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1. Introduction

In their seminal paper, Baron and Ferejohn (1989) study a simple model of multilateral

bargaining under majority voting rule, which, in the past two decades, has become a basic

framework for understanding legislative bargaining. They establish the uniqueness of sta-

tionary subgame perfect equilibrium under a symmetric restriction on the recognition process

that determines who makes the proposal. The uniqueness result is nicely generalized to the

asymmetric cases by Eraslan (2002).1

A well-known issue in multilateral bargaining is the multiplicity of equilibrium outcomes.2

Although the stationary equilibrium notion is appealing for its simplicity (see Baron and

Kalai 1993), the restriction to stationary strategies is sometimes considered problematic.

Indeed, Baron and Ferejohn (1989) show that when their bargaining game involves at least

five parties, any division of the surplus can be sustained in a subgame perfect equilibrium.

What happens when there are only three negotiating parties? Is there a unique equilibrium

outcome? If not, what is the set of equilibrium outcomes? This needs to be answered to

complete the analysis of the Baron-Ferejohn model. Meanwhile, as one can easily think of

many real-life negotiations that involve exactly three parties, the answer is also important

from a practical point of view.

In this paper we show that in the three-player Baron-Ferejohn model there is a vast

multiplicity of equilibria as well. Each player’s equilibrium payoff is bounded below by a

positive value, and by the same token, no one can obtain the entire surplus in equilibrium.

As the discount factor tends to 1, the set of the equilibrium payoffs evolves monotonically

towards the entire feasible set. We focus on the equilibria with minimal winning coalition,

that is, the proposer is required to offer one of the responders a share that does not fall

below a certain acceptance threshold value, while the other responder receives nothing. Any

deviation will be punished by switching to a continuation equilibrium in which the deviator’s

payoff is held down to the minimum. The key step of the equilibrium construction is to ensure

that both responders find it optimal to reject an off-equilibrium proposal.

Baliga and Serrano (1995) introduce a multilateral bargaining game with imperfect in-

formation, in which players take turns to make proposal and the offer to each responder is

made in a sealed envelope. In other words, each responder observes only the share proposed

for him. Responses are public and occur sequentially, and an agreement requires unanimous

acceptance. They also obtain a large multiplicity of equilibria. This particular extension

of the multilateral bargaining model is interesting and important because many real-life

negotiations do involve under-the-table dealing.

1Banks and Duggan (2000) consider majoritarian bargaining with multidimensional alternative set, and

they show by example that stationary equilibrium outcome is not necessarily unique. Eraslan and Merlo

(2002) extend the Baron-Ferejohn model to a stochastic environment, in which stationary equilibrium payoffs

need not be unique and efficient.
2Under unanimity rule, it is shown that any feasible agreement can be supported by a subgame perfect

equilibrium for sufficiently large discount factors. See Herrero (1985), Sutton (1986), and Osborne and

Rubinstein (1990) for details on these results.
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Following Baliga and Serrano (1995), we analyze the majoritarian bargaining game with

sealed offers. The multiplicity result is obtained as well. The equilibria constructed for the

original three-player Baron-Ferejohn bargaining game can be easily modified into equilibria

of the game with sealed offers. A particular feature of the equilibria is that each player,

when in the role of a responder, adopts a monotone acceptance rule, i.e., accepting an offer

if and only if it does not fall below a threshold value.

In a recent independent work, Herings, Meshalkin and Predtetchinski (2013) also study

a three-player majoritarian bargaining model. In the current paper, we assume that players

respond to a proposal simultaneously; in contrast, they consider sequential responses. While

we focus on the equilibria with minimal winning coalition and identify the set of efficient

equilibrium payoffs, they aim to identify the set of all possible equilibrium divisions. These

two sets turn out to be identical. Finally, by allowing mixed strategies, our equilibrium

characterization appears to be simpler than theirs, and moreover, our equilibria can be

easily modified to fit in the model with sealed offers.

Section 2 establishes the multiplicity of the equilibrium payoffs in the three-player Baron-

Ferejohn bargaining game. Section 3 studies the majoritarian bargaining game with sealed

offers. All proofs are relegated to the Appendix.

