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1. Introduction 

 

Water pollution is a serious problem faced by many countries, especially developing 

countries. In this paper we investigate the following question: how to divide fairly the costs 

of reducing pollution in rivers among the agents located along it? The answer to this question 

is not trivial since water pollutants are transported with the water and some of them are 

biodegradable. To answer this question we resort to a model of transport of pollutant and the 

polluter pays principle. This principle is widely accepted and assigns the responsibility for the 

pollution to the polluters. Thus, they would be responsible, for example, in the context of our 

analysis, for the costs of cleaning up a polluted river.  

The pollution pays principle has received strong support from the Organization for 

Economic Co-operation and Development (OECD) and the European Union (EU). Since the 

1972 Recommendation by the OECD Council on Guiding Principles concerning International 

Economic Aspects of Environmental Policies this principle has been recommend as the 

principle to be used for allocating costs related to pollution. The scope of this principle has 

evolved over time to include also accidental pollution and clean-up costs and, in its new 

version, is often referred to as extended Polluter Pays principle. 

 There are various definitions, interpretations or versions of the polluter pays principle 

in the literature.
1
 The definition that best fits the method proposed in this paper is given in the 

Glossary of Statistical Terms of the OECD (2012): “The polluter pays principle is the 

principle according to which the polluter should bear the cost of measures to reduce pollution 

according to the extent of either the damage done to society or the exceeding of an acceptable 

level (standard) of pollution”. Based in this principle, we propose a method to divide fairly 

the costs of cleaning up river pollutants among the polluters and provide an axiomatic 

characterization for this method.  

This paper is closely related to the paper by Ni and Wang (2007). These authors 

propose two methods to split the costs of cleaning up a polluted river among the agents 

located along it. They based their methods, called the Local Responsibility Sharing (LRS) 

method and the Upstream Equal Sharing (UES) method, respectively, on the two main 

advocated doctrines in international disputes: the Absolute Territorial Sovereignty (ATS) and 

the Unlimited Territory Integrity (UTI).
2
 These two doctrines are interpreted in terms of 

responsibilities in the pollution cost allocation problem. Under the ATS doctrine, for 

example, the costs to clean up pollutants in a given segment of the river should be assigned 

only to polluters located in that segment. However, under the UTI doctrine, polluting-

cleaning costs in a given segment should be assigned to polluters located in that segment as 

well as all upstream polluters.  

 Our approach differs from the approach of Ni and Wang (2007) on two key points. 

First, the method we propose is based on a model of pollutant transport and the polluter pays 

principle. Second, to share downstream costs, we seek to establish the responsibility of each 

upstream polluter according to its contribution to the pollution level in each segment of the 

river, that is, upstream polluters are not treated symmetrically as do Ni and Wang (2007). As 

these authors, we also investigate the relationship of the proposed method and its solution 

with the (weighted) Shapley value of the associated cost game generated from the problem. 

In addition, we also investigate the relation between the τ - value of the corresponding cost 

game and the solution of the method proposed in this paper. 

                                                           
1
 For alternative versions or interpretations of the polluter pays principle see, for example, Bugge (1996). 

2
 For more details on the ATS and the UTI doctrines see, for example, Kilgour and Dinar (1996). 



 Gómez-Rúa (2013) also investigates the allocation of costs to clean up a polluted river 

and takes as a starting point the work of Ni and Wang (2007). She replaces the axiom that 

treats upstream polluters symmetrically by three alternative axioms and accordingly considers 

three different systems of weights to charge polluters. Regarding the method proposed in this 

paper, the main difference is that our system of weights is different from those considered by 

Gómez-Rúa (2013). We base our system of weights on transfer coefficients of a model of 

pollutant transport while she specifies how the weights are determined in only one of her 

systems of weights and, in this case, they depend on exogenous factors, such as city 

population, water consumption, etc.  Her analysis also does not include a comparison with the 

τ - value of the cost game generated from the problem. Gómez-Rúa (2012) extends her 

previous work to the context of a river network. 

