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1 Introduction

So-called “search equilibrium models” typically have multiple equilibria. In
almost all studies on these models, only steady states are considered mainly
because it is difficult to find non-stationary equilibria.1 This difficulty does
not disappear even if we consider finite-horizon versions of these models.
In this note, we propose an approach that might be useful to study non-
stationary equilibria in these models. In particular, we consider a discrete-
time and finite-horizon version of Diamond’s (1982, JPE) model, and show
how to solve it backwardly.2 As an illustration, we compute a non-stationary
equilibrium of a specific example, which exhibits a three-period cycle.

2 The model

Consider a tropic island consisting of n̄ people and many palm trees.3 There
are T periods with T < ∞. At the beginning of each period, each person is in
one of the following two states: not carrying a coconut and looking for palm
trees, or carrying a coconut and looking for other individuals with coconuts.
Let nt denote the number of people who have coconuts at the beginning of
period t.

If a person without a coconut finds a palm tree, he or she can climb the
tree and pick a coconut. This has a cost (in utility units), which is a random
variable: with probability a1, it is c1; with probability a2, it is c2; and with
probability 1 − a1 − a2, it is ∞. We assume that 0 < c1 < c2.

There is a taboo against the consumption of coconuts picked by them-
selves. If a person with a coconut meets another person with a coconut, they
trade and eat each other’s coconuts: this yields y units of utility for each of
them. The probability of finding such a trading partner during period t is
given by nt

n̄
.

We assume that there is no aggregate risk in each period. Among (n̄−nt)
people who are looking for palm trees, (a1 +a2)(n̄−nt) of them actually find
palm trees. For a1(n̄−nt) of them, the cost of climbing the tree is c1, and for

1See Rogerson, Shimer, and Wright (2005) for an extensive survey on these models.
2The model itself is introduced in Hokari, Iimura, and Onuma (2006). Our contribution

here is to show that it can be solved backwardly.
3The description of the model follows that of Romer (2006, Exercise 6.8, page 342).

Note that Exercise 6.8 in Romer (2006) considers one type of palm trees whereas we
consider two types.
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others this cost is c2. Among nt people who are looking for other individuals
who have coconuts, exactly nt

n̄
·nt of them actually find such trading partners.

Let β denote the common discount factor. Given a sequence {nτ}T
τ=t

of expected numbers of people who have coconuts at the beginning of each
period, let Vt denote the maximum expected present discounted value of
lifetime utility for an individual not carrying a coconut at the beginning of
period t, and Wt the maximum expected present discounted value of lifetime
utility for an individual carrying a coconut at the beginning of period t.
Clearly,

VT = 0,

WT =
nT y

n̄
.

For all t < T , the following Bellman-type equations hold:

Vt = a1 max {βVt+1,−c1 + βWt+1} + a2 max {βVt+1,−c2 + βWt+1}
+(1 − a1 − a2)βVt+1,

Wt =
nt

n̄
[y + βVt+1] +

(
1 − nt

n̄

)
βWt+1.

Note that the βVt+1 term in the first equation corresponds to a decision not
to climb the tree to obtain a coconut.

Assuming that everyone has the same expectation for future values of
nt’s, the relation between nt and nt+1 can be described as follows:

(i) If βVt+1 ≤ −c2 + βWt+1, then

nt+1 = (a1 + a2)(n̄ − nt) +
(
1 − nt

n̄

)
nt.

(ii) If βVt+1 ≤ −c1 + βWt+1 and βVt+1 > −c2 + βWt+1, then

nt+1 = a1(n̄ − nt) +
(
1 − nt

n̄

)
nt.

(iii) If βVt+1 > −c1 + βWt+1, then

nt+1 =
(
1 − nt

n̄

)
nt.

Let IF(·) be a function such that for any statement A,

IF(A) ≡
{

1 if A is true,
0 if A is false.
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Let bt ≡ nt

n̄
, and

αt ≡ a1IF(βVt+1 ≤ −c1 + βWt+1) + a2IF(βVt+1 ≤ −c2 + βWt+1).

