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1. Introduction

Several approaches have been proposed to find portfolios that best correspond to the desires
of typical investors. When the target is selecting a portfolio, possibly with a small number
of assets, that best tracks the performance of a given index or benchmark, the problem is
called Index Tracking (IT). This problem is usually formulated as the minimization of a
chosen distance between the index and a tracking portfolio that uses at most m out of the n
available assets. Extensive reviews of the literature on this problem can be found in Beasley
et al. (2003) and, more recently, in Canakgoz and Beasley (2008).

A more ambitious and desirable objective is that of outperforming the given index or
benchmark. This problem has been recently addressed with various approaches under the
name of Enhanced Indexation (EI), or Enhanced Index Tracking. The portfolio selected in
this case is sometimes called Enhanced Indexation Portfolio (EI portfolio), and its return in
excess to that of the index is called excess return. After a seminal study in Beasley et al.
(2003), quantitative approaches to EI have been: Alexander and Dimitriu (2005a), Alexander
and Dimitriu (2005b), Dose and Cincotti (2005), Konno and Hatagi (2005), Roman et al.
(2006), Wu et al. (2007), Canakgoz and Beasley (2008), Koshizuka et al. (2009), Li et al.
(2011), Meade and Beasley (2011), Roman et al. (2011), Fábián et al. (2011), Bruni et al.
(2012), Thomaidis (2012). However, in our opinion, most existing approaches have three
main limitations. First, EI bi-objective models (or their scalarizations) based on minimizing
tracking error and maximizing excess return contain a contradiction in their purposes. On
one hand, the first goal penalizes both positive and negative deviations from the index while,
on the other hand, one seeks to maximize the mean of positive deviations. This contradiction
derives from the use of a symmetric distance measure, which is not suitable for controlling the
distance between the returns of the portfolio and those of the benchmark, and can be avoided
by using an asymmetric distance measure. Furthermore, EI is a computationally demanding
task (see, e.g., Roman et al., 2011) and several proposed models are too complex for being
practically solved to optimality for medium or large size problems. They are therefore only
solved approximately by means of heuristics. Finally, several authors do not test their models
on publicly available datasets, so comparison is generally impracticable.

We present here a linear bi-objective risk-return model for the EI problem overcoming
the above limitations. The proposed model consists in maximizing the excess return of the
selected portfolio with respect to an index, while minimizing only a downside risk measure,
evaluated as the maximum underperformance with respect to the same index. This model
can be formulated as a simple Linear Programming problem, as reported in Section 2, and
this allows for its efficient solution even in large markets. The simplicity of our model also
allows for a theoretical analysis of the connections with classical No Arbitrage conditions, as
explained in Section 3. More precisely, we establish conditions for the existence of a portfolio
strictly outperforming the benchmark when the number of assets is greater than the number of
time periods. We then show that, when the number of time periods is greater than the number
of assets, the No Arbitrage condition implies that there is no portfolio strictly outperforming
the index, and that the only portfolio weakly outperforming the index is the one realizing the
index itself. These conditions can be related to the well-known Farkas’ lemma, that has several
applications in different fields (see, e.g., Murty, 1983, Bruni and Bianchi, 2012). Finally, in
Section 4, we provide empirical results on the performance behavior of the proposed model
on eight major stock markets using datasets publicly available. We also verify empirically the
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theoretical results linking our model to the No Arbitrage condition.

2. A Linear Risk-Return Model

EI models are usually built and validated by using the price values of the n assets and of
the benchmark index over a time interval. In order to simulate practical usage, a part of
this interval is considered the past, and so it is known, and the rest is considered the future,
supposed unknown at the time of portfolio selection. The past (called in-sample) is used for
selecting the EI portfolio, while the future (called out-of-sample) can only be used for testing
the performance of the selected portfolio. Let the in-sample be constituted by T + 1 time
periods 0, 1, 2, . . . , T . We use the following notation:

pit is the price of the asset i at time t, with i = 0, . . . , n and t = 0, . . . , T ;

bt is the benchmark index value at time t, with t = 0, . . . , T ;

rit =
pit − pi(t−1)
pi(t−1)

is the i-th asset return at time t, with t = 1, . . . , T ;

rIt =
bt − bt−1
bt−1

is the benchmark index return at time t, with t = 1, . . . , T ;

xi are the fractions of a given capital invested in asset i in the EI portfolio we are selecting;

Rt(x) =
n∑
i=1

xirit is the standard approximation of portfolio return at time t; so that

δt(x) = Rt(x)− rIt is the excess return, or overperformance, of the selected portfolio w.r.t. the
benchmark index at time t, with t = 1, . . . , T . Note that −δt(x) is the underperformance
of the selected portfolio w.r.t. the benchmark index at time t.