The rest of this paper is structured as follows. The next section presents the model 

used to formalize the Polluter Pays method of allocating the total cost to clean up pollutants 

in a river. The third section provides an axiomatic characterization of the Polluter Pays 

method. We used four axioms to provide this characterization. In this section we also show 

that the Polluter Pays method is the only method that satisfies the four axioms presented and 

that its solution coincides with both the weighted Shapley value and the τ - value and is in 

the core of the corresponding cost game generated from the problem. Finally, in the fourth 

and final section, we present some concluding comments. 

 

 

2. The model 

 

As in Ni and Wang (2007), consider a river divided into n segments that are indexed in a 

given order nj ,...,1=  from upstream to downstream. We assume that each segment is 

inhabited by people who may be adversely affected by water pollution and that at the 

beginning of each segment, according to the above order, there is a firm or industry that 

discharges pollutants of some kind into the river. In every segment j , an environmental 

authority sets the maximum level of pollution that is allowed for that segment. If the pollution 

level exceeds that limit, the polluters are required to spend jc  so that the quality of the water 

body meets the environmental standard set for the segment j . The total costs to clean 

pollutants across the river is equal to n

n

j j cccc +⋅⋅⋅++=∑ = 211
. We assume that these costs 

are at their lowest levels and that the technology used in cleaning the river is the most 

efficient. We want to find a method to allocate to total cost of cleaning up river pollutants 

fairly among the n  polluting firms located along the river. 

 To establish the method to allocate those costs we need to introduce some additional 

notations. We recall that a key feature of water pollution is that the pollutant is transported 

with the water from an upstream point (source) to a downstream point (receptor). Some river 

pollutants are biodegradable and the concentration of pollution they cause is reduced along 

the river. To describe the transport of the water pollutant and the level of pollution it causes 

along the river we use transfer coefficients.
3
 To define these coefficients, suppose there is a 

clean river and that a certain amount of pollutant ie  is discharged at an upstream point i  

(source) and that, after some time, we have the level (concentration) of pollution jp  at the 

downstream point j  (receptor). To establish the relationship between the emission level at 

                                                           
3
 Several authors have used transfer coefficients to analyze the spatial aspects associated with pollution. Hung 

and Shaw (2005), for example, use transfer coefficients in the analysis of a system for trading water pollution 

discharge permits.  



the point (segment) i  and the pollution concentration at the point (segment) j , we can use 

the following expression (see, for example, Kolstad, 2000, p. 155-157): 

     iijj eap =          (1) 

where ija  is the transfer coefficient. Typically these coefficients take strictly positive values 

and ikij aa ≥ , jk > . Note that if the emissions at the point i  change by a little ( ie� ), 

according to the expression (1), the level of pollution at the point j  will change by iij ea � , so 

we can define the transfer coefficient as the ratio of the change in pollution concentration at 

point j  to the change in emissions at point i , i.e., ijij epa ��= / . Basically, this coefficient 

gives the conversion rate for emissions to pollution level. If, for example, 2.1=ija , this 

means that a unit of emissions at the point  i  generates 2.1  unit of pollution concentration at 

point j . 

The expression (1) can be generalized to consider, for example, emissions at various 

upstream points (segments), Ieee ,...,, 21  (where I  represents the number of sources), and the 

river is not completely clean. In this case, the expression (1) changes to 

ji

I

i ijj Beap +=∑ =1
 

where jp  represents the level of pollution at the downstream point j  ( Ij ≥ ) and jB  is the 

background level of pollution at the point (segment) j .
4
 Note that emissions from firm 1 

(located in segment 1 of the river) can increase pollution levels in all downstream segments. 

However, pollution levels in the segment 2 are due only to the emissions of firm 1 (located in 

segment 1) and firm 2 (located in segment 2). 

We assume that all the n  segments of the river represent both sources and receptors 

of pollutants. Thus, the matrix of transfer coefficients of the n  segments is represented by the 

following upper triangular matrix. 
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In this paper we also assume that the transfer coefficients are determined 

experimentally for each river and type of water pollutant. For a given amount of pollutant, the 

values of these coefficients may vary according, for example, to the volume of water flowing 

in a river and/or water temperature. Once determined the transfer coefficients, the 

environmental authority need only measure the level of pollution in each river segment. 