Then, the relation between bt and bt+1 can be described by the following
single equation:

bt+1 = αt(1 − bt) + (1 − bt)bt.

To summarize, we are interested in solving the following system of equa-
tions: for all t < T ,

Vt = a1 max {βVt+1,−c1 + βWt+1} + a2 max {βVt+1,−c2 + βWt+1}
+(1 − a1 − a2)βVt+1, (1)

Wt = bt [y + βVt+1] + (1 − bt) βWt+1, (2)

αt = a1IF(βVt+1 ≤ −c1 + βWt+1) + a2IF(βVt+1 ≤ −c2 + βWt+1), (3)

bt+1 = αt(1 − bt) + (1 − bt)bt, (4)

and for t = T ,

VT = 0, (5)

WT = bT y. (6)

Note that there are (4T−1) variables, {Vt}T
t=1, {Wt}T

t=1, {αt}T−1
t=1 , and {bt}T

t=1,
whereas there are (4T −2) equations. So, we have to specify the value of one
variable to solve the above system of equations. A natural choice for such a
variable would be b1. Then, the problem can be described as follows:

Problem 1. Given a value of b1 ∈ [0, 1], find {Vt}T
t=1, {Wt}T

t=1, {αt}T−1
t=1 , and

{bt}T
t=2 that satisfy from (1) to (6).

Unlike usual dynamic programing problems with a single decision maker,
this problem cannot be solved backwardly. It turns out if a value of bT is
given instead, then the corresponding problem can be solved backwardly.

Problem 2. Given a value of bT ∈ [0, 1], find {Vt}T
t=1, {Wt}T

t=1, {αt}T−1
t=1 ,

and {bt}T−1
t=1 that satisfy from (1) to (6).

Let us illustrate how to solve Problem 2. From (4), we get

bt =
1 − αt ±

√
(1 − αt)2 − 4(bt+1 − αt)

2
.
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We have to check whether (1−αt)
2−4(bt+1−αt) ≥ 0 and whether 0 ≤ bt ≤ 1.

Suppose that (1 − αt)
2 − 4(bt+1 − αt) ≥ 0. Then

1 − αt +
√

(1 − αt)2 − 4(bt+1 − αt)

2
≤ 1

⇔ 1 − αt +
√

(1 − αt)2 − 4(bt+1 − αt) ≤ 2

⇔
√

(1 − αt)2 − 4(bt+1 − αt) ≤ 1 + αt

⇔ (1 − αt)
2 − 4(bt+1 − αt) ≤ (1 + αt)

2

⇔ bt+1 ≥ 0.

Thus,

(1 − αt)
2 − 4(bt+1 − αt) ≥ 0 ⇒

1 − αt +
√

(1 − αt)2 − 4(bt+1 − αt)

2
≤ 1.

Also, we have

(1 − αt)
2 − 4(bt+1 − αt) ≥ 0
bt+1 ≥ αt

}
⇒ 0 ≤

1 − αt −
√

(1 − αt)2 − 4(bt+1 − αt)

2
.

Thus,

αt ≤ bt+1 ≤
(1 + αt)

2

4
⇒ 0 ≤

1 − αt ±
√

(1 − αt)2 − 4(bt+1 − αt)

2
≤ 1.

If bt+1 < αt, then (1 − αt)
2 − 4(bt+1 − αt) ≥ 0 and

1 − αt −
√

(1 − αt)2 − 4(bt+1 − αt)

2
< 0 ≤

1 − αt +
√

(1 − αt)2 − 4(bt+1 − αt)

2
≤ 1.

Suppose that αt and bt+1 are given. If (1+αt)2

4
< bt+1, then there is no

bt ∈ [0, 1] that satisfies (4). If αt ≤ bt+1 ≤ (1+αt)2

4
, there are two values of bt ∈

[0, 1] that satisfy (4): bt =
1−αt±

√
(1−αt)2−4(bt+1−αt)

2
. If bt+1 < αt, then there

is only one value of bt ∈ [0, 1] that satisfies (4): bt =
1−αt+

√
(1−αt)2−4(bt+1−αt)

2
.
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Consider the following example.