Following a classical paradigm we would like to maximize return and, at same time, minimize
risk. Thus, we propose a linear bi-objective risk-return model where the objectives are:

(a) the maximization of the (average) excess return of the selected portfolio: max
x

1

T

T∑
t=1

δt(x),

(b) the minimization of the downside risk, defined here as the maximum underperformance:
min
x

max
t
−δt(x).

Note that a negative [resp. positive] value of objective (b) corresponds to a positive [resp.
negative] excess return. All efficient solutions of this bi-objective problem can be found by
solving a family of single objective problems depending on a parameter K that we call risk
level, specifying the maximum allowed risk (in the sense of underperformance), as follows:

φ(K) = max
x

1

T

T∑
t=1

δt(x)

s.t. −δt(x) ≤ K t = 1, . . . , T
n∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(1)
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3. No Arbitrage, Minimum Risk and Maximum Return

Solving model (1) for positive values of K produces portfolios that might have underperfor-
mances (in the in-sample). On the other hand, for negative values of K we obtain portfolios
strictly overperforming the index (in the in-sample). However, too small negative values for
K may produce infeasiblity of the model. The minimum feasible value of K can be found by
solving the problem:

Kmin = min
x,K

K

s.t. −δt(x) ≤ K t = 1, . . . , T
n∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2)

The optimal solution to this problem yields the portfolio with minimum risk Kmin. Note
that Kmin is nonpositive if the optimal portfolio never underperforms the index. Clearly, this
is not always possible. However, there are conditions under which the optimal portfolio is
guaranteed to strictly overperform the index (Kmin < 0), as proved in Theorem 1 below.

Let RI = (rI1, . . . , r
I
T ) be the vector of the index returns and let Ri = (ri1, . . . , riT ) be the

vector of returns of asset i, for i = 1, . . . , n. We say that the index returns are realizable by
a complete portfolio if RI =

∑
i x̃iR

i for some x̃ having all strictly positive components (a
complete portfolio is a portfolio containing all assets of the market). We recall that points
v1, . . . , vm in RT are affinely independent if λ1, . . . , λm ∈ R,

∑m
i=1 λi = 0, and

∑m
i=1 λiv

i = 0
imply λ1 = λ2 = · · · = λm = 0. This is equivalent to requiring that the convex hull of these
points is a polytope of dimension m− 1. Note that m ≤ T + 1 randomly chosen points in RT

are affinely independent with probability 1. We also recall that the open mapping theorem
states that images of open sets through a surjective linear mapping are open.

Theorem 1 Assume that T < n, that among the vectors R1, . . . , Rn of the assets returns
there are T + 1 affinely independent vectors, and that the index returns RI = (rI1, . . . , r

I
T ) can

be realized by a complete portfolio. Then there exists a portfolio that strictly overperforms the
index in all the in-sample periods, i.e., δt(x) = Rt(x)−RI

t > 0 for t = 1, . . . , T .

Proof. Let ∆ = {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0, i = 1 . . . , n} be the standard simplex in
Rn and let F : ∆→ RT be the linear mapping defined by F (x) =

∑n
i=1 xiR

i. By assumption
we have that RI = F (x̃) =

∑
i x̃iR

i for some x̃ in the interior of ∆. By the open mapping
theorem we then deduce that RI belongs to the interior of F (∆), which is the bounded poly-
hedron obtained as the convex hull of the points R1, . . . , Rn. Since among these points there
are T + 1 affinely independent vectors, we have that F (∆) is a full-dimensional polyhedron,
so that the ball B(RI , ε) = {y ∈ RT :‖ RI − y ‖≤ ε} is contained in F (∆) for some ε > 0.
Thus, in particular, the point RI

ε = (rI1 + ε, . . . , rIT + ε) belongs to F (∆), so that there exists
(x′1, . . . , x

