides its service to the repre-
sentative firm. A unit of investment in period t yields productive capital with the lag of
J periods. The scale of investment project j period away from completion in period t is
represented by Sj,t for j = 1, 2, · · · , J . The law of motion that describes the evolution of
the incomplete investment projects is given by

Sj−1,t+1 = Sj,t, (1)

for j = 2, 3, · · · , J . Capital stock evolves as follows:

Kt+1 = (1− δ)Kt + S1,t. (2)

It is assumed that a constant fraction ωj of resources is expended on Sj,t, for j = 1, 2, · · · , J .
We regard the parameter ωj as the rate of completion in the (J − j + 1)th stage of an
investment project.3 The total investment outlays in period t are represented by

VtIt =

J
∑

j=1

ωjSj,t, (3)

where It and Vt are investment spending and the level of the investment-specific productivity
shock, respectively. The household can save investment spending as Vt becomes greater.
The investment-specific productivity shock is assumed to follow an autoregressive process:

lnVt+1 = ρv lnVt + εv,t+1, 0 < ρv < 1, (4)

where the zero-mean, serially-uncorrelated innovation εv is assumed to be normally dis-
tributed with the standard deviation of σv.

As assumed by Christiano et al. (2005), the service of capital (Q) depends on the unit of
capital (K) and the utilization rate of it (u):

Qt = utKt. (5)

3The interpretation of ωj is based on the following observation: Expenditure on nonresidential structures
in the NIPA (National Income and Product Account) is measured by the increased value of the structures
during the survey period. Therefore, we interpret a fraction of resources expended on a stage of an investment
project as completion rate.
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The household has to pay for the cost of adjusting the utilization rate, γ (ut)Kt, which is an
increasing, convex function of ut. We assume that γ (1) = 0 and γ′′ (1) /γ′ (1) = σγ .

The source of household income is the sum of the net rental income ([Rtut − γ (ut)]Kt)
and the labor income (WtHt), where R and W denote rental rate and wage rate. Therefore,
the household’s budget constraint is

Ct + It ≤ [Rtut − γ (ut)]Kt +WtHt, (6)

where Ct and Ht represent consumption and labor supply, respectively. Given the budget
constraint, the objective of the household is to maximize the following function:

Et

∞
∑

τ=t

βτ−t

{

ln (Cτ ) + η ln (1−Hτ )

}

. (7)

The representative firm produces the final good using Cobb-Douglas technology:

Qα
t (ZtHt)

1−α ≥ Yt, 0 < α < 1. (8)

The neutral productivity shock (Z) follows an autoregressive process:

lnZt+1 = ρz lnZt + εz,t+1, 0 < ρz < 1, (9)

where εz is assumed to be normally distributed with a zero mean and the standard deviation
of σz.

3. Restrictions for Completion Rates

If we want to estimate the completion rate ωj ’s individually, then the following restrictions
are necessary:

ω̃j ≥ 0, (10)

ωj =
ω̃j

∑J
j=1 ω̃j

, (11)

for j = 1, 2, · · · , J . These restrictions imply that ω̃j−1 and ω̃j+1 can take on any positive
values without regard to the value of ω̃j. Unrealistic distributions of completion rates could
emerge under these restrictions. They can be very different from a uniform distribution or
the distribution suggested by Montgomery (1995).4

As an alternative, we can estimate the completion rates collectively. The necessary
conditions for relevant ωj’s, 0 ≤ ωj ≤ 1 and

∑J
j=1 ωj = 1, indicate that completion pattern

has the property of a probability distribution. Therefore, we can restrict completion rates
to take on the shape of a specific probability distribution. Then, we can estimate the
parameters of the distribution to calculate completion pattern.

The probability distribution should have the following properties: (1) It is a continuous
function to preclude the possibility of unrealistic completion patterns. (2) It has a finite

4For instance, a saw-tooth shape.
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support. (3) And it is flexible enough to take on symmetric, asymmetric, and uniform
shapes. As Casella and Berger (2002) notes, the beta distribution is the only “named”
probability density function which meets these requirements. If we estimate the parameters
of the beta distribution, then we can calculate the completion rates collectively. Given the
estimated parameters ttb1 and ttb2, the completion rate ωj is computed as:

ωj =

∫ j/J

(j−1)/J

1

B(ttb1, ttb2)
xttb1−1(1− x)ttb2−1dx, (12)

for j = 1, . . . , J , where B(ttb1, ttb2) denotes the beta function

B(ttb1, ttb2) =

∫ 1

0

xttb1−1(1− x)ttb2−1dx. (13)

Intuitively, if we cut the probability density function of the beta distribution into J pieces
of the same width, then ωj is the area of the jth piece. Since ωj represents the completion
rate for the (J+1−j)th stage of an investment project, the completion pattern is the mirror
image of the corresponding shape of the beta distribution. As shown in Figure 2, we can
generate any plausible time-to-build completion patterns by varying the combination of ttb1
and ttb2. For instance, when ttb1 = ttb2 = 1, completion rates are uniformly distributed.
On the other hand, when ttb1 = 1.5 and ttb2 = 0.7, the completion pattern takes on an
asymmetric shape.