Example 1.

a1 = 0.25,

a2 = 0.575,

c1 = 10,

c2 = 29,

β = 0.9,

y = 40,

bT = 0.375.

In the Appendix, we compute a unique solution to Problem 2. It turns
out that this solution exhibits a three-period cycle.

3 A concluding remark

We tend think it is reasonable to assume that the state variable of the initial
period is known. As a result, we tend to think Problem 1 is more natural
than Problem 2. However, it is also natural to face a problem in which
we can set the initial value of a variable, and we are given a value of the
variable that should be attained when the process ends. In such a situation,
we solve the system backwardly to find what initial value is needed just like
in Problem 2. Furthermore, as mentioned above, there is no systematic way
to solve Problem 1 other than simple “guess-and-verify” approach. In this
note, we have argued that we should shift our attention from Problem 1
to Problem 2, which can be solved backwardly. If our primary concern is
to understand what kind of equilibria are possible, then Problem 2 does
not look so unnatural. It should be also noted that our approach can be
applied to many other models. Applying our approach to these models,
and investigating what kind of equilibria (including non-stationary ones) are
possible will be our next project.
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Appendix

Consider the following example:

Example 1.

a1 = 0.25,

a2 = 0.575,

c1 = 10,

c2 = 29,

β = 0.9,

y = 40,

bT = 0.375.

We compute a unique solution to Problem 2.
From (5) and (6), VT = 0 and WT = bT y = 0.375 × 40 = 15. Note that

−c1 + βWT − βVT = −10 + 0.9 × 15 − 0 = 3.5 > 0,

−c2 + βWT − βVT = −29 + 0.9 × 15 − 0 = −15.5 < 0.

Thus, from (1),

VT−1 = a1(−c1 + βWT ) + (1 − a1)βVT = 0.25 × 3.5 + 0 = 0.875,

αT−1 = a1 = 0.25,

(1 + αT−1)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

αT−1 < bT <
(1 + αT−1)

2

4
.

Thus, there are two values of bT−1 ∈ [0, 1] that satisfy (4):

bT−1 =
1 − αT−1 ±

√
(1 − αT−1)2 − 4(bT − αT−1)

2
.

Since
√

(1 − αT−1)2 − 4(bT − αT−1) =
√

(1 − 0.25)2 − 4(0.375 − 0.25) =
√

0.0625 =
0.25, bT−1 ∈ {0.5, 0.25}.
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If we choose bT−1 = 0.5, then

WT−1 = 0.5 × (40 + 0) + (1 − 0.5) × 0.9 × 15 = 26.75,

−c1 + βWT−1 − βVT−1 = −10 + 0.9 × 26.75 − 0.9 × 0.875 = 13.2875 > 0,

−c2 + βWT−1 − βVT−1 = −29 + 0.9 × 26.75 − 0.9 × 0.875 = −5.7125 < 0,

αT−2 = a1 = 0.25,

(1 + αT−2)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

(1 + αT−2)
2

4
< bT−1.

Thus, if we choose bT−1 = 0.5, then there is no bT−2 that precedes it.
If we choose bT−1 = 0.25, then

WT−1 = 0.25 × (40 + 0) + (1 − 0.25) × 0.9 × 15 = 20.125,

−c1 + βWT−1 − βVT−1 = −10 + 0.9 × 20.125 − 0.9 × 0.875 = 17.325 > 0,

−c2 + βWT−1 − βVT−1 = −29 + 0.9 × 20.125 − 0.9 × 0.875 = −1.675 < 0,

αT−2 = a1 = 0.25,

(1 + αT−2)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

αT−2 = bT−1 <
(1 + αT−2)

2

4
.

Thus, if we choose bT−1 = 0.25, then there are two values of bT−2 that
satisfy (4):

bT−2 =
1 − αT−2 ±

√
(1 − αT−2)2 − 4(bT−1 − αT−2)

2
.