′
n) ∈ ∆ with F (x′1, . . . , x

′
n) = RI

ε . In other words the entries of RI
ε are the returns

of the feasible portfolio determined by the investments (x′1, . . . , x
′
n). This portfolio clearly

outperforms the index in all the in-sample. 2

Absence of arbitrage is a common assumption in financial markets. In this framework a
standard No Arbitrage (NA) condition (see, e.g., Prisman, 1986) requires that there exists

1250



Economics Bulletin, 2013, Vol. 33 No. 2 pp. 1247-1258

no long-short portfolio y = (y1, . . . , yn), where yi denotes the amount of asset i purchased
(if yi > 0) or shorted (if yi < 0), that gives a positive profit at time 0, i.e., a portfolio
having a negative cost

∑n
i=1 yipi0 < 0, and yields nonnegative returns for all periods, i.e.,

satisfies
∑n

i=1 yirit ≥ 0, for all t = 1, . . . , T . A stronger version of the No Arbitrage condition
requires in addition that every self-financing portfolio (i.e., such that

∑n
i=1 yipi0 = 0) that

yields nonnegative returns for all periods must actually yield zero returns in all periods, i.e.,∑n
i=1 yirit = 0, for all t = 1, . . . , T .
We now show that, under some technical assumptions typically verified in practice by the

matrix R of returns (i.e., the matrix whose columns are the vectors Ri, i = 1, . . . , n), the
strong No Arbitrage condition implies then the only portfolio that weakly outperforms the
index in all the in-sample periods is the one realizing the index.

Theorem 2 Assume that the returns matrix R has full column rank, that the index returns
RI = (rI1, . . . , r

I
T ) can be realized by a portfolio, and that the strong No Arbitrage condition

holds. Then the only portfolio that weakly outperforms the index in all the in-sample periods
is the one realizing the index.

Proof. Let x̃ ∈ ∆ be a portfolio realizing the index, i.e., such that RI =
∑

i x̃iR
i and

assume that there exists a portfolio x ∈ ∆ that outperforms the index in all the in-sample,
i.e., such that

∑
i xiR

i ≥ RI or, equivalently, R(x − x̃) =
∑

i(xi − x̃i)Ri ≥ 0. Observe that
the (long-short) portfolio y = x − x̃ is self-financing since

∑n
i=1 xi −

∑n
i=1 x̃i = 1 − 1 = 0.

Then, by the strong No Arbitrage condition, we must have R(x− x̃) = 0 which implies x = x̃
by the assumption of linear independence of the columns of R. 2

An immediate consequence of Theorems 1 and 2 is that arbitrage must be possible under the
assumptions of Theorem 1. Furthermore, one can observe that, under very mild assumptions,
obtaining a negative value for Kmin becomes quite unlikely when increasing the number
T of observations. Indeed, if we assume that any portfolio x has a positive probability ε
of underperforming the index in any period t, then the probability of finding a portfolio
that overperforms the index in all the in-sample periods is given by (1 − ε)T , which rapidly
converges to zero as T increases. It is also straightforward to observe that the value of Kmin

is nondecreasing with respect to T , since increasing the in-sample window can never decrease
the worst underperformance Kmin.

The other extreme case in our model consists in maximizing excess return regardless of
the underperformance risk. Finding the portfolio with the maximum return is modelled as

δmax = max
x

1

T

T∑
t=1

δt(x)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(3)

Let I∗ be the set of all indices i∗ of the assets with maximum average return, i.e., such that∑T
t=1 ri∗t ≥

∑T
t=1 rit for all i. Then it is straightforward to show that the set of all solutions

to problem (3) coincides with the set of all portfolios containing only assets with indices in I∗.
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Thus the maximum value Kmax of the downside risk of the portfolios on the efficient frontier of
our bi-objective model is given by Kmax = min

i∗∈I∗
max
1≤t≤T

(RI
t−ri∗t), while δmax = 1

T

∑T
t=1(ri∗t−RI

t )

is the value of the maximum average excess return with respect to the benchmark.
For every value of K between Kmin and Kmax the optimal solution to problem (1) provides

a portfolio on the risk-return efficient frontier with average excess return φ(K), while for
K < Kmin problem (1) is infeasible, and for K > Kmax the optimal solution coincides with the
one for K = Kmax. The risk-return efficient frontier is thus obtained as the graph of function
φ(K) on the interval [Kmin, Kmax]. From known results in parametric Linear Programming
(Murty, 1983), one can prove that the function φ(K) is piecewise linear, concave and increasing
on the interval [Kmin, Kmax].