Based on the levels of pollution in each segment and transfer coefficients, the levels of 

emissions in each segment can be calculated indirectly. Therefore, it is not necessary to 

measure directly the levels of emissions of each firm in each segment. 

 Now we can define the four axioms that support the cost allocation method proposed 

in this paper. The formalization of these axioms is made in the next section. The fact that 

downstream polluters are not responsible (or do not have control) for the costs incurred in 

upstream segments is translated into an axiom called Independence of Upstream Costs. 
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 Note that we are assuming that the relationship between emissions and level of pollution is linear. This 

assumption is very important in the context of our analysis. 



Basically this axiom said that the costs incurred in the segment j  shall be allocated only to 

the polluters located in this segment as well as all the upstream polluters. The next axiom, 

called Upstream Asymmetry, is based on the assumption that the contributions of upstream 

polluters to the level of pollution in a given downstream segment are not necessarily equal. In 

this case, according to the polluter pays principle, the responsibility of each upstream 

polluting firm must be in accordance with the proportion of its contribution to the 

concentration of pollution in each segment of the river. The third axiom is called Efficiency. 

It simply states that the total costs of cleaning up pollutants should be fully allocated among 

the polluters. The last axiom is called Additivity. It is used as a requirement of consistency in 

order to obtain a unique value allocation.  

 Ni and Wang (2007) establish and use the axioms Independence of Upstream Costs, 

Upstream Symmetry, Efficiency and Additivity to characterize their UES method. In this 

paper, we replace the axiom Upstream Symmetry by the axiom Upstream Asymmetry. This 

change reflects the way upstream polluters are treated in the cost allocation problem to reduce 

pollution in a given downstream segment. While Ni and Wang (2007) treat upstream 

polluters symmetrically, we treat them asymmetrically. This change is possible with the help 

of the polluter pays principle and the previously defined transfer coefficients and extends the 

scope of the UES method. 

 Gómez-Rúa (2013) uses also the same set of axioms suggested by Ni and Wang 

(2007), except Upstream Symmetry. This axiom is replaced by three alternative axioms: 

Upstream Monotonicity, δ - Biodegradation Rate, and Proportional Tax. For the first, it is 

assumed that, for biodegradable pollutants, the further away the segment of the river is from 

polluter i , the smaller the part of the cost this polluter should pay for cleaning that segment. 

For the second, it is assumed that the biodegradation rate of a pollutant is known and equal to 

δ . For the last alternative axiom, it is assumed that the cost assigned to polluter i  for 

cleaning a given segment should be calculated based on exogenous factors, such as city 

population, water consumption, pollution load, etc. 

Now suppose that the total polluting-cleaning cost ∑ =

n

j jc
1

 is represented by the 

vector n

n Rccc +∈= ),...,( 1 , where jc  denotes the costs required to reduce pollution in the j th 

segment, and that the pollution cost allocation problem is represented by the pair ),( cNC = , 

where },...,1{ nN =  is a finite number of agents (polluters). A solution to this problem is a 

vector n

n Rxxx +∈= ),...,( 1  such that ∑∑ ==
=

n

j j

n

j j cx
11

, where jx  is the cost share assigned 

to the j th polluter. A method is a rule that assigns to each problem ),( cN  a solution 

),( cNx . Applying the polluter pays principle and based on the model described above, we 

propose for any nRc +∈  the following method, called Polluter Pays method.  

    k

n

jk
k

i ik

jkPP

j c
a

a
cx ⋅=∑

∑=
=1
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where ija  are the transfer coefficients. To illustrate the use of this method, consider the 

following simple example: a polluted river is divided into three segments, i.e., }3,2,1{=N , 

and the cost to reduce pollution set by the environmental authority in the three segments is 

given by the vector ),,( 321 cccc = . According to the expression (2), the cost share assigned to 

polluter Nj∈  is given by 
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 Note that clearly, ∑∑ ==
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3