4. Estimation Results

To evaluate the performances of the two restrictions, the model described in section 2 is es-
timated using two sets of the United State’s time series data: Output and investment, which
correspond to the variables Yt and It. The source of the data is the NIPA (National Income
and Product Accounts). Output is calculated by the sum of domestic consumption and
investment. Consumption and investment are measured by the consumption of nondurable
goods and services and by the private nonresidential fixed investment, respectively. The
sample ranges from 1960:Q1 to 2007:Q4. Nominal output and investment values are divided
by the civilian noninstitutional population of 16 years or older and the implicit consumption
deflator.5 The data are detrended by using the Hodrick-Prescott filter.

Five parameters are fixed in the estimation procedure. Time-to-build period (J) is fixed
at six following Montgomery (1995). The discount factor β is set at 0.99. The household’s
weight on leisure is set at η = 1.5 in order to make the steady state value of labor supply (H)
around 0.3. The depreciation rate (δ) is set at 0.025 arriving at 10 percent of the annual
rate. Capital’s share in production (α) is set at 0.33.

The other parameters are estimated by maximum likelihood method and the results are
summarized in Table 1. First column shows the result when ω̃j’s are estimated individually.
Estimates of ω̃1, ω̃3, and ω̃5 are relatively inaccurate considering the standard errors. The
second column summarizes the estimates of the parameters when the beta distribution is
imposed. The estimates of common parameters {σγ , ρv, ρz, 100σv, 100σz} are not much dif-

5Since output and investment are measured by consumption good in the model, it is more consistent to
use the consumption deflator than the GDP deflator as a price index.
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Figure 2: Beta distribution and Completion Pattern
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Table 1: Estimates of Parameters∗

Parameter Minimal Restriction Beta Distribution

σγ 0.4363 0.4384
(0.5685) (0.3518)

ρv 0.8727 0.8299
(0.1206) (0.1242)

ρz 0.9773 0.9839
(0.0343) (0.0285)

100σv 0.3592 0.4131
(0.0838) (0.0933)

100σz 0.3908 0.3922
(0.1139) (0.0849)

ω̃1 0.4974 –
(0.4047)

ω̃2 0.5606 –
(0.2833)

ω̃3 0.6002 –
(0.4880)

ω̃4 0.8147 –
(0.3219)

ω̃5 0.2029 –
(0.3934)

ω̃6 0.4217 –
(0.2538)

ttb1 – 1.5609
(0.1526)

ttb2 – 1.6132
(0.1365)

Log Likelihood −444.47 −436.64

* Standard errors in parentheses.

ferent over the two restrictions. However, the parameters of the beta distribution {ttb1, ttb2}
are very significant considering the standard errors.

Figure 3 displays the implied completion patterns from the estimation. Upper panel is
the case that the minimal restrictions are imposed. The completion rates of first, second,
and third quarter are 13.6, 6.6, and 26.3 percent, respectively. As a result, the completion
pattern takes on a saw-tooth shape, which can hardly be justified. On the other hand,
as shown in the lower panel, the completion pattern takes on a bell shape when the beta
distribution is imposed. The alternative restriction scheme successfully precludes unrealistic
completion patterns.

To compare the fits of the model with different restrictions, AIC (Akaike information
criterion) and BIC (Bayesian information criterion) values are calculated.6 When minimal

6The information criteria are calculated as follows: AIC = −2 logL+2K and BIC = −2 logL+K (logN),

1079



Economics Bulletin, 2013, Vol. 33 No. 2 pp. 1073-1081

1 2 3 4 5 6
0

10

20

30
Minimal Restriction

P
er

ce
nt

1 2 3 4 5 6
0

10

20

30
Beta Distribution

P
er

ce
nt

Quarter after Start

Figure 3: Implied Completion Patterns

restrictions are imposed, AIC and BIC values are 910.94 and 946.77. On the other hand, AIC
and BIC values are 887.27 and 910.08 when the beta distribution is used as a restriction. The
model selection criteria indicate that imposing the beta distribution is the better strategy
to improve the fit of time-to-build model to data. The worse fit of the minimal restriction
case could be ascribed to the insignificant estimates of the completion rates. If we restrict
the model with the beta distribution, then we may reduce the uncertainty associated with
the completion rates.

5. Conclusion

It is difficult to infer aggregate time-to-build completion pattern because of the heterogeneity
of capital stock. Therefore, imposing a proper restriction may be helpful to get a tight
estimate of the completion pattern. The completion rates of an investment project have the
property of a probability distribution. Yet the minimal set of restrictions imposed on the
rates is not strong enough to preclude unrealistic estimates. This paper proposes the use of
the beta distribution as an alternative restriction. If the parameters of the beta distribution
are estimated, then completion rates can be calculated collectively. The estimation results of
a time-to-build model indicate that imposing the beta distribution may successfully preclude
unrealistic completion pattern and improve fit of the model to data.

where logL is log likelihood, K is the number of estimated parameters, and N is the number of sample size.
The preferred model is the one with the minimum AIC and BIC values.
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