4. Empirical Analysis

In order to allow comparison, we tested our model on publicly available real-world datasets
(from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html; Beasley,
1990) frequently used in studies on portfolio management. Those datasets consist of weakly
price data from March 1992 to September 1997 (i.e. 291 historical realizations) for the follow-
ing capital market indexes: Hang Seng (Hong Kong), with 31 assets; DAX 100 (Germany),
with 85 assets; FTSE 100 (UK), with 89 assets; S&P 100 (USA), with 98 assets; Nikkei 225
(Japan), with 225 assets; S&P 500 (USA), with 457 assets; Russell 2000 (USA), with 1318
assets; Russell 3000 (USA), with 2151 assets. Return rates have been computed as relative
variations of the quotation prices (pt−pt−1)/pt−1, thus obtaining 290 outcomes. For the above
data sets, we compute the portfolios that give the best excess return for a given risk level K
in the in-sample window, and we then analyze the performances of the obtained portfolios in
the out-of-sample period, by using a rolling time window scheme (RTW). Furthermore, we
empirically test the theoretical properties discussed in Section 3.

4.1 Rolling Time Window Evaluation

In order to simulate practical usage, we allow for the possibility of changing the portfolio
composition (rebalancing) during the holding period. More precisely, we compute EI portfolios
by solving model (1) on in-sample intervals repeatedly shifted all over the dataset, and, for
each of those in-sample intervals, we evaluate the portfolio performance in the following 4
weeks (out-of-sample), during which no rebalances are allowed. After each evaluation, we
shift the mentioned in-sample window by 4 weeks in order to cover the former out-of-sample
period, we recompute the optimal portfolio w.r.t. the new in-sample window and repeat.
We set the in-sample length at 200 periods, thus allowing 21 portfolio rebalancings over each
dataset. For instance, the first in-sample is [1,200] and the corresponding out-of-sample is
[201,204], the second in-sample is [5,204] and the corresponding out-of-sample is [205,208].
We consider two risk levels corresponding to minimum and moderate resk requirements:

K1 = Kmin K2 = Kmin + 1/4(Kmax −Kmin).

Table 1 reports the average out-of-sample returns of the EI portfolios compared to the cor-
responding average returns of the market index. Best results for each dataset are marked in
bold. Observe that the EI portfolios outperform the market index in 7 out of 8 cases, and
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assets K1 K2 Market
(×10−2) (×10−2) (×10−2)

Hang Seng 31 0.469 0.613 0.456
DAX 100 85 0.567 0.852 0.631

FTSE 100 89 0.368 0.486 0.357
S&P 100 98 0.501 0.700 0.510

Nikkei 225 -0.049 -0.130 -0.042
S&P 500 457 -0.210 -0.893 -0.316

Russell 2000 1318 0.175 0.567 -0.004
Russell 3000 2151 -0.069 0.602 -0.297

Table 1: Out-of-sample average returns of our portfolios and of the market index

assets K1 K2 Market
Hang Seng 31 0.178 0.186 0.170

DAX 100 85 0.314 0.273 0.302
FTSE 100 89 0.236 0.221 0.222

S&P 100 98 0.250 0.226 0.247
Nikkei 225 - - -

S&P 500 457 - - -
Russell 2000 1318 0.049 0.106 -
Russell 3000 2151 - 0.106 -

Table 2: Out-of-sample Sharpe Ratio values of our portfolios and of the market index

each of the two strategies K1 and K2 provide portfolios that outperform the market index in
5 and 6 out of 8 cases, respectively.