1

3

1 j jj j cx . If we assume that the transfer coefficients are 

given by 113 =a , 223 =a  and 333 =a , then the cost share assigned to the three polluters in the 

third segment are 36

1
1 )( ccxPP = , 36

2
2 )( ccxPP = , and 36

3
3 )( ccxPP = , i.e., the upstream polluters are 

treated asymmetrically.  Note also that if we assume that all transfer coefficients are equal, 

i.e., if 
_

aaij = , for ji ≤ ; ni ,...,1= ; nj ,...,1= , in expression (2), then we obtain the UES 

method proposed by Ni and Wang (2007). In this sense, the Polluter Pays method is more 

general and includes the UES method as a special case. 

 Regarding the systems of weights, Gómez-Rúa (2013) shows that a method ),( cNx  

satisfies the axioms Independence of Upstream Costs, Efficiency and Additivity if and only if 

for every segment nj ,...,1= , there exists a weight system ( ) n

Ni

j

i Rs +∈ ∈  such that 0=j

is  for 

polluter ji >  and ∑ =
=

n

i

j

is
1

1 . If we add Upstream Monotonicity to these three axioms, the 

weight system must satisfy additionally j

k

j

i ss ≤  for every jki ≤< , or j

k

ikj

i ss −= δ  for every 

jki ≤< , if, instead, we had added the δ - Biodegradation Rate axiom. In both cases, she 

does not specify how the weights are obtained. Only when the Proportional Tax is added to 

the three previous axioms, she assumes that the weights are given by ∑ =
=

j

l li

j

i wws
1

/  for all  

ji ≤ , where w  is a weight vector based on exogenous factors. In our approach, the weights 

are determined endogenously and come from a pollutant transport model. 

 

 

3. Results 

 

In this section we present four propositions. The first proposition shows that the Polluter 

Pays method is the only method that satisfies the four axioms mentioned earlier. The second 

and third propositions show, respectively, that the allocation of the total costs of cleaning 

river pollutants suggested by the Polluter Pays method coincides with both the weighted 

Shapley value and the τ - value of the cost game generated from the problem. The fourth 

proposition shows that both the weighted Shapley value and the τ - value, and therefore the 

solution of the Polluter Pays method, are in the core of the corresponding cost game 

generated from the problem. 

 We now formalize the four axioms that characterize the Polluter Pays method. 

 

Independence of Upstream Costs. For any nRcc +∈21 ,  and Ni∈  such that 21

ll cc = , il > , 

for all ij > , we have )()( 21 cxcx jj = . 

 

 This formalization of the axiom follows Ni and Wang (2007) and simply states that 

the cost share of a given firm corresponds to its own pollution cost as well as all downstream 

costs, but does not include upstream costs.  

 



Upstream Asymmetry. For any nRc +∈  and Ni∈ , if 0≠ic , then we have the following 

proportion of this cost to be paid by firm ij ≤  

∑ =

=
i

k ki
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j

a

a
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1

)( ,  nj ,...,1= , 

where jia  ( ni ,...,1= ; nj ,...,1= ) are transfer coefficients as defined in the previous section.  

 

Efficiency. ∑∑ ==
=

n

j j

n

j j cx
11

. 

 

Additivity. For n

n Rccc +∈= ),...,( 11

1

1  and n

n Rccc +∈= ),...,( 22

1

2 , we have 

)()()( 2121 cxcxccx jjj +=+  for all nj ,...,1= . 

 

Proposition 1. The Polluter Pays method is the only method satisfying Independence of 

Upstream Costs, Upstream Asymmetry, Efficiency and Additivity. 

 

Proof. It is easy to verify that the Polluter Pays method satisfies the four axioms above. Now 

we show that the Polluter Pay method is the only method that satisfies these axioms. 

Consider the n -dimensional cost vector )0,...,0,1,0,...,0(=kc , nk ,...,2,1= , where 1 is 

the k th component of kc . By Independence of Upstream Costs, 0)( =k

j cx  for all kj > . 