2. Baron-Ferejohn Bargaining Game with Three Players

We consider the Baron-Ferejohn bargaining game with three players. The index  is used to

refer to each player, and the indices  and , when they appear, refer to the players other

than . The bargaining protocol is described as follows. In each period  = 0 1 2, player

 is recognized with probability 13 to make a proposal x ∈ X ≡ ©x ∈ R3+ :P3

=1  = 1
ª
,

where  denotes player ’s share of a fixed surplus of size one. Players  and  simultaneously

respond by either accepting or rejecting the proposal. If at least one responder accepts, the

proposal is passed and the game ends; otherwise, the game proceeds to the next period. If

a proposal x is passed in period , player ’s payoff is , where  ∈ (0 1) is the common
discount factor.3 The bargaining game is denoted by  ().

We adopt subgame perfect equilibrium (henceforth equilibrium) as the solution concept.

As responses are made simultaneously, there is a trivial equilibrium in which every player

accepts all proposals. To rule out this trivial equilibrium, we further impose on the equilibria

a restriction that no one uses a weakly dominated strategy. It is weakly dominated to accept

any proposal that gives a player less than his discounted payoff in the continuation play.

An equilibrium outcome is efficient if a proposal is passed in period 0. We characterize

the entire set of efficient equilibrium payoffs of  (). Lemma 1 establishes the upper and

the lower bounds of each player’s equilibrium payoffs.

3For simplicity, we assume that all players have the same linear utility function and a common discount

factor, and that the probability with which each player is recognized as the proposer is also identical. To

include asymmetry into the analysis would add algebraic complexity without causing any qualitative changes

in our results.
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Lemma 1 Let  () and  () be the supremum and the infimum of a player’s equilibrium

payoffs in  (), then,  () ≤ (3− ) 
¡
9− 6 − 2

¢
and  () ≥ (3− 3)  ¡9− 6 − 2

¢
.

Recall that when there are at least five players, Baron and Ferejohn (1989) show that for

all  no less than some ∗, any division of the surplus can be sustained in equilibrium, i.e.,
 () = 1 and  () = 0 for all  () with  ≥ ∗. Here, for any   1, we have  ()  1

and  ()  0, and the range of equilibrium payoffs depends on . Hence, it is already clear

that the three-player case is different from the cases with five or more players. With a slight

abuse of notation, from now on, we use  and  to denote the boundary values of the

equilibrium payoffs as characterized in Lemma 1.

In the rest of this section, we focus on a specific type of efficient equilibria, namely, the

equilibria with minimal winning coalition. In such an equilibrium, the proposer offers one of

the responders a positive share, and the offer is accepted by that responder, while the player

being excluded from the winning coalition receives nothing.4

Denote an equilibrium with minimal winning coalition by  (zp), where z = (1 2 3)

and p = (p1p2p3) are referred to as the equilibrium configuration. More specifically, it

says that, player , when serving as the proposer, offers a share of  ∈ [  ] to player 

(or  resp.) with probability  ∈ [0 1] ( = 1− resp.).5 The proposal will be accepted by
the responder receiving the offer of . Thus, the equilibrium  (zp) yields a payoff vector

u ( (zp)) ∈ R3+, where

 ( (zp)) = (1− ) 3 +
¡


 +  

¢
3

Note that the equilibrium configuration specifies only the actions on the equilibrium path,

not the complete strategy profile.6 In order to completely characterize an equilibrium, we

need to specify a continuation equilibrium configuration for every subgame.

First, we show that the upper and lower bounds of the equilibrium payoffs identified

in Lemma 1 can be achieved in equilibrium. Denote as 
 the set of configurations, in

which player ’s payoff is minimized at . One arbitrary configuration in 
 is denoted as

 (zp), where  =  , 

 =  = 0, and ,  and  can take any value within the

aforementioned range. By the configuration  (zp), player  offers  to either  or 

with probability  and  = 1− , and player  ( resp.) offers  ( resp.) to player  (

resp.) with probability 1. The acceptance rule is specified as follows: when player  makes

proposal, player  ( resp.) accepts if his offer is at least  and the sum of the two offers

is at least  ; when player  ( resp.) makes proposal, players  ( resp.) and  accept if

one’s own offer is at least  and the sum of the two offers is at least  ( resp.).