Since
√

(1 − αT−2)2 − 4(bT−1 − αT−2) =
√

(1 − 0.25)2 − 4(0.25 − 0.25) =
0.75, bT−2 ∈ {0.75, 0}.

Since

VT−2 = a1(−c1 + βWT−1) + (1 − a1)βVT−1

= 0.25 × (−10 + 0.9 × 20.125) + 0.75 × 0.9 × 0.875

= 2.61875,
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if we choose bT−2 = 0, then

WT−2 = 0 + 0.9 × 20.125 = 18.1125,

−c1 + βWT−2 − βVT−2 = −10 + 0.9 × 18.1125 − 0.9 × 2.61875 = 23.944375 > 0,

−c2 + βWT−2 − βVT−2 = −29 + 0.9 × 18.1125 − 0.9 × 2.61875 = −15.055625 < 0,

αT−3 = a1 = 0.25,

(1 + αT−3)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have bT−2 < αT−3. Thus, there is a unique bT−3 ∈ [0, 1] that
precedes bT−2 = 0:

bT−3 =
1 − αT−3 +

√
(1 − αT−3)2 − 4(bT−2 − αT−3)

2
= 1.

But then bT−3 = 1 > 0.83265625 = (1+a1+a2)2

4
≥ (1+αT−4)2

4
, so that there is

no bT−4 ∈ [0, 1] that precedes bT−3 = 1. Thus, if we choose bT−2 = 0, then
bT−3 = 1 but there is no bT−4 ∈ [0, 1] that precedes it.

If we choose bT−2 = 0.75, then

WT−2 = 0.75 × (40 + 0.9 × 0.875) + 0.25 × 0.9 × 20.125 = 35.11875,

−c1 + βWT−2 − βVT−2 = −10 + 0.9 × 35.11875 − 0.9 × 2.61875 = 19.25 > 0,

−c2 + βWT−2 − βVT−2 = −29 + 0.9 × 35.11875 − 0.9 × 2.61875 = 0.25 > 0,

αT−3 = a1 + a2 = 0.25 + 0.575 = 0.825,

(1 + αT−3)
2

4
=

(1 + 0.825)2

4
= 0.83265625,

so that we have bT−2 < αT−3. Thus, if bT−2 = 0.75,

bT−3 =
1 − αT−3 +

√
(1 − αT−3)2 − 4(bT−2 − αT−3)

2
= 0.375

is the unique bT−3 ∈ [0, 1] that precedes it.
So far, we have shown that given bT = 0.375, (bT−1, bT−2, bT−3) = (0.25, 0.75, 0.375)

is the only path that survives.
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Note that

VT−3 = −a1c1 − a2c2 + (a1 + a2)βWT−2 + (1 − a1 − a2)βVT−2

= −0.25 × 10 − 0.575 × 29 + 0.825 × 0.9 × 35.11875

+0.175 × 0.9 × 2.61875

= 7.313125,

WT−3 = 0.375 × (40 + 0.9 × 2.61875) + 0.625 × 0.9 × 35.11875

= 35.638125,

−c1 + βWT−3 − βVT−3 = −10 + 0.9 × (35.638125 − 7.313125) = 15.4925 > 0,

−c2 + βWT−3 − βVT−3 = −29 + 0.9 × (35.638125 − 7.313125) = −3.5075 < 0,

αT−4 = a1 = 0.25,

(1 + αT−4)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

αT−4 < bT−3 <
(1 + αT−4)

2

4
.

Thus, there are two values of bT−4 ∈ [0, 1] that satisfy (4): bT−4 ∈ {0.5, 0.25}.
Since

VT−4 = a1(−c1 + βWT−3) + (1 − a1)βVT−3

= 0.25 × (−10 + 0.9 × 35.638125) + 0.75 × 0.9 × 7.313125

= 10.4549375,

if we choose bT−4 = 0.5, then

WT−4 = 0.5 × (40 + 0.9 × 7.313125) + 0.5 × 0.9 × 35.638125

= 39.3280625,

−c1 + βWT−4 − βVT−4 = −10 + 0.9 × (35.638125 − 10.4549375) = 12.66486875 > 0,

−c2 + βWT−4 − βVT−4 = −29 + 0.9 × (35.638125 − 10.4549375) = −6.33513125 < 0,

αT−5 = a1 = 0.25,

(1 + αT−5)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

(1 + αT−5)
2

4
< bT−4.
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Thus, if we choose bT−4 = 0.5, then there is no bT−5 that precedes it.
If we choose bT−4 = 0.25, then