Now suppose that for all kj ≤ , β=)( k

j cx , where β  is some nonnegative real number. By 

Upstream Asymmetry and by Efficiency, we must have 

∑ =

=
k
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)(  if kj ≤  and 0)( =k

j cx  if kj > . 

 Note that since the n -dimensional cost vectors, kc , nk ,...,2,1= , form a basis of nR , 

any nRc∈  can be written as ),...,,( 211 n

kn

k k cccccc =⋅=∑ =
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                            = )(cx PP

j . 

for all Nj ∈ . The proposition is proved. □ 

 

 This result clearly indicates that the Polluter Pays method treats all firms fairly, that 

is, the cost assigned to each firm is calculated in accordance with the proportion of its 

contribution to the concentration of pollution in its own segment and in all its downstream 

segments.  

 To analyze the relationship between the solution of the Polluter Pays method with 

values, such as the (weighted) Shapley value and theτ - value, we need to model the pollution 

cost allocation problem as a coalitional game with transferable payoff.
5
 This type of game is 
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described by a pair ),( vNG = , where N  is a finite set of players and )(Sv  is a real number 

that represents the worth of the coalition S  ( NS ⊆ ). In the context of a cost game, worth 

represents the costs incurred by the coalition S . Now, letting },...,2,1{ nN =  be the set of 

agents (polluting firms) and letting NS ⊆  be any coalition from the n  polluters, all we need 

is to define the characteristic function )(Sv . To do this, we denote by Smin  the most 

upstream polluting firm in the coalition S . Under the polluter pays principle, each member of 

NS ⊆  is responsible for the costs to reduce pollution in its own segment and in all 

downstream segments in accordance with its contribution to the level of pollution. Therefore, 

the cost of the coalition S , for any given nRc +∈ , should be 

         ∑
=

=
n

Sj

j

c cSv
min

)( .                             (3) 

Now, for any given nRc +∈ , we have a coalitional game, ),( cvN , that satisfies 

0)( =∅cv . This game is identical to that proposed by Ni & Wang (2007) under the UTI 

doctrine. Since both the (weighted) Shapley value and theτ - value identify a single result in a 

coalitional game, they are examples of values. A value is a function φ  defined on the space 

of games NG , nN RG →:φ , that identifies a feasible allocation, ∑ ∈
=

Ni i Nvv )()(φ , for 

every coalitional game. The weighted Shapley value can be characterized by the axioms of 

Dummy Player, Asymmetry, Efficiency and Additivity and can be defined using unanimity 

games by the following expression (see, for example, Haeringer, 2006) 

∑ ∑∑ ∈
∈

∈
=⋅=

Ti

Sj j

i
TTi TiTi Suv

ω
ω

αωφαωφ )),((),(  

where ),( ωφ vi  is the allocation to player i  at the result ),( ωφ v , )(SuT  is the unanimity game 

defined by 1)( =SuT  if TS ⊇  and 0)( =SuT  otherwise, and ω  is a weight vector Nii ∈)(ω  

being +∈Riω  the weight associated to player Ni∈ ; ∑ ⊆

−−=
ST

ts

T Tv )()1(α , being s  and t  

the number of players in coalitions S  and T , respectively.  

In the next proposition, we show that the Polluter Pays method is consistent with the 

weighted Shapley value of the game ),( cvN , that is, the solution of the Polluter Pays method 

(2) coincides with the weighted Shapley value φ  of the game ),( cvN  for all nRc +∈ . 

 

Proposition 2. For all nRc +∈  and cv  defined by (3), we have ),()( ωφ c

j

PP

j vcx =  for all 

polluting firms Nj ∈ . 

 

Proof. Consider again the n -dimensional cost vector )0,...,0,1,0,...,0(=kc , nk ,...,2,1= , 

where 1 is the k th component of kc . The coalitional games associated with these cost 

vectors kc , nk ,...,2,1= , are given by 

 0)( =Sv
kc  if kS >min  and 1)( =Sv

kc  otherwise. 