Moreover, we report the outcomes of two standard performance measures: the Sharpe
Ratio (Sharpe, 1994 and 1996) and the Rachev Ratio (Rachev et al., 2004), respectively
in Tables 2 and 3, both for the computed EI portfolios and for the market index. The
Sharpe Ratio is the ratio between the expected return and its standard deviation, namely
Ps = E[R(x)]/σ(R(x)). However, this index has no meaning when the expected return is
negative, so we report “-”. The Rachev Ratio is defined as the ratio between the average
of the best β% returns of a portfolio and that of the worst α% returns. Parameters α and
β have been set equal to 0.1. Sharpe and Rachev ratios were selected because they are
somehow complementary: while the first one is more focused on the central part of the return
distribution, the latter stresses its tails. Best results for each datasets are marked in bold.
Results obtained by the computed EI portfolios are always better than the benchmark by
using the Sharpe Ratio analysis, while they are better than that 6 times out of 8 by using the
Rachev Ratio analysis.

In order to better understand the behavior of our model, we also compute the yearly
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assets K1 K2 Market
Hang Seng 31 1.082 1.280 1.041

DAX 100 85 1.408 1.268 1.171
FTSE 100 89 1.233 1.065 1.264

S&P 100 98 1.492 1.539 1.510
Nikkei 225 0.932 0.847 0.938

S&P 500 457 1.023 0.910 0.920
Russell 2000 1318 0.919 1.096 0.902
Russell 3000 2151 1.055 0.933 0.889

Table 3: Out-of-sample Rachev Ratio values of our portfolios and of the market index

(a) FTSE 100 (b) Russell 3000

Figure 1: Box plot of yearly compounded return

compounded out-of-sample return CRτ (after τ periods) of the 22 EI portfolios, as follows:

CRτ =
[ τ∏
t=1

(1 +Rt(x))
] 52

τ − 1 τ = 1, . . . , 88

where Rt(x) is the t-th value of the 88 weekly out-of-sample returns (4 values for each of the
22 out-of-sample windows) of the EI portfolios. The following analysis is then performed con-
sidering 3 different risk levels: K1, K2, defined as above, and K3 = Kmin+1/2(Kmax−Kmin).
As an example, we provide the box plots of results for the FTSE 100 (Figure 1a) and for the
Russell 3000 (Figure 1b) datasets. In the figures, each box represents the yearly compounded
return distribution; the central mark is the median and the edges are the 25th and the 75th

percentiles, the whiskers correspond to approximately ±2.7 times the standard deviation, and
the outliers are represented individually. The yearly compounded return distribution of the
EI portfolios with minimum risk level are similar to that of the market index, or even slightly
more performant than that; those of the EI portfolios with the higher risk levels are distinctly
more performant than that of the market index. Note that this happens also for the FTSE
100, where the market index was preferable according to the Rachev Ratio analysis.
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Hang Seng DAX 100 FTSE 100 S&P 100 Nikkei S&P 500 Russell 2000 Russell 3000
T n = 31 n = 85 n = 89 n = 98 n = 225 n = 457 n = 1318 n = 2151

(×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)
10 -0,933 -1,089 -1,822 -1,153 -1,951 -3,644 -7,546 -9,091
30 -0,238 -0,440 -0,549 -0,452 -0,741 -0,846 -2,245 -2,105
50 -0,037 -0,135 -0,266 -0,258 -0,412 -0,725 -1,781 -1,715
70 0,090 -0,059 -0,186 -0,180 -0,245 -0,473 -1,347 -1,155
90 0,098 -0,029 -0,124 -0,115 -0,192 -0,413 -1,183 -0,919
110 0,219 -0,017 -0,086 -0,054 -0,153 -0,365 -1,001 -0,702
130 0,240 -0,003 -0,044 -0,035 -0,114 -0,307 -0,884 -0,613
150 0,278 0,013 -0,017 -0,009 -0,095 -0,261 -0,825 -0,550
170 0,280 0,022 0,013 0,006 -0,074 -0,224 -0,771 -0,511
190 0,284 0,029 0,025 0,024 -0,064 -0,171 -0,699 -0,449
210 0,311 0,034 0,038 0,033 -0,050 -0,150 -0,640 -0,424
230 0,311 0,041 0,045 0,042 -0,041 -0,128 -0,526 -0,396
250 0,313 1,886 0,061 0,085 -0,037 -0,100 -0,468 -0,371
270 0,321 1,905 0,080 0,093 -0,018 -0,087 -0,435 -0,350
290 0,322 2,015 0,119 0,104 -0,003 -0,067 -0,397 -0,327