WT−4 = 0.25 × (40 + 0.9 × 7.313125) + 0.75 × 0.9 × 35.638125

= 35.7011875,

−c1 + βWT−4 − βVT−4 = −10 + 0.9 × (35.7011875 − 10.4549375) = 12.721625 > 0,

−c2 + βWT−4 − βVT−4 = −29 + 0.9 × (35.7011875 − 10.4549375) = −6.278375 < 0,

αT−5 = a1 = 0.25,

(1 + αT−5)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have

αT−5 = bT−4 <
(1 + αT−5)

2

4
.

Thus, if we choose bT−4 = 0.25, then there are two values of bT−5 that
satisfy (4): bT−5 ∈ {0.75, 0}.

Since

VT−5 = a1(−c1 + βWT−4) + (1 − a1)βVT−4

= 0.25 × (−10 + 0.9 × 35.7011875) + 0.75 × 0.9 × 10.4549375

= 12.58975,

if we choose bT−5 = 0, then

WT−5 = 0 + 0.9 × 35.7011875 = 32.13106875,

−c1 + βWT−5 − βVT−5 = −10 + 0.9 × (32.13106875 − 12.58975) = 7.587186875 > 0,

−c2 + βWT−2 − βVT−2 = −29 + 0.9 × (32.13106875 − 12.58975) = −11.41281313 < 0,

αT−6 = a1 = 0.25,

(1 + αT−6)
2

4
=

(1 + 0.25)2

4
= 0.390625,

so that we have bT−5 < αT−6. Thus, there is a unique bT−6 ∈ [0, 1] that pre-

cedes bT−5 = 0: bT−6 = 1. But then bT−6 = 1 > 0.83265625 = (1+a1+a2)2

4
≥

(1+αT−7)2

4
, so that there is no bT−7 ∈ [0, 1] that precedes bT−6 = 1. Thus, if

we choose bT−5 = 0, then bT−6 = 1 but there is no bT−7 ∈ [0, 1] that precedes
it.
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If we choose bT−5 = 0.75, then

WT−5 = 0.75 × (40 + 0.9 × 10.4549375) + 0.25 × 0.9 × 35.7011875

= 45.08985,

−c1 + βWT−5 − βVT−5 = −10 + 0.9 × (45.08985 − 12.58975) = 19.25009 > 0,

−c2 + βWT−5 − βVT−5 = −29 + 0.9 × (45.08985 − 12.58975) = 0.25009 > 0,

αT−6 = a1 + a2 = 0.25 + 0.575 = 0.825,

(1 + αT−6)
2

4
=

(1 + 0.825)2

4
= 0.83265625,

so that we have bT−5 < αT−6. Thus, if we choose bT−2 = 0.75,

bT−6 =
1 − αT−6 +

√
(1 − αT−6)2 − 4(bT−5 − αT−6)

2
= 0.375

is the unique bT−6 ∈ [0, 1] that precedes it.
Thus, we have shown that given bT = 0.375,

(bT−1, bT−2, bT−3, bT−4, bT−5, bT−6) = (0.25, 0.75, 0.375, 0.25, 0.75, 0.375)

is the only path that survives. Note that the corresponding path of αt’s is

(αT−1, αT−2, αT−3, αT−4, αT−5, αT−6) = (0.25, 0.25, 0.825, 0.25, 0.25, 0.825).

Thus, both the path of bt’s and that of αt’s exhibit a three-period cycle.
It turns out that these paths can be extended for longer periods.4

4We have used Excel to check that this claim is valid at least for 50 periods. The Excel
file is available from the authors on request.
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