 Note that for the games ),(
kcvN , all polluting firms kj >  are dummies and all 

polluting firms kj ≤  are not treated symmetrically, that is, different weights are assigned to 

them according to their contribution to the concentration of pollution in their own segments 

as well as downstream segments. If these weights are defined in accordance with the transfer 

coefficients presented previously, the weighted Shapley values of the games ),(
kcvN  are  
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for all nj ,...,2,1= . The proposition is proved. □ 

 

Tijs (1987) uses three axioms to characterize the τ - value, being Efficiency one of 

them. The others two axioms are called Minimal Right Property and Restricted 

Proportionality Property. The Minimal Right Property is implied by Additivity together with 

Individual Rationality ( })({ivxi ≤  in the case of a cost game) and Efficiency while the 

Restricted Proportionality Property implies that the gains or costs assigned to a given player 

is proportional to his(her) marginal contribution to the grand coalition, i.e., the coalition 

formed by all players. 

For the next proposition, that establishes the relationship between the Polluter Pays 

method and the τ - value of the corresponding cost game, we need some additional notions. 

These notions are used to establish the expression of the τ - value for the cost game.
6
 The 

first of them is the marginal vector )( cvm of the game ),( cvN  that is defined as the vector 

with i th coordinate   

}){()()( iNvNvvm ccc

i −−= . 

 In a cost allocation problem, the real number )( c

i vm  measures the smallest 

contribution of player i  to the worth of the grand coalition )(Nvc  if he(she) joins the 

coalition of all the others }{iN −  players. In a division of the total cost of cleaning up a 

polluted river, for example, player i  must not expect to contribute less than his(her) marginal 

value )( c

i vm . Thus, we can see )( c

i vm  as a lower bound for player i  in the allocation of the 

total cost )(Nvc  of the game ),( cvN . 

 It is easy to show that, in all possible coalitions NS ⊆≠0  that player i  can join, 

)()( Svvm c

Si

c

i ≤∑ ∈
. The gap ∑ ∈

−=
Si

c

i

c vmSvSg )()()(  plays an important role in the 
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definition of the τ - value of the game ),( cvN . In fact, for coalitional games with 0)( ≥Sg , 

we must construct a payoff vector x  such that )()()( c

i

c

ii

c

i vvmxvm λ+≤≤ , where 

)(max)(
;

Sgv
SiS

c

i
∈

=λ  and the expression )()( c

i

c

i vvm λ+  represents an upper bound for player 

i  in the allocation of the total cost )(Nvc  of the game ),( cvN . For games ),( cvN  with 

0)( ≥Ng , the τ - value is defined as follows. 
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where ]1 ,0[)( ∈cvα  is chosen such that ∑ ∈
=

Ni

cc

i Nvv )()(τ . Taking into account this 

Efficiency axiom of the τ - value and the characteristic function of the coalitional game 

defined by (3), we define the weights )( cvα  in a similar way as we did in the Proposition 2.  

 

Proposition 3. For all nRc +∈  and cv  defined by (3), we have )()( c
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PP

j vcx τ=  for all 

polluting firms Nj ∈ . 

 

Proof. For any coalitional game ),( cvN  with cost vector n

n Rcccc +∈= ),...,,( 21 , we have 

∑ =
=

n

k kcNg
2

)( . In this game, the marginal contribution of the polluting firms are 

1)( cvm c

j =  if 1=j , and 0)( =c

j vm , if nj ,...,3,2= . Note that, if we want to charge firms i  

and j ,  ji ≠ , 2, ≥ji , according to their contribution to the concentration of pollution in 

their own segments as well as all downstream segments, the parameter )( cvα  of the equation 

(5) cannot be constant, but should vary according to each firm and each segment of the river. 