With this configuration, player ’s payoff is  = (1− ) 3, and the total payoff of

players  and  is 1−. Depending on the specific values of ,  and , the payoff of

player  ( resp.) in  (zp) can take any value between 1− − = (1− ) 3+ 3

4The unique stationary equilibrium in Baron and Ferejohn (1989) has the same feature.
5Formally, player 1 randomizes between two proposals (1− 1 1 0) and (1− 1 0 1) with probabilities

12 and 13, and similar for the other two players.
6One exception is the stationary equilibrium, in which players’ actions are history independent.
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and  = (1− ) 3+ 23. For example, let  = ,  =  and  = 1, then player

’s payoff is  and ’s payoff is (1− −).

Now, we specify the continuation play following any possible deviation. To guarantee

that player  cannot benefit from making a different proposal, in the continuation play each

responder’s discounted payoff cannot be lower than that from accepting the proposal. More

precisely, if player  deviates by proposing x with  +    , it will be rejected by both

 and , and the continuation play is  (ẑ p̂) ∈ 
 , where

̂ = 1− ̂ =


 + 
∈ [0 1]

̂ = min

½
max

½




 + 

¾¾
∈ [  ]

̂ = min

½
max

½




 + 

¾¾
∈ [  ] 

Denote as b (b and b resp.) the payoff of player  ( and  resp.) in the continuation

play. Then,

b = b =
1

3
̂ +

1

3
̂ +

1

3
(1− ̂) ∈ [1− − ]

b =
1

3
̂ +

1

3
̂ +

1

3
(1− ̂) ∈ [1− − ] 

Since player ’s discounted payoff from the continuation play is b =   1− , deviation
is unprofitable for him. The following lemma shows that both  and  will find it optimal

to reject any proposal x from  with  +    .

Lemma 2 For any x with  +    , b   and b  .

Similarly, if player  ( resp.) deviates by proposing x with  +    ( +   
resp.), it will be rejected by both responders and the continuation play is  (ẑ p̂) (


 (ẑ p̂)

resp.), in which (ẑ p̂) is specified similarly as above.

A responder’s deviation, i.e., rejecting an acceptable offer, is said to be effective if the

rejection leads the game to the next period. Following an effective deviation of player  as a

responder, the continuation play becomes  (zp), which holds ’s payoff down to  while

giving the other responder the highest payoff of  . Clearly, this is sufficient to prevent any

possible deviation of a responder.7

The last step of the construction is to note that every continuation play specified above is a

configuration in the same form as  (zp), and thus, further deviation from the continuation

play can be prevented in the same way as above.

7As in the folk theorem of the repeated games, we ignore simultaneous deviation in which both responders

reject acceptable offers.
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To sum up, we obtain, at the same time, three sets of extremal equilibria 
 ( = 1 2 3),

each of which yields the lowest payoff  to one of the players, and the main force holding

together this construction is the proper transition from one extremal equilibrium to another

following any deviation: if player  deviates in the role of proposer, the continuation play is

another  (ẑ p̂) ∈ 
 , where the specification of ẑ and p̂ depends on the rejected proposal;

if player  ( resp.) deviates effectively as a responder, the continuation play becomes

 (zp) (

 (zp) resp.). Since  is the lower bound of the equilibrium payoffs, no one has

a profitable one-step deviation.

Project the equilibrium set 
1 onto the unit simplex of feasible payoff vectors, we ob-

tain the interval between points  = ( 1− −) and 0 = ( 1− −).

Similarly, 
2 corresponds to the interval between  = (1− −) and 0 =

( 1− −), and 
3 corresponds to the interval between  = ( 1− −)

and  0 = (1− −). Let U be the convex hull of the points , 0, , 0,  and

 0 (see Figure 1). Our main result is that any payoff vector in U can be supported in an
equilibrium.

A A’

B

B’C

C’

1

2 3

U

Figure 1. The Set of Equilibrium Payoffs

Proposition 1 For any payoff vector u ∈ U, there is an equilibrium in the three-player

Baron-Ferejohn bargaining game, in which player ’s payoff is .

The key step of the proof is to show that any u ∈ U can be achieved in a well-defined
equilibrium configuration. Then, the specification of the strategy profile will be similar to

that of  (zp). Players follow the equilibrium configuration and bargaining is concluded

immediately. Deviation is deterred by the fear of switching to an extremal equilibrium in

which the deviator’s payoff is minimized.