Table 4: Minimum risk Kmin with market index as benchmark

4.2 Analysis of Minimum Risk Portfolios

In order to analyze the theoretical results presented in Section 3, and the corresponding
assumptions, we compute the minimum value of the maximum allowed underperformance
Kmin for the datasets described above. We then examine the sign of Kmin with respect to
the value of the ratios between the number T of in-sample observations and the number n of
assets. Specifically, n = {31, 85, 89, 98, 255, 457, 1318, 2151}, while T ranges from 10 to 290,
which is the maximum number of available observations. Table 4 reports the values of Kmin

considering the market index as a benchmark. We observe that:
(i ) Kmin is negative when T is not much larger than n (approximately T < 1.7n);
(ii ) Kmin is positive for larger values of T w.r.t. n (the bottom left corner).

The first observation agrees with the results of Section 3, because it shows that, under the
assumptions of Theorem 1, for T < n a minimum-risk portfolio strictly outperforming the
market index always exists (i.e., arbitrage is possible). On the other hand, for T sufficiently
greater than n the returns matrix R is expected to have full column rank. In this case, under
the strong No Arbitrage condition, no portfolio that strictly outperforms the index can exist,
and if the market index is a realizable portfolio, it is the optimal portfolio. If, on the contrary,
the market index is not realizable, the optimal portfolio necessarily underperfoms the index.
Observation (ii ) above shows that the latter case holds here.

We now repeat the experiment using as benchmark the so-called näıve or uniform portfolio,
namely RI

t =
∑n

i=1 rit/n, which is a feasible solution of model (1), hence a realizable portfolio.
Table 5 reports the values of Kmin obtained in this case. In all instances, if T < 1.7n
then Kmin < 0. On the other hand, when T is sufficiently large with respect to n (i.e.,
approximately T > 1.7n), Kmin becomes zero, so the outcome is fully consistent with the
results of Section 3, at least for the datasets for which this can be tested (which are the first
four because they are the only ones that satisfy T > 1.7n).
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Hang Seng DAX 100 FTSE 100 S&P 100 Nikkei S&P 500 Russell 2000 Russell 3000
T n = 31 n = 85 n = 89 n = 98 n = 225 n = 457 n = 1318 n = 2151

(×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)
10 -0,813 -1,190 -1,593 -1,318 -1,788 -3,678 -7,482 -8,522
30 -0,176 -0,617 -0,510 -0,482 -0,673 -0,988 -2,127 -2,273
50 -0,039 -0,251 -0,202 -0,272 -0,353 -0,753 -1,651 -1,833
70 0 -0,134 -0,109 -0,209 -0,195 -0,540 -1,219 -1,335
90 0 -0,054 -0,055 -0,110 -0,144 -0,469 -1,054 -1,128
110 0 -0,026 -0,030 -0,049 -0,110 -0,406 -0,872 -0,937
130 0 -0,011 -0,013 -0,023 -0,077 -0,314 -0,737 -0,802
150 0 0 0 -0,010 -0,051 -0,249 -0,668 -0,717
170 0 0 0 0 -0,037 -0,232 -0,644 -0,681
190 0 0 0 0 -0,027 -0,198 -0,588 -0,633
210 0 0 0 0 -0,019 -0,173 -0,526 -0,570
230 0 0 0 0 -0,013 -0,133 -0,447 -0,487
250 0 0 0 0 -0,011 -0,112 -0,405 -0,440
270 0 0 0 0 -0,009 -0,091 -0,371 -0,409
290 0 0 0 0 -0,006 -0,081 -0,335 -0,373

Table 5: Minimum risk Kmin with uniform portfolio as benchmark

5. Conclusions

We proposed a new simple risk-return approach to the Enhanced Indexation problem. In
spite of its simplicity, our model is able to find portfolios that exhibit good out-of-sample
performances. We chose to avoid cluttering the presentation of our model with complicat-
ing real-world constraints also in order to highlight theoretical connections between the No
Arbitrage condition and the existence of a portfolio outperforming the index. However, the lin-
earity of our model easily allows for the addition of further constraints coming from real-world
practice such as the cardinality constraints (Cesarone et al., 2012) and buy-in thresholds, or
the turn-over or UCITS constraints (Scozzari et al., 2012).
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