So, for any coalition NS ⊆≠∅ ,  )(Svc , we should have 

 0)( =c

j vα  if kS >min  and ]1 ,0()()( ∈= jk

c

j afvα  otherwise,     (6) 

where nj ,...,1=  refers to the j th polluting firm, nk ,...,1=  refers to the k th segment of the 

river, and jka  ( nj ,...,1= ; nk ,...,1= ) are the coefficients of the pollutants transport model 

defined previously. Taking this into account, we can calculate the τ - value for j th polluting 

firm the of the coalitional game ),( cvN  with 0)( >Ng  as follows 

    ∑ =
⋅+=

n

k k

c

j

c

j

c

j cvvmv
2

)()()( ατ .        (7) 

 Equation (7) is equivalent to the following equation since it satisfies expressions (6), 

1)( cvm c

j =  if 1=j , and 0)( =c

j vm , if nj ,...,3,2= , and the axiom of Efficiency, that is, 

)( c

j vτ  = ∑
∑=

=

⋅
n

jk
k

l lk

jk

k

a

a
c

1

 

                                                    = )(cx PP

j  

for all nj ,...,2,1= . The proposition is proved. □ 

 

Finally, we show in the next proposition that both the weighted Shapley and the τ - 

value, and therefore the Pollution Pays method solution, are in the core of the corresponding 

cost game ),( cvN . We show that indirectly, using the notion of convexity in games. In 

convex games the core is always nonempty and the Shapley value is a core allocation (see, 

for example, Moulin, 1988). Monderer et al. (1992) show also that the set of all weighted 



Shapley values contains the core of a coalitional game.  For cost sharing games, the 

convexity property is equivalent to the concavity of the game (Ni and Wang, 2007). A game 

),( vNG =  is called concave if and only if 

)(}){()(}){( TviTvSviSv −∪≥−�         (8) 

for every Ni∈  and for every }{\ iNTS ⊂⊂ . 

We recall that the core of a cost allocation game, )(vC , is defined by 

{ }∑ ∈
⊆≤∈=

Si i NSSvxXxvC every for   )(:)(  

where { }∑ ∈
=∈=

Ni i

n NvxRxX )(: . 

 

Proposition 4. For all nRc +∈ , both the weighted Shapley value and the τ - value of the cost 

game ),( cvN  are in the core, i.e., )()()(),( Svcxvv c

Si

PP

jSi

c

jSi

c

i ≤== ∑∑∑ ∈∈∈
τωφ  for 

every NS ⊆ . 

 

Proof. We need only to show that the game ),( cvN  is concave, i.e., for every Ni∈  and for 

every }{\, iNTS ⊂ , if TS ⊂ , then (rearranging (8)) 

    )()(}){(}){( SvTviSviTv cccc −≤∪−∪        (9) 

 There are three cases to consider: 

 Case 1. If STi minmin =< , iST <= minmin  or iST << minmin , then (9) is 

satisfied trivially as an equality.  

 Case 2. If STi minmin << , then (9) is satisfied as a strict inequality since 

}){(}){( iSviTv cc ∪=∪  and )()( SvTv cc > . 

 Case 3. If SiT minmin << , then (9) is satisfied as a strict inequality since 

)()(}){(}){( SvTviSviTv cccc −<∪−∪ . 

 These three cases cover all possibilities and show that the game ),( cvN  is concave. 

The proposition is proved. □  

  

 

4. Concluding remarks 

 

In this paper we investigate the allocation cost problem of cleaning up a polluted river among 

the agents located along it. We propose a method based on the polluter pays principle and a 

pollutant transport model to solve it. This method is characterized by four axioms. We also 

show that the solution of the proposed method coincides with the (weighted) Shapley value 

and the τ - value to the corresponding cost game that is induced according to the polluter 

pays principle. Another nice property of this solution is that it belongs to the core of the cost 

game analyzed and, therefore, is a stable allocation. 

 The information required to use the proposed method (Polluter Pays method) include 

the type of water pollutant (whether biodegradable or not), the transfer coefficients calculated 

for type of water pollutant and segment of the river, and the concentration of pollution in 

each segment. With this information, it is possible to calculate indirectly the levels of 

emissions of the firms in each segment of the river. The cost allocation suggested by this 

method is based on these coefficients and the estimated cost to clean pollutants from the river 

in each segment. Note that the method is based only on technical information that is specific 

for each polluted river. The more accurate this technical information is, the more reliable the 

application of this method will be. 
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