Remark 1 The equilibrium configuration involves randomization of the proposer in choosing

with whom to form the winning coalition. The randomization process does not need to be

observable as the construction of continuation equilibria depends only on the proposal.

Remark 2 In the case with five or more players, the set of the equilibrium payoffs coincides

with the feasible set. Here, U is a proper subset of the feasible set for any   1. Nevertheless,
as  tends to 1, U evolves monotonically towards the entire feasible set.
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Remark 3 More generally, if we consider bargaining among  ≥ 3 players with a -quota

(2 ≤  ≤ ) voting rule, the multiple equilibria constructed in Baron and Ferejohn (1989)

extend to all cases with  ≥  ≥ 3, whereas our equilibria extend to cases with    = 2.

3. Majoritarian Bargaining with Sealed Offers

This section considers the majoritarian bargaining game with sealed offers, which combines

the main features of the Baron-Ferejohn model and the Baliga-Serrano model. For exposi-

tional ease we still focus on the three-player case, and the extension to the -player case is

briefly discussed at the end of this section. In each period, the randomly recognized proposer

makes offers in sealed envelopes, that is, each responder observes only the share proposed

for him. Responses to offers are made simultaneously, and the proposal passes if at least one

responder accepts the offer. If both responders reject, the game proceeds to the next period

with previous offers being revealed.

The key feature of the bargaining game with sealed offers is that each responder’s in-

formation set is never singleton, and his response can only depend on his own offer, not

the entire proposal as in the original Baron-Ferejohn model. Upon receiving his own offer,

a responder forms a belief about another responder’s offer and response, and chooses his

own optimal response, taking into consideration the continuation equilibrium. Therefore,

we shall work with perfect Bayesian equilibrium (henceforth PBE). This equilibrium notion

consists of two elements: (i) players’ actions are sequentially rational given their beliefs, and

(ii) players update their beliefs using Bayes’ rule whenever possible.

In Section 2, we focus on the equilibria in which only one responder is offered a positive

share, but it is easy to see that there are also equilibria in which all parties receive positive

shares. With sealed offers, an immediate observation is that at most two players (the proposer

and one responder) receive positive shares in any equilibrium outcome. In other words, only

the minimal winning coalition can form in equilibrium.

Next we show that after simple modification, the equilibria constructed in Section 2 will

fit in the current model. Again, denote a PBE by  (zp). In the equilibrium configuration,

player  makes an offer of  to either player  or  with probability 

 (


 resp.), and makes

an empty offer to the other player. Since a player’s response can only depend on his own

offer, not the entire proposal, we need to modify the acceptance rule as follows: player  (

resp.) accepts his offer if and only if it is no less than .

Given the acceptance rule, it is sequentially rational for the proposer to follow the equi-

librium configuration. To see that the acceptance rule is also sequentially rational, we now

specify the responder’s beliefs: (i) when player  receives the equilibrium offer , his infor-

mation set is on the equilibrium path, in which case Bayesian updating leads him to believe

that the other responder has been offered nothing; (ii) when player  receives an empty offer,

his belief does not matter as it is weakly dominant to reject; (iii) when player  receives a

positive offer different from , the play is clearly off the equilibrium path, in which case

Bayes’ rule puts no restriction on his belief and player  again believes that the other re-

sponder has been offered nothing. The simple belief specified here is consistent with Bayes’
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rule. Based on this belief, player  always views his own response as being crucial, thus it is

sequentially rational for him to accept a proposal as long as his payoff is no less than that

from the continuation equilibrium, which is constructed in the same way as in Section 2.8

Hence, we have the following proposition.

Proposition 2 In the three-player majoritarian bargaining game with sealed offers, any

payoff vector u ∈ U can be supported in a PBE.

With five or more players, Baron and Ferejohn’s multiple equilibria do not extend to

the model with sealed offers. It is because players’ acceptance rules in their equilibria are

not monotone, that is, a responder may reject an off-equilibrium proposal that gives him a

share greater than that specified in the equilibrium proposal. With sealed offers, this cannot

happen in any equilibrium.

The equilibria that we construct for the three-player case can be extended to the general

-player case in a straightforward way. As in the three-player case, only the minimal

winning coalition forms in equilibrium, and those excluded from the winning coalition receive

empty offers. The equilibrium strategy profile specifies the winning coalition that should be

formed conditional on who is recognized as the proposer, and what offers should be made

to the players in the winning coalition. The responders adopt monotone acceptance rule.

Specifically, for every player in the winning coalition, the acceptance threshold is simply his

equilibrium offer; for every player excluded from the winning coalition, let his threshold be

the highest offer that should be made to the players in the winning coalition. It is easy to

see that the upper bound of each player’s equilibrium payoffs must be less than 1, but the

lower bound can be 0 when the discount factor is sufficiently large.

Appendix

Proof of Lemma 1.

The following three inequality conditions should be satisfied by  and :

(i) 0 ≤  () ≤ () ≤ 1
(ii)  () ≤ 1

3
[1−  ()] +

2

3
 ()

(iii)  () ≥ 1

3
[1−  ()] 

Condition (i) is self-explanatory. In any equilibrium, a player will always reject a proposal

that gives him less than  () and accept one that gives him more than  (). Hence, the

best outcome that a player can receive is: (a) when he is recognized as the proposer (with

probability 13), at least one of the other two players is willing to accept  (), and (b)

when another player proposes, he will be offered  () with probability 1. This establishes

8A crucial feature of the sealed-offer model is that after each period the offers are revealed to all players,

and thus, the construction of the continuation equilibrium can depend on the entire rejected proposal.
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Condition (ii). Finally, the worst outcome that a player can receive is that he has to offer

 () to one of the responders when in the role of proposer, and he will not receive a

positive offer from other players. Thus, Condition (iii) should also be satisfied. The three

conditions together lead to

 () ≤ 3− 

9− 6 − 2
and  () ≥ 3− 3

9− 6 − 2


Proof of Lemma 2.

Let  =  ( + ) and  =  ( + ). Observe that by construction, we have

b + b = 

3
+
2

3
= 1−   =

2

3
+
1− 

3

and    . Below we show that b   (b   similarly) in all possible cases:

Case 1.  ≤ . It must be that  = 1−    because  +  1. Then,

b = 

3
+



3
+
1− 

3
 

µ


3
+
2

3

¶
=  (b + b)    

Case 2.  ≤  ≤  . It must be that   .

(2a) If  ≤  , then

b = 

3
+



3
+
1− 

3
=  (b + b)  

(2b) If    , then

b = 

3
+



3
+
1− 

3
 

µ


3
+
2

3

¶
 

Case 3.    .

(3a) If   , then

b = 

3
+



3
+
1− 

3
 

µ
2

3
+
1− 

3

¶
=   

(3b) If  ≤  ≤  , then

b = 

3
+



3
+
1− 

3
 

µ
2

3
+
1

3

¶
   

(3c) If    (possible when  is sufficiently small), then 1−    and

b = 

3
+



3
+
1− 

3
 

µ
2

3
+
1

3

¶
   
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Proof of Proposition 1.

Note that we have constructed the extremal equilibrium corresponding to each vertex of U .
It suffices to show that for any two equilibrium configurations  (xp) and  (yq), there is

another equilibrium configuration  (z s) such that for any  ∈ [0 1],

 ( (z s)) =  ( (xp)) + (1− ) ( (yq)) 

Denote as  ( (xp)) ≡ 3 the contribution of player  to player ’s payoff in  (xp).

Player ’s payoff in  (xp) can be rewritten as:

 ( (xp)) =
£
1−  ( (xp))−  ( (xp))

¤
+ 


 ( (xp)) +  ( (xp)) 

The way that we construct  (z s) is to ensure

 ( (z s)) =  ( (xp)) + (1− )  ( (yq))

for each  and . To achieve this, we need two conditions for each player :⎧⎨⎩  =  + (1− ) ¡
1− 

¢
 = 

¡
1− 

¢
 + (1− )

¡
1− 

¢


by which we obtain

 =  + (1− )  and  =
 + (1− ) 

 + (1− ) 


Observe that  ∈ [  ] and  ∈ [0 1], thus  (z s) is well-defined. It is easy to verify
that with this configuration, we have  ( (z s)) =  ( (xp)) + (1− ) ( (yq